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Abstract

A family of super deep networks, referred to as residual

networks or ResNet [14], achieved record-beating perfor-

mance in various visual tasks such as image recognition,

object detection, and semantic segmentation. The ability to

train very deep networks naturally pushed the researchers

to use enormous resources to achieve the best performance.

Consequently, in many applications super deep residual

networks were employed for just a marginal improvement

in performance. In this paper, we propose ǫ-ResNet that al-

lows us to automatically discard redundant layers, which

produces responses that are smaller than a threshold ǫ,

without any loss in performance. The ǫ-ResNet architec-

ture can be achieved using a few additional rectified linear

units in the original ResNet. Our method does not use any

additional variables nor numerous trials like other hyper-

parameter optimization techniques. The layer selection is

achieved using a single training process and the evaluation

is performed on CIFAR-10, CIFAR-100, SVHN, and Ima-

geNet datasets. In some instances, we achieve about 80%

reduction in the number of parameters.

1. Introduction

The basic idea behind ǫ-ResNet is shown in Fig. 1 where

ǫ-ResNet is trained on the CIFAR100 dataset [22]. In partic-

ular, we show a 752-layer network with each residual block

having 2 convolution layers and the “pre-activation” setting

following [15]. During the training, we automatically iden-

tify the layers that can be pruned or discarded without any

loss (or with marginal loss) in the performance. We achieve

this by modifying the standard residual network with a few

additional rectified linear units that automatically discards

residual blocks whose responses are below a threshold. In

this particular instance shown, we achieve a compression

ratio of around 3.2 (original network size / reduced network

size).

Recent advances in representation learning have demon-

strated the powerful role played by deep residual learn-

ing [14]. As a result, ResNet has pushed the boundaries

Figure 1. We show a very deep ǫ-residual network with 752 layers

for training CIFAR-100 [22]. During training, ǫ-ResNet identifies

the layers that can be discarded with marginal or no loss in perfor-

mance. The red lines indicate the layers that can be pruned, and the

blue lines show the layers that need to be used. In this particular

instance, we achieve a compression ratio of 3.2 (original number

of layers / reduced number of layers). The validation errors of the

original and the reduced networks are given by 24.8% and 23.8%,

respectively.

of a wide variety of vision tasks significantly, including but

are not limited to general object recognition [14, 48], ob-

ject detection [34, 7, 35], face recognition [27], segmen-

tation [5, 47, 52] and semantic boundary detection [50].

More recently, He et al. [15] proposed an improved design

of residual unit, where identity mappings are constructed

by viewing the activation functions as “pre-activation” of

the weight layers, in contrast to the conventional “post-

activation” manner. This further led to considerably im-

proved performance on very deep network architectures,

such as a 1001-layer ResNet.

The remarkable success of ResNet leads to some obvi-

ous questions: What makes it work better than earlier ar-

chitectures? One advantage with ResNet is its ability to

handle vanishing/exploding gradients. However, the suc-

cess could not be attributed only to this since many prior

methods have already handled this with normalized initial-

ization [24, 10, 13]. Another key contributing factor is the

depth, which has been proven to be extremely beneficial

in model expressiveness [12, 29, 38]. It was observed that

training very deep neural networks is not a straightforward
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Figure 2. We show the basic transformation in standard ResNet

and ǫ-ResNet (a) The function mapping in standard ResNet is

given by H(x) = F(x) + x. (b) The function mapping in ǫ-

ResNet is given by H(x) = S(F(x)) + x. If all the residual

responses in F(x) is less than a threshold ǫ, then S(F(x)) = 0.

If all the responses are not small, then we do the same mapping

S(F(x)) = F(x) as the standard network.

task as we encounter the “under-fitting” problem, where the

training error keeps increasing with the depth of the net-

work. This is in stark contrast of the natural expectation of

“over-fitting” that typically happens when we use too many

parameters. To illustrate this further, let us use consider

Fig. 2(a). Let H(x) be the desired underlying mapping, and

we cast it as F(x)+x. Here F(x) = H(x)−x is the resid-

ual mapping. In [14], the following explanation is provided

for the under-fitting problem:

“We hypothesize that it is easier to optimize the

residual mapping than to optimize the original,

unreferenced mapping. To the extreme, if an iden-

tity mapping were optimal, it would be easier to

push the residual to zero than to fit an identity

mapping by a stack of nonlinear layers.”

While this makes sense, in reality one seldom observes

the residuals going to perfect zeros or even negligible values

in experiments with very deep networks. In this paper, we

propose a technique that promotes zero residuals, which in

other words achieves identity mapping in a strict sense.

A different interpretation for residual networks was

given in [44], where ResNet was treated as an ensemble of

many shallow networks. In particular, they show several in-

teresting experiments to demonstrate the role of depth and

layers in VGGNet and ResNet. In particular, they show the

deletion of one layer in VGGNet can lead to 80% increase

in error, while one barely notices the difference in ResNet.
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Figure 3. validation errors of full pre-activation ResNet with dif-

ferent number of layers in CIFAR10 dataset [22].

This shows that depth alone may not be the single key fac-

tor in the success of ResNet. Their hypothesis is that the

multiple short and sometimes redundant paths play an im-

portant role in the performance. In order to study the role of

depth in residual networks, we performed a simple exper-

iment with CIFAR10 dataset [22]. We trained a family of

deep residual networks with monotonically increasing num-

ber of layers from 100 to 300 as shown in Fig. 3. As we

observe, the error on the validation set is not monotonically

decreasing. For example, the validation errors of 254-layer

and 200-layer networks are given by 5.96% and 5.66%. Al-

though there is a overall decrease in the error rate as we

increase the number of layers, the behaviour is not strictly

monotonic. Therefore, we would like to ask the following

questions:

By training a residual network N with n layers,

can we find a reduced network NR with m ≪ n

layers without significant performance loss?

In this paper we propose ǫ-ResNet, a variant of stan-

dard residual networks, that promotes strict identity map-

ping. We illustrate the basic idea behind ǫ-ResNet in

Fig. 2(b). We model the desired unknown mapping as

H(x) = S(F(x)) + x. When all the responses in the orig-

inal residual block F(x) is below a threshold ǫ, then we

force S(F(x)) = 0. If any single response is not small,

then we use the original mapping S(F(x)) = F(x) from

the standard residual network. In this paper, we will show

that when a residual block produces zero responses using

our proposed variant, then the weights in the CNN filters

of the corresponding residual block will be pushed to zeros

by the training loss function that consists of cross-entropy

term and L2 norm of the weight parameters with momen-

tum optimization [20]. Consequently, during the prediction

or test time, we can safely remove these layers and build

a reduced network. A direct benefit of such framework
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is model compression and faster inference when there is

layer redundancy. In our experiments, ǫ-ResNet produces

remarkable reduction of the model size with marginal or

no loss in performance. Our expectation is that ǫ-ResNet

should at least achieve good trade-off between performance

and model size/complexity.

2. Related Work

Residual Networks and variants: A significant direc-

tion of network design has been focusing on designing

skip layer architectures in order to alleviate the vanish-

ing/exploding gradient issues [41]. More recent advances

of this direction have led to the family of deep residual net-

works [14, 48, 42]. He et al. further proposed an improved

residual unit with full pre-activation [15], where identity

mappings are used as skip connections. Under this frame-

work, it was mathematically shown that the feature of any

deeper unit can be represented as the feature of any shal-

lower unit plus the summation of the preceding residual

responses. Such characteristic leads to significantly im-

proved performance on ultra deep networks with more than

1000 layers, while previously proposed residual units suf-

fer from over-fitting and degraded performance. However,

saturation of performance gain still exists as the layer num-

ber increases, meaning that there is room for removing re-

dundancy and achieve better trade-off between performance

and model complexity.

Network structure optimization: The problem addressed

in this paper can be seen as one of the subproblems of hyper-

parameter optimization, where we identify a subnetwork

by dropping unnecessary layers without any (or marginal)

loss in the performance. We will briefly review the un-

derlying ideas in hyper-parameter optimization. One of the

distinctly unsolved problems in deep learning is the ability

to automatically choose the right network architecture for

solving a particular task. The popular ones (e.g., AlexNet,

GoogLeNet, and Residual Networks) have shown record

beating performance on various image recognition tasks.

Nevertheless, it is a time-consuming process to decide on

the hyper-parameters (HPs) of a network such as the num-

ber of layers, type of activation functions, learning rate, and

loss functions.

Non-practitioners of deep learning might ask: why is it

difficult to optimize a few HPs, while we already train mil-

lions of network weight parameters? One can view this as a

global optimization of a black-box loss function f . The goal

is to find the HPs θh that minimizes f(θh, θw,Dval), such

that θw = argminθw f(θh, θw,Dtrain). Here θw, Dtrain,

and Dval denote the weight parameters, training dataset,

and validation dataset, respectively. Some of the HPs such

as the depth are discrete, and the topology of the network

changes for various depth values. This makes it hard to treat

both sets of parameters θh and θw in the same manner. Ex-

isting approaches evaluate the f(θh, θw,Dval) for different

values of θh and identify the optimal θh.

Standard approaches include search strategies (manual,

grid, and random) and Bayesian techniques. A grid search

is a brute-force strategy that evaluates the function for all

HP values in a manually specified interval. In a random

search, we evaluate on a random subset of parameter values

to identify the optimum. Manual search denotes the pro-

cess of greedily optimizing one parameter at a time, and

then moving on to the next one – we memorize and analyze

our previous results, and this gives us an advantage over

naive grid or random search. Practical considerations in the

manual tuning of HPs are provided for efficient training and

debugging of large-scale networks [2].

Bayesian methods [40, 4] can automate the process of

manual tuning by learning a statistical model of the function

that maps the hyper-parameter values to the performance on

the validation set. In other words, we can think of Bayesian

methods as modeling the conditional probability p(f |θh)
where f is the performance on the validation set given HPs

θh. By studying the performance of different search tech-

niques on the 117 datasets from [9], it was shown that

many recent methods are only marginally better than ran-

dom search [33]. It is highly recommended that all HP opti-

mization methods should be compared with random search

baseline [3]. Reinforcement learning [54] and evolution-

ary algorithms [32] have also been used, but these methods

use evaluations for a large number of parameter trials, and

it is time-consuming for even small-scale problems. While

many of these methods are driven towards finding the op-

timal network architecture that produces best performance,

our work focuses on a subproblem where we identify a sub-

network that produces more-or-less the same results as the

original one in a specific case of residual networks.

Many other researchers have looked at model compres-

sion using other techniques such as low-rank decomposi-

tion [8, 21, 51], quantization [31, 6, 46], architecture de-

sign [43, 19, 17], pruning [11, 25, 28], sparse [26, 53, 1, 45]

learning, etc. Recently, sparse structure selection has

been shown for residual networks using scaling factor vari-

ables [18]. These additional scaling variables are trained

along with the standard weight parameters using L1 regu-

larization terms using stochastic Accelerated Proximal Gra-

dient (APG) method. While [18] and ǫ-ResNet share the

same goal of discarding redundant layers, the techniques

are entirely different. We do not add any additional vari-

ables to the standard residual networks. While [18] uses L1
relaxation for solving L0 sparsity in the loss function, we

promote layer sparsity by redesigning the network architec-

ture that can achieve strict identity mapping.
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(a) (b) (c)

Figure 4. (a) We show the network structure of one of the residual blocks in the standard pre-activation network [15]. (b) We show the

network structure of one of the residual blocks in ǫ-ResNet. We have added a sparsity-promoting function S() to discard the residual if

all the individual responses are less than a threshold ǫ. (c) We show the network structure for the sparsity-promoting function S() using

4 RELU’s and one multiplicative gate. The pair (i, j) shown in brackets denote the weights i and bias term j for the associated RELU

function. L refers to a very large positive constant and ǫ denotes the constant that we want to use for discarding layers.

3. ǫ-ResNet

Standard ResNet: Residual network consists of a large

stack of residual blocks. Each residual block has the ar-

chitecture shown in Fig. 4(a). Each residual block can be

seen as the following mapping:

H(x) = x+ F(x) (1)

The residual block consists of pre-activations of weight

layers as proposed in the improved version of residual net-

works [15]. Note that this is in contrast to the earlier ver-

sion that used post-activations (RELU and Batch normal-

ization BN) of weight layers [14]. In all our experiments,

we use the pre-activation residual network as the baseline.

Our proposed ǫ-ResNet will also be built on top of this pre-

activation residual networks. The entire network is built

by stacking multiple residual blocks. It has three groups

of residual blocks, and each group has equal numbers of

blocks. For example, in the case of a 110-layer network,

we have 3 groups each having 18 blocks. Each block has

2 layers, and thus the three groups will have a total of 108

(3 × 2 × 18) layers. In addition, we have one convolution

layer before and one fully connected layer after the three

groups of residual blocks, and thereby leading to 110 lay-

ers. The dimension of the first group is 16 and is multiplied

by two in the later two groups, and the feature-map sizes in

the three groups are 32× 32, 16× 16, 8× 8.

ǫ-ResNet: Fig. 4(b) shows the mapping function in every

block in the ǫ-ResNet. The basic idea in ǫ-ResNet is to use a

sparsity-promoting function S(F(x)) that automatically

discards the residual F(x) if all the individual responses

are less than a threshold ǫ. Instead using a function mapping

H(x) = x + F(x), we use a function mapping as shown

below:
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H(x) = x+ S(F(x)) (2)

Let us assume that F(x) is a vector of length n. Let

each element of the vector is denoted by F(x)i where

i ∈ {1, . . . , n}. The sparsity-promoting function is defined

below:

S(F(x)) =

{

0 if |F(x)i| < ǫ, ∀i ∈ {1, . . . , n}

F(x) otherwise.

(3)

Proposed Structure: Fig. 4(c) shows our proposed net-

work structure to implement the sparsity promoting func-

tion S(F(x)). The network consists of 4 RELU layers and

one multiplicative gating function (×), as utilized in [41].

Let us study the behaviour of this network. First, let us

consider the case when all the response elements satisfy the

condition |F(x)i| < ǫ. In this case, the output from the

summation (+) will be zero. A zero input to the third RELU

will lead to an output of 1. An output of 1 from the third

RELU will lead to an output of 0 from the fourth RELU.

Finally, we will have T (F(x)) = 0, and thus we have the

following:

S(F(x)) = T (F(x))×F(x) = 0 (4)

Now let us consider the second scenario where at least

one of the response elements satisfies either F(x) > ǫ or

F(x) < −ǫ. In this case we will have a non-zero posi-

tive output from the first summation (+). Non-zero positive

output from the summation would lead to 0 output after the

third RELU, and eventually output T (F(x)) = 1 from the

final RELU. Thus we have:

S(F(x)) = T (F(x))×F(x) = F(x) (5)

Loss function: We use the same loss function that was

used in ResNet [15] involving the cross-entropy term and

L2 regularization on the weights. Note that we also use

a side-supervision in addition to the loss function at the

last output layer. Let us denote the additional function

used for side-supervision as the side loss. If there are N

residual blocks, the output of [N/2]-th block is used in the

computation of the side loss. To get side loss, we follow

the same architecture as the standard loss function. We

apply a fully-connected layer before the soft-max layer and

then forward their output to the cross entropy function.

The output dimension of the fully-connected layer is the

number of classes in the dataset. Finally, side loss is used

in the overall cost function with a coefficient of 0.1. Side

supervision can be seen as a strategy to shorten the path of

back propagation for the first half of layers during training.

Note that side supervision is not involved in prediction.

Weight Collapse: When a residual block produces negligi-

ble responses, the sparsity promoting function will start pro-

ducing 0 outputs. As a result, the weights in this block will

stop contributing to the cross-entropy term. Consequently

the gradients will be only based on the regularization term,

and thus the weights in the associated residual block will

move to 0’s. Note that the weights don’t go to zeros in-

stantly, and the number of iterations necessary for reaching

zeros depends on the learning rate and momentum parame-

ters. In Fig. 5, we show the weight collapse for one of the

layers in a residual block that starts to model strict identity

mapping.

Figure 5. We show the histogram of all weights in one of the lay-

ers of a residual block that achieves strict identity. The x-axis

shows the index for the iterations. The y-axis shows the value of

the weights. The different curves show the maximum, minimum,

93rd percentile, etc. As we observe, the weights collapse to zeros

once a residual block is identified as unnecessary by ourǫ-ResNet

algorithm.

4. Experiments

We evaluate ǫ-ResNet on four standard datasets: CIFAR-

10 and CIFAR-100 [22], SVHN [30], and ImageNet 2012

dataset [36]. We used standard ResNet as the baseline for

comparison.

Datasets: The CIFAR-10 dataset [22] consists of 60, 000
32 × 32 RGB images with 10 classes, where each class

has 6, 000 images. The CIFAR-100 dataset [22] also

consists of 60, 000 32 × 32 RGB images with 100 classes,

where each class has 600 images. We use 50, 000 training

images and 10, 000 test images in both the datasets. We

follow the standard data augmentation that allows for small

translations and horizontal flips. We first pad 4 pixels on

all sides, then we randomly crop 32 × 32 images from the
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Figure 6. (a), (b), (c), and (d) show the validation error of ResNet and ǫ-ResNet with different number of layers on CIFAR-10, CIFAR-

100, SVHN, and ImageNet, respectively. (e), (f), (g), and (h) show the ratio of discarded layers of ǫ-ResNet with a different number

of layers on CIFAR-10, CIFAR-100, SVNH, and ImageNet, respectively. The validation error of ResNet-152 baseline is borrowed from

https://github.com/facebook/fb.resnet.torch.

(a) (b) (c) (d)

Figure 7. (a), (b), and (c) show the memory consumption for parameters used in the standard ResNet and the reduced one for CIFAR-10,

CIFAR-100, and ImageNet experiments, respectively. As we can see, we achieve a significant compression in the case of networks with a

large number of layers.

padded image, and finally we do a horizontal flip.

In the Street View House Numbers (SVHN) [30] dataset,

the models are trained on 604, 388 RGB images and eval-

uated on 26, 032 RGB images of size 32 × 32. For data

augmentation, we apply the same augmentation method

as on the CIFAR datasets. Before random cropping, we

apply the following additional transformations to augment

the data: For every training image, we perform scaling and

transformation with one random factor on all its pixels.

In particular, we add a random number in [−10, 10] for

all pixels on one image, then for each pixel randomly

multiply the residual between RGB channel values and

their channel mean with a scale between [0.8, 1.2], add the

scaled residuals to the original mean. The randomly scaled

and transformed values are then truncated to the range of

[0, 255] before output.

The ImageNet 2012 classification dataset [36] has

1, 000 classes and contains 1, 281, 167 training images

and 50, 000 validation images. We report both top-1 and

top-5 validation error rates on it. We follow the practice in

[14, 16, 43, 23] to conduct data augmentation on ImageNet.

A 224 × 224 crop is randomly sampled from an image by
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Figure 8. Sensitivity to the choice of ǫ parameter values: We stud-

ied the ratio of discarded layers and validation errors for different

ǫ parameter values in the case of CIFAR-10 and CIFAR-100. We

observed that ǫ parameter can be seen as a tuning parameter to

achieve the tradeoff between compression and accuracy.

Figure 9. We study the ratio of discarded layers with respect to the

number of epochs. Results of a 752-layer ǫ-ResNet on CIFAR-10

and CIFAR-100.

(a) (b)

Figure 10. Group-wise proportions of layers that are not discarded

versus the discarded ones on ResNets with different depths. All

network structures in the experiment contain three groups, where

each group contains layers at the same resolution. For each group,

green bar represents the proportion of layers not discarded, while

blue bar represents the proportion of discarded layers. (a) and (b)

show the results on CIFAR-10 and CIFAR-100, respectively.

following the scale and aspect ratio augmentation from

[43], instead of scale augmentation used in the ResNet [14]

paper because the former gives a better validation error.

We then apply the following transformations in a random

order: horizontal flip, the standard AlexNet-style color

augmentation [23] and photometric distortions [16].

ǫ Parameter: We can think of ǫ as a hyper-parameter that

allows us to find a tradeoff between accuracy and network

size. In practice, identifying a good ǫ parameter is not

difficult due to the following reasons: (1) The ǫ values are

generally concentrated within a small range to produce

good results and compression, as shown in the experiments.

(2) ǫ satisfies nice monotonicity property (larger value

leads to higher compression). (3) In all the experiments

(CIFAR-10, CIFAR-100, SVHN, and Imagenet), we were

able to quickly find ǫ parameters (generally in the range

1.5-3 with just 1 or 2 attempts). For example, the experi-

ments for CIFAR-10 and CIFAR-100 used an ǫ of 2.5. For

all experiments on SVHN, we use an ǫ of 1.5. We use ǫ in

the range (1.8, 2.1) on ImageNet. Fig. 8 shows that in a

reasonable range, greater ǫ brings larger compression ratio.

Number of layers: We experimented with networks of

depths 110, 200, 500, and 752-layers on CIFAR-10 and

CIFAR-100. These four networks have 54, 99, 249, 375

residual blocks (consisting of two 3 × 3 convolutional

layers each) respectively. Considering the size of SVHN

is 10 times larger than CIFAR-10, we test SVHN with

networks of depths 100, 200, and 302 layers. Finally, we

evaluated the models of depths 101 and 152 on ImageNet.

Adaptive learning rate: Our learning rate scheduling

closely follows the standard ResNet implementation [14].

On CIFAR dataset, we start with a learning rate of 0.1 and

decrease it by a factor of 10 at epochs 82 and 123. On

SVHN dataset, we begin with 0.1 and decrease it by a fac-

tor of 10 at epochs 20, 28 and 50. When the network starts

to lose layers, we will stop using the standard learning rate

policy and start using adaptive learning rate policy. Accord-

ing to our adaptive learning rate policy, every time we lose a

residual block, we reset the learning rate to the initial value

of the standard setting and decrease it at a rate that is twice

as fast as the standard policy. In other words, we decrease it

by a factor of 10 after 41 and 61 epochs for CIFAR datasets.

For SVHN, we will start decreasing by a factor 10 after 10,

14, and 25 epochs. Such adaptive learning rate policies have

been used before [39, 37].

Adaptive learning rate policy was not necessary for

ImageNet, where we just start with a learning rate of 0.1

and decrease it by a factor of 10 at epochs 30, 60, 85, and 95.

Training: We implement ǫ-ResNet using Tensorflow on TI-

TAN XP and GeForce GTX 970 graphic cards. Our code is

built upon the tensorpack, an implementation of ResNet can

be found here. We followed the standard Gaussian initial-

ization of 0 mean and 0.01 std for weights, and constant
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initialization of 0s for biases.

Following the practice in [14], we use standard data

augmentation methods and train the network using SGD

with a mini-batch size of 128 on CIFAR and SVHN datasets

and a mini-batch size 256 on ImageNet for each GPU. On

CIFAR datasets the baseline models are trained for up to

200 epochs (78, 000 iterations), while ǫ-ResNets requires

1, 000 epochs to train since it uses adaptive learning rate.

For SVHN, the baseline and ǫ-Resnet used 80 and 150

epochs, respectively. All the models on ImageNet are

trained for 110 epochs. We use a weight decay of 0.0002

and a momentum of 0.9 for all the experiments.

Side-supervision: Side-supervision is a strategy to impose

additional losses at intermediate hidden layers in addition

to the loss on the top [49]. In ǫ-ResNet, we apply one addi-

tional loss at the middle of the network with a coefficient of

0.1. We observed that side supervision allows the weights

to generally decrease as we move from the input layer to the

output layer. As shown in Fig. 1, we reject more layers near

the output layer as shown by the red lines.

In Fig. 6, we also show the results for the standard

Resnet improves with side-supervision. However, ǫ-ResNet

still achieves similar performance, along with providing the

additional benefit of significant compression.

Validation Errors: Fig. 6 report the comparison in

validation errors between standard ResNet and ǫ-ResNet.

ǫ-ResNet again achieves a significant reduction in model

size while maintaining good prediction performance

on CIFAR-10, CIFAR-100, and SVHN. On these three

datasets, we did not find any degradation in the perfor-

mance even after discarding a significant number of layers.

We also evaluated the performance of ǫ-ResNet with 101

and 152 layers on ImageNet. With a marginal loss in

performance, ǫ-ResNet discarded 20.12%, 25.60%, and

36.23% of layers for different ǫ parameters and depths.

Memory consumption: The memory footprint reduction

for CIFAR-10, CIFAR-100, SVHN, and ImageNet are

shown in Fig. 7, respectively.

Layer Selection Fig. 9 shows that the proportion of strict

identity mapping increases with the training iterations and

gradually saturates, finally stabilizing at a ratio where the

performance is similar to the original. When looking into

the final learned structure, Fig. 10 shows that ǫ-ResNet is

prone to discarding more layers closer to the output.

5. Discussion

We propose ǫ-ResNet, a variant of standard residual net-

works [15], that automatically identifies and discards redun-

dant layers with marginal or no loss in performance. We

achieve this using a novel architecture that enables strict

identity mappings when all the individual responses from

a layer are smaller than a threshold ǫ. We tested the pro-

posed architecture on four datasets: CIFAR-10, CIFAR-

100, SVHN, and ImageNet. We plan to explore two avenues

in future. First, we will focus on developing an algorithm

that can automatically identify a good ǫ value that produces

maximum compression with marginal or no loss in perfor-

mance. Second, we will extend the proposed method to ar-

chitectures beyond ResNet.
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