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Abstract

In this paper, we address referring expression compre-

hension: localizing an image region described by a natu-

ral language expression. While most recent work treats ex-

pressions as a single unit, we propose to decompose them

into three modular components related to subject appear-

ance, location, and relationship to other objects. This al-

lows us to flexibly adapt to expressions containing differ-

ent types of information in an end-to-end framework. In

our model, which we call the Modular Attention Network

(MAttNet), two types of attention are utilized: language-

based attention that learns the module weights as well as

the word/phrase attention that each module should focus

on; and visual attention that allows the subject and rela-

tionship modules to focus on relevant image components.

Module weights combine scores from all three modules dy-

namically to output an overall score. Experiments show that

MAttNet outperforms previous state-of-the-art methods by

a large margin on both bounding-box-level and pixel-level

comprehension tasks. Demo1 and code2 are provided.

1. Introduction
Referring expressions are natural language utterances

that indicate particular objects within a scene, e.g., “the

woman in the red sweater” or “the man on the right”. For

robots or other intelligent agents communicating with peo-

ple in the world, the ability to accurately comprehend such

expressions in real-world scenarios will be a necessary com-

ponent for natural interactions.

Referring expression comprehension is typically formu-

lated as selecting the best region from a set of propos-

als/objects O = {oi}
N
i=1 in image I , given an input ex-

pression r. Most recent work on referring expressions

uses CNN-LSTM based frameworks to model P (r|o) [18,

10, 31, 19, 17] or uses a joint vision-language embedding

1Demo: vision2.cs.unc.edu/refer/comprehension
2Code: https://github.com/lichengunc/MAttNet
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Figure 1: Modular Attention Network (MAttNet). Given an

expression, we attentionally parse it into three phrase em-

beddings, which are input to three visual modules that pro-

cess the described visual region in different ways and com-

pute individual matching scores. An overall score is then

computed as a weighted combination of the module scores.

framework to model P (r, o) [21, 25, 26]. During test-

ing, the proposal/object with highest likelihood/probability

is selected as the predicted region. However, most of these

work uses a simple concatenation of all features (target ob-

ject feature, location feature and context feature) as input

and a single LSTM to encode/decode the whole expression,

ignoring the variance among different types of referring ex-

pressions. Depending on what is distinctive about a target

object, different kinds of information might be mentioned

in its referring expression. For example, if the target ob-

ject is a red ball among 10 black balls then the referring

expression may simply say “the red ball”. If that same red

ball is placed among 3 other red balls then location-based

information may become more important, e.g., “red ball on

the right”. Or, if there were 100 red balls in the scene then

the ball’s relationship to other objects might be the most
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distinguishing information, e.g., “red ball next to the cat”.

Therefore, it is natural and intuitive to think about the com-

prehension model as a modular network, where different vi-

sual processing modules are triggered based on what infor-

mation is present in the referring expression.

Modular networks have been successfully applied to ad-

dress other tasks such as (visual) question answering [2, 3],

visual reasoning [7, 11], relationship modeling [9], and

multi-task reinforcement learning [1]. To the best of our

knowledge, we present the first modular network for the

general referring expression comprehension task. More-

over, these previous work typically relies on an off-the-shelf

language parser [23] to parse the query sentence/question

into different components and dynamically assembles mod-

ules into a model addressing the task. However, the external

parser could raise parsing errors and propagate them into

model setup, adversely effecting performance.

Therefore, in this paper we propose a modular network

for referring expression comprehension - Modular Atten-

tion Network (MAttNet) - that takes a natural language ex-

pression as input and softly decomposes it into three phrase

embeddings. These embeddings are used to trigger three

separate visual modules (for subject, location, and relation-

ship comprehension, each with a different attention model)

to compute matching scores, which are finally combined

into an overall region score based on the module weights.

Our model is illustrated in Fig. 1. There are 3 main novel-

ties in MAttNet.

First, MAttNet is designed for general referring expres-

sions. It consists of 3 modules: subject, location and rela-

tionship. As in [12], a referring expression could be parsed

into 7 attributes: category name, color, size, absolute loca-

tion, relative location, relative object and generic attribute.

MAttNet covers all of them. The subject module handles

the category name, color and other attributes, the location

module handles both absolute and (some) relative location,

and the relationship module handles subject-object rela-

tions. Each module has a different structure and learns the

parameters within its own modular space, without affecting

the others.

Second, MAttNet learns to parse expressions automati-

cally through a soft attention based mechanism, instead of

relying on an external language parser [23, 12]. We show

that our learned “parser” attends to the relevant words for

each module and outperforms an off-the-shelf parser by a

large margin. Additionally, our model computes module

weights which are adaptive to the input expression, measur-

ing how much each module should contribute to the overall

score. Expressions like “red cat” will have larger subject

module weights and smaller location and relationship mod-

ule weights, while expressions like “woman on left” will

have larger subject and location module weights.

Third, we apply different visual attention techniques in

the subject and relationship modules to allow relevant atten-

tion on the described image portions. In the subject mod-

ule, soft attention attends to the parts of the object itself

mentioned by an expression like “man in red shirt” or “man

with yellow hat”. We call this “in-box” attention. In con-

trast, in the relationship module, hard attention is used to

attend to the relational objects mentioned by expressions

like “cat on chair” or “girl holding frisbee”. Here the atten-

tion focuses on “chair” and “frisbee” to pinpoint the target

object “cat” and “girl”. We call this “out-of-box” attention.

We demonstrate both attentions play important roles in im-

proving comprehension accuracy.

During training, the only supervision is object proposal,

referring expression pairs, (oi, ri), and all of the above are

automatically learned in an end-to-end unsupervised man-

ner, including the word attention, module weights, soft

spatial attention, and hard relative object attention. We

demonstrate MAttNet has significantly superior compre-

hension performance over all state-of-art methods, achiev-

ing ∼10% improvements on bounding-box localization and

almost doubling precision on pixel segmentation.

2. Related Work

Referring Expression Comprehension: The task of refer-

ring expression comprehension is to localize a region de-

scribed by a given referring expression. To address this

problem, some recent work[18, 31, 19, 10, 17] uses CNN-

LSTM structure to model P (r|o) and looks for the object o
maximizing the probability. Other recent work uses joint

embedding model [21, 25, 15, 4] to compute P (o|r) di-

rectly. In a hybrid of both types of approaches, [32] pro-

posed a joint speaker-listener-reinforcer model that com-

bined CNN-LSTM (speaker) with embedding model (lis-

tener) to achieve state-of-the-art results.

Most of the above treat comprehension as bounding box

localization, but object segmentation from referring ex-

pression has also been studied in some recent work [8,

14]. These papers use FCN-style [16] approaches to per-

form expression-driven foreground/background classifica-

tion. We demonstrate that in addition to bounding box pre-

diction, we also outperform previous segmentation results.

Modular Networks: Neural module networks [3] were in-

troduced for visual question answering. These networks

decompose the question into several components and dy-

namically assemble a network to compute an answer to

the given question. Since their introduction, modular net-

works have been applied to several other tasks: visual rea-

soning [7, 11], question answering [2], relationship model-

ing [9], multitask reinforcement learning [1], etc. While the

early work [3, 11, 2] requires an external language parser

to do the decomposition, recent methods [9, 7] propose to

learn the decomposition end-to-end. We apply this idea to

referring expression comprehension, also taking an end-to-
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end approach bypassing the use of an external parser. We

find that our soft attention approach achieves better perfor-

mance over the hard decisions predicted by a parser.

The most related work to us is [9], which decomposes the

expression into (Subject, Preposition/Verb, Object) triples.

However, referring expressions have much richer forms

than this fixed template. For example, expressions like “left

dog” and “man in red” are hard to model using [9]. In this

paper, we propose a generic modular network addressing all

kinds of referring expressions. Our network is adaptive to

the input expression by assigning both word-level attention

and module-level weights.

3. Model

MAttNet is composed of a language attention network

plus visual subject, location, and relationship modules.

Given a candidate object oi and referring expression r, we

first use the language attention network to compute a soft

parse of the referring expression into three components (one

for each visual module) and map each to a phrase embed-

ding. Second, we use the three visual modules (with unique

attention mechanisms) to compute matching scores for oi
to their respective embeddings. Finally, we take a weighted

combination of these scores to get an overall matching

score, measuring the compatibility between oi and r.

3.1. Language Attention Network

Instead of using an external language parser [23][3][2]

or pre-defined templates [12] to parse the expression, we

propose to learn to attend to the relevant words automati-

cally for each module, similar to [9]. Our language atten-

tion network is shown in Fig. 2. For a given expression

r = {ut}
T
t=1, we use a bi-directional LSTM to encode the

context for each word. We first embed each word ut into

a vector et using an one-hot word embedding, then a bi-

directional LSTM-RNN is applied to encode the whole ex-

pression. The final hidden representation for each word is

the concatenation of the hidden vectors in both directions:

et = embedding(ut)

~ht = ~LSTM(et,~ht−1)

ht = LSTM(et, ht+1)

ht = [~ht, ht].

Given H = {ht}
T
t=1, we apply three trainable vectors fm

where m ∈ {subj, loc, rel}, computing the attention on each

word [28] for each module: am,t =
exp (fT

mht)∑
T
k=1

exp (fT
mhk)

. The

weighted sum of word embeddings is used as the modular

phrase embedding: qm =
∑T

t=1 am,tet.
Different from relationship detection [9] where phrases

are always decomposed as (Subject, Preposition/Verb, Ob-

ject) triplets, referring expressions have no such well-posed

structure. For example, expressions like “smiling boy” only

word embedding

FC Module Weights

["#$%&," ()*,"+,(]

Modular Phrase Embedding

[.#$%&,.()*,.+,(]

man in red holding controller on the right

Word Attention

man in red holding controller on the right

man in red holding controller on the right

⨀

Bi-LSTM

man in red holding controller on the right

Figure 2: Language Attention Network

contain language relevant to the subject module, while ex-

pressions like “man on left” are relevant to the subject and

location modules, and “cat on the chair” are relevant to the

subject and relationship modules. To handle this variance,

we compute 3 module weights for the expression, weight-

ing how much each module contributes to the expression-

object score. We concatenate the first and last hidden vec-

tors from H which memorizes both structure and semantics

of the whole expression, then use another fully-connected

(FC) layer to transform it into 3 module weights:

[wsubj , wloc, wrel] = softmax(WT
m[h0, hT ] + bm)

3.2. Visual Modules

While most previous work [31, 32, 18, 19] evaluates

CNN features for each region proposal/candidate object,

we use Faster R-CNN [20] as the backbone net for a faster

and more principled implementation. Additionally, we use

ResNet [6] as our main feature extractor, but also provide

comparisons to previous methods using the same VGGNet

features [22] (in Sec. 4.2).

Given an image and a set of candidates oi, we run Faster

R-CNN to extract their region representations. Specifically,

we forward the whole image into Faster R-CNN and crop

the C3 feature (last convolutional output of 3rd-stage) for

each oi, following which we further compute the C4 feature

(last convolutional output of 4th-stage). In Faster R-CNN,

C4 typically contains higher-level visual cues for category

prediction, while C3 contains relatively lower-level cues in-

cluding colors and shapes for proposal judgment, making

both useful for our purposes. In the end, we compute the

matching score for each oi given each modular phrase em-

bedding, i.e., S(oi|q
subj), S(oi|q

loc) and S(oi|q
rel).

3.2.1 Subject Module

Our subject module is illustrated in Fig. 3. Given the C3

and C4 features of a candidate oi, we forward them to two

tasks. The first is attribute prediction, helping produce a

representation that can understand appearance characteris-

tics of the candidate. The second is the phrase-guided at-
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Figure 3: The subject module is composed of a visual subject representation and phrase-guided embedding. An attribute

prediction branch is added after the ResNet-C4 stage and the 1x1 convolution output of attribute prediction and C4 is used as

the subject visual representation. The subject phrase embedding attentively pools over the spatial region and feeds the pooled

feature into the matching function.

tentional pooling to focus on relevant regions within object

bounding boxes.

Attribute Prediction: Attributes are frequently used in

referring expressions to differentiate between objects of the

same category, e.g. “woman in red” or “the fuzzy cat”. In-

spired by previous work [29, 27, 30, 15, 24], we add an

attribute prediction branch in our subject module. While

preparing the attribute labels in the training set, we first run

a template parser [12] to obtain color and generic attribute

words, with low-frequency words removed. We combine

both C3 and C4 for predicting attributes as both low and

high-level visual cues are important. The concatenation of

C3 and C4 is followed with a 1× 1 convolution to produce

an attribute feature blob. After average pooling, we get the

attribute representation of the candidate region. A binary

cross-entropy loss is used for multi-attribute classification:

Lattr
subj = λattr

∑

i

∑

j

wattr
j [log(pij)+(1−yij)log(1−pij)]

where wattr
j = 1/

√
freqattr weights the attribute labels,

easing unbalanced data issues. During training, only ex-

pressions with attribute words go through this branch.

Phrase-guided Attentional Pooling: The subject de-

scription varies depending on what information is most

salient about the object. Take people for example. Some-

times a person is described by their accessories, e.g., “girl

in glasses”; or sometimes particular clothing items may be

mentioned, e.g., “woman in white pants”. Thus, we al-

low our subject module to localize relevant regions within a

bounding box through “in-box” attention. To compute spa-

tial attention, we first concatenate the attribute blob and C4,

then use a 1×1 convolution to fuse them into a subject blob,

which consists of spatial grid of features V ∈ Rd×G, where

G = 14 × 14. Given the subject phrase embedding qsubj ,

we compute its attention on each grid location:

Ha = tanh(WvV +Wqq
subj)

av = softmax(wT
h,aHa).

The weighted sum of V is the final subject visual represen-

tation for the candidate region oi:

ṽsubji =

G∑

i=1

avi vi.

Matching Function: We measure the similarity be-

tween the subject representation ṽsubji and phrase embed-

ding qsubj using a matching function, i.e, S(oi|q
subj) =

F (ṽsubji , qsubj). As shown in top-right of Fig. 3, it con-

sists of two MLPs (multi-layer perceptions) and two L2 nor-

malization layers following each input. The MLPs trans-

form the visual and phrase representation into a common

embedding space. The inner-product of two l2-normalized

representations computes their similarity score. The same

matching function is used to compute the location score

S(oi|q
loc), and relationship score S(oi|q

rel).

3.2.2 Location Module

Matching!"

#
,
%"

&
,
!'

#
,
%'

&(
,
)ℎ

#&

same-type location difference

concat

scoreloc

Loc. phrase embedding +,-.

Figure 4: Location Module

Our location module is shown in Fig. 4. Location is fre-

quently used in referring expressions with about 41% ex-
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pressions from RefCOCO and 36% expressions from Ref-

COCOg containing absolute location words [12], e.g. “cat

on the right” indicating the object location in the image.

Following previous work [31][32], we use a 5-d vector li
to encode the top-left position, bottom-right position and

relative area to the image for the candidate object, i.e.,

li = [xtl

W
, ytl

H
, xbr

W
, ybr

H
, w·h
W ·H

].
Additionally, expressions like “dog in the middle” and

“second left person” imply relative positioning among

objects of the same category. We encode the relative

location representation of a candidate object by choos-

ing up to five surrounding objects of the same cate-

gory and calculating their offsets and area ratio, i.e.,

δlij = [
[△xtl]ij

wi
,
[△ytl]ij

hi
,
[△xbr]ij

wi
,
[△ybr]ij

hi
,
wjhj

wihi
]. The fi-

nal location representation for the target object is l̃loci =
Wl[li; δli] + bl and the location module matching score be-

tween oi and qloc is S(oi|q
loc) = F (l̃loci , qloc).

3.2.3 Relationship Module

Matching

+

Relative location difference

max() scorerel

Rel. phrase embedding !"#$

Figure 5: Relationship Module

While the subject module deals with “in-box” details

about the target object, some other expressions may involve

its relationship with other “out-of-box” objects, e.g., “cat on

chaise lounge”. The relationship module is used to address

these cases. As in Fig. 5, given a candidate object oi we

first look for its surrounding (up-to-five) objects oij regard-

less of their categories. We use the average-pooled C4 fea-

ture as the appearance feature vij of each supporting object.

Then, we encode their offsets to the candidate object via

δmij = [
[△xtl]ij

wi
,
[△ytl]ij

hi
,
[△xbr]ij

wi
,
[△ybr]ij

hi
,
wjhj

wihi
]. The vi-

sual representation for each surrounding object is then:

ṽrelij = Wr[vij ; δmij ] + br

We compute the matching score for each of them with

qrel and pick the highest one as the relationship score,

i.e., S(oi|q
rel) = maxj 6=iF (ṽrelij , qrel). This can be re-

garded as weakly-supervised Multiple Instance Learning

(MIL) which is similar to [9][19].

3.3. Loss Function

The overall weighted matching score for candidate ob-

ject oi and expression r is:

S(oi|r) = wsubjS(oi|q
subj) + wlocS(oi|q

loc) + wrelS(oi|q
rel) (1)

During training, for each given positive pair of (oi, ri),
we randomly sample two negative pairs (oi, rj) and (ok, ri),
where rj is the expression describing some other object and

ok is some other object in the same image, to calculate a

combined hinge loss,

Lrank =
∑

i

[λ1max(0,∆+ S(oi|rj)− S(oi|ri))

+λ2max(0,∆+ S(ok|ri)− S(oi|ri))]

The overall loss incorporates both attributes cross-entropy

loss and ranking loss: L = Lattr
subj + Lrank.

4. Experiments

4.1. Datasets

We use 3 referring expression datasets: RefCOCO, Re-

fCOCO+ [12], and RefCOCOg [18] for evaluation, all col-

lected on MS COCO images [13], but with several differ-

ences. 1) RefCOCO and RefCOCO+ were collected in an

interactive game interface, while RefCOCOg was collected

in a non-interactive setting thereby producing longer ex-

pressions, 3.5 and 8.4 words on average respectively. 2) Re-

fCOCO and RefCOCO+ contain more same-type objects,

3.9 vs 1.63 respectively. 3) RefCOCO+ forbids using abso-

lute location words, making the data more focused on ap-

pearance differentiators.

During testing, RefCOCO and RefCOCO+ provide per-

son vs. object splits for evaluation, where images con-

taining multiple people are in “testA” and those containing

multiple objects of other categories are in “testB”. There is

no overlap between training, validation and testing images.

RefCOCOg has two types of data partitions. The first [18]

divides the dataset by randomly partitioning objects into

training and validation splits. As the testing split has not

been released, most recent work evaluates performance on

the validation set. We denote this validation split as Re-

fCOCOg’s “val*”. Note, since this data is split by objects

the same image could appear in both training and validation.

The second partition [19] is composed by randomly parti-

tioning images into training, validation and testing splits.

We denote its validation and testing splits as RefCOCOg’s

“val” and “test”, and run most experiments on this split.

4.2. Results: Referring Expression Comprehension

Given a test image, I , with a set of proposals/objects,

O = {oi}
N
i=1, we use Eqn. 1 to compute the matching score

S(oi|r) for each proposal/object given the input expression

r, and pick the one with the highest score. For evalua-

tion, we compute the intersection-over-union (IoU) of the

selected region with the ground-truth bounding box, con-

sidering IoU > 0.5 a correct comprehension.

First, we compare our model with previous methods us-

ing COCO’s ground-truth object bounding boxes as propos-

als. Results are shown in Table. 1. As all of the previous

1311



RefCOCO RefCOCO+ RefCOCOg

feature val testA testB val testA testB val* val test

1 Mao [18] vgg16 - 63.15 64.21 - 48.73 42.13 62.14 - -

2 Varun [19] vgg16 76.90 75.60 78.00 - - - - - 68.40

3 Luo [17] vgg16 - 74.04 73.43 - 60.26 55.03 65.36 - -

4 CMN [9] vgg16-frcn - - - - - - 69.30 - -

5 Speaker/visdif [31] vgg16 76.18 74.39 77.30 58.94 61.29 56.24 59.40 - -

6 Listener [32] vgg16 77.48 76.58 78.94 60.50 61.39 58.11 71.12 69.93 69.03

7 Speaker+Listener+Reinforcer [32] vgg16 79.56 78.95 80.22 62.26 64.60 59.62 72.63 71.65 71.92

8 Speaker+Listener+Reinforcer [32] vgg16 78.36 77.97 79.86 61.33 63.10 58.19 72.02 71.32 71.72

9 MAttN:subj(+attr)+loc(+dif)+rel vgg16 80.94 79.99 82.30 63.07 65.04 61.77 73.08 73.04 72.79

10 MAttN:subj(+attr)+loc(+dif)+rel res101-frcn 83.54 82.66 84.17 68.34 69.93 65.90 - 76.63 75.92

11 MAttN:subj(+attr+attn)+loc(+dif)+rel res101-frcn 85.65 85.26 84.57 71.01 75.13 66.17 - 78.10 78.12

Table 1: Comparison with state-of-the-art approaches on ground-truth MS COCO regions.

RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

1 Matching:subj+loc 79.14 79.42 80.42 62.17 63.53 59.87 70.45 70.92

2 MAttN:subj+loc 79.68 80.20 81.49 62.71 64.20 60.65 72.12 72.62

3 MAttN:subj+loc(+dif) 82.06 81.28 83.20 64.84 65.77 64.55 75.33 74.46

4 MAttN:subj+loc(+dif)+rel 82.54 81.58 83.34 65.84 66.59 65.08 75.96 74.56

5 MAttN:subj(+attr)+loc(+dif)+rel 83.54 82.66 84.17 68.34 69.93 65.90 76.63 75.92

6 MAttN:subj(+attr+attn)+loc(+dif)+rel 85.65 85.26 84.57 71.01 75.13 66.17 78.10 78.12

7 parser+MAttN:subj(+attr+attn)+loc(+dif)+rel 80.20 79.10 81.22 66.08 68.30 62.94 73.82 73.72

Table 2: Ablation study of MAttNet using different combination of modules. The feature used here is res101-frcn.

methods (Line 1-8) used a 16-layer VGGNet (vgg16) as the

feature extractor, we run our experiments using the same

feature for fair comparison. Note the flat fc7 is a single

4096-dimensional feature which prevents us from using the

phrase-guided attentional pooling in Fig. 3, so we use aver-

age pooling for subject matching. Despite this, our results

(Line 9) still outperform all previous state-of-the-art meth-

ods. After switching to the res101-based Faster R-CNN

(res101-frcn) representation, the comprehension accuracy

further improves another ∼3% (Line 10). Note our Faster

R-CNN is pre-trained on COCO’s training images, exclud-

ing those in RefCOCO, RefCOCO+, and RefCOCOg’s vali-

dation+testing. Thus no training images are seen during our

evaluation3. Our full model (Line 11) with phrase-guided

attentional pooling achieves the highest accuracy over all

others by a large margin.

Second, we study the benefits of each module of MAt-

tNet by running ablation experiments (Table. 2) with the

same res101-frcn features. As a baseline, we use the con-

catenation of the regional visual feature and the location

feature as the visual representation and the last hidden out-

put of LSTM-encoded expression as the language represen-

tation, then feed them into the matching function to obtain

the similarity score (Line 1). Compared with this, a simple

two-module MAttNet using the same features (Line 2) al-

ready outperforms the baseline, showing the advantage of

3Such constraint forbids us to evaluate on RefCOCOg’s val* using the

res101-frcn feature in Table 1.

modular learning. Line 3 shows the benefit of encoding

location (Sec. 3.2.2). After adding the relationship mod-

ule, the performance further improves (Line 4). Lines 5

and Line 6 show the benefits brought by the attribute sub-

branch and the phrase-guided attentional pooling in our sub-

ject module. We find the attentional pooling (Line 6) greatly

improves on the person category (testA of RefCOCO and

RefCOCO+), demonstrating the advantage of modular at-

tention on understanding localized details like “girl with red

hat”.

Third, we tried training our model using 3 hard-coded

phrases from a template language parser [12], shown in

Line 7 of Table. 2, which is ∼5% lower than our end-to-

end model (Line 6). The main reason for this drop is errors

made by the external parser which is not tuned for referring

expressions.

Fourth, we show results using automatically detected ob-

jects from Faster R-CNN, providing an analysis of fully au-

tomatic comprehension performance. Table. 3 shows the

ablation study of fully-automatic MAttNet. While perfor-

mance drops due to detection errors, the overall improve-

ments brought by each module are consistent with Table. 2,

showing the robustness of MAttNet. Our results also out-

perform the state-of-the-art [32] (Line 1,2) with a big mar-

gin. Besides, we show the performance when using the de-

tector branch of Mask R-CNN [5] (res101-mrcn) in Line 9.

Finally, we show some example visualizations of com-

prehension using our full model in Fig. 6 as well as visu-
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RefCOCO RefCOCO+ RefCOCOg

detector val testA testB val testA testB val test

1 Speaker+Listener+Reinforcer [32] res101-frcn 69.48 73.71 64.96 55.71 60.74 48.80 60.21 59.63

2 Speaker+Listener+Reinforcer [32] res101-frcn 68.95 73.10 64.85 54.89 60.04 49.56 59.33 59.21

3 Matching:subj+loc res101-frcn 72.28 75.43 67.87 58.42 61.46 52.73 64.15 63.25

4 MAttN:subj+loc res101-frcn 72.72 76.17 68.18 58.70 61.65 53.41 64.40 63.74

5 MAttN:subj+loc(+dif) res101-frcn 72.96 76.61 68.20 58.91 63.06 55.19 64.66 63.88

6 MAttN:subj+loc(+dif)+rel res101-frcn 73.25 76.77 68.44 59.45 63.31 55.68 64.87 64.01

7 MAttN:subj(+attr)+loc(+dif)+rel res101-frcn 74.51 77.81 68.39 62.13 66.33 55.75 65.33 65.19

8 MAttN:subj(+attr+attn)+loc(+dif)+rel res101-frcn 76.40 80.43 69.28 64.93 70.26 56.00 66.67 67.01

9 MAttN:subj(+attr+attn)+loc(+dif)+rel res101-mrcn 76.65 81.14 69.99 65.33 71.62 56.02 66.58 67.27

Table 3: Ablation study of MAttNet on fully-automatic comprehension task using different combination of modules. The

features used here are res101-frcn, except the last row using res101-mrcn.

RefCOCO

Model Backbone Net Split Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 IoU

D+RMI+DCRF [14] res101-DeepLab val 42.99 33.24 22.75 12.11 2.23 45.18

MAttNet res101-mrcn val 75.16 72.55 67.83 54.79 16.81 56.51

D+RMI+DCRF [14] res101-DeepLab testA 42.99 33.59 23.69 12.94 2.44 45.69

MAttNet res101-mrcn testA 79.55 77.60 72.53 59.01 13.79 62.37

D+RMI+DCRF [14] res101-DeepLab testB 44.99 32.21 22.69 11.84 2.65 45.57

MAttNet res101-mrcn testB 68.87 65.06 60.02 48.91 21.37 51.70

RefCOCO+

Model Backbone Net Split Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 IoU

D+RMI+DCRF [14] res101-DeepLab val 20.52 14.02 8.46 3.77 0.62 29.86

MAttNet res101-mrcn val 64.11 61.87 58.06 47.42 14.16 46.67

D+RMI+DCRF [14] res101-DeepLab testA 21.22 14.43 8.99 3.91 0.49 30.48

MAttNet res101-mrcn testA 70.12 68.48 63.97 52.13 12.28 52.39

D+RMI+DCRF [14] res101-DeepLab testB 20.78 14.56 8.80 4.58 0.80 29.50

MAttNet res101-mrcn testB 54.82 51.73 47.27 38.58 17.00 40.08

RefCOCOg

Model Backbone Net Split Pr@0.5 Pr@0.6 Pr@0.7 Pr@0.8 Pr@0.9 IoU

MAttNet res101-mrcn val 64.48 61.52 56.50 43.97 14.67 47.64

MAttNet res101-mrcn test 65.60 62.92 57.31 44.44 12.55 48.61

Table 4: Comparison of segmentation performance on RefCOCO, RefCOCO+, and our results on RefCOCOg.

alizations of the attention predictions. We observe that our

language model is able to attend to the right words for each

module even though it is learned in a weakly-supervised

manner. We also observe the expressions in RefCOCO and

RefCOCO+ describe the location or details of the target ob-

ject more frequently while RefCOCOg mentions the rela-

tionship between target object and its surrounding object

more frequently, which accords with the dataset property.

Note that for some complex expressions like “woman in

plaid jacket and blue pants on skis” which contains sev-

eral relationships (last row in Fig. 6), our language model

is able to attend to the portion that should be used by the

“in-box” subject module and the portion that should be used

by the “out-of-box” relationship module. Additionally our

subject module also displays reasonable spatial “in-box” at-

tention, which qualitatively explains why attentional pool-

ing (Table. 2 Line 6) outperforms average pooling (Table. 2

Line 5). For comparison, some incorrect comprehension

are shown in Fig. 7. Most errors are due to sparsity in the

training data, ambiguous expressions, or detection error.

4.3. Segmentation from Referring Expression

Our model can also be used to address referential ob-

ject segmentation [8, 14]. Instead of using Faster R-

CNN as the backbone net, we now turn to res101-based

Mask R-CNN [5] (res101-mrcn). We apply the same pro-

cedure described in Sec. 3 on the detected objects, and

use the one with highest matching score as our predic-

tion. Then we feed the predicted bounding box to the

mask branch to obtain a pixel-wise segmentation. We

evaluate the full model of MAttNet and compare with

the best results reported in [14]. We use Precision@X
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(a) RefCOCO

(b) RefCOCO+

(c) RefCOCOg

Expression=“second from right guy”

Lang. attention Subj. attentionComprehension Lang. attention Subj. attentionComprehension

Expression=“man with hands up”

Expression=“a man with a silver ring is holding a phone”Expression=“woman in plaid jacket and blue pants on skis”

Expression=“bottom left bowl”

Expression=“suit guy under umbrella”

Figure 6: Examples of fully automatic comprehension. The blue dotted boxes show our prediction with the relative regions

in yellow dotted boxes, and the green boxes are the ground-truth. The word attention is multiplied by module weight.

Expression=“dude with 9”

Expression=“boy with striped shirt”

Expression=“man standing behind person hitting ball”

(a) RefCOCO

(b) RefCOCO+

(c) RefCOCOg

Lang. attention Subj. attentionComprehension

Figure 7: Examples of incorrect comprehensions. Red dot-

ted boxes show our wrong prediction.

(X ∈ {0.5, 0.6, 0.7, 0.8, 0.9})4 and overall Intersection-

over-Union (IoU) as metrics. Results are shown in Table. 4

with our model outperforming state-of-the-art results by a

large margin under all metrics5. As both [14] and MAt-

tNet use res101 features, such big gains may be due to

our proposed model. We believe decoupling box localiza-

tion (comprehension) and segmentation brings a large gain

over FCN-style [16] foreground/background mask classi-

fication [8, 14] for this instance-level segmentation prob-

4Precision@0.5 is the percentage of expressions where the IoU of the

predicted segmentation and ground-truth is at least 0.5.
5There is no experiments on RefCOCOg’s val/test splits in [14], so we

show our performance only for reference in Table 4.

Expression=“the tennis player in red shirt”

(a) RefCOCO

(b) RefCOCO+

(c) RefCOCOg

Expression=“brown and white horse”

Expression=“a woman with full black tops”

Expression=“woman with short red hair”

Expression=“right kid” Expression=“left elephant”

Figure 8: Examples of fully-automatic MAttNet referential

segmentation.

lem. Some referential segmentation examples are shown in

Fig. 8.

5. Conclusion
Our modular attention network addresses variance in

referring expressions by attending to both relevant words

and visual regions in a modular framework, and dynami-

cally computing an overall matching score. We demonstrate

our model’s effectiveness on bounding-box-level and pixel-

level comprehension, significantly outperforming state-of-

the-art.
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