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Abstract

In this paper, we strive to answer two questions: What

is the current state of 3D hand pose estimation from depth

images? And, what are the next challenges that need to

be tackled? Following the successful Hands In the Million

Challenge (HIM2017), we investigate the top 10 state-of-

the-art methods on three tasks: single frame 3D pose esti-

mation, 3D hand tracking, and hand pose estimation during

object interaction. We analyze the performance of different

CNN structures with regard to hand shape, joint visibility,

view point and articulation distributions. Our findings in-

clude: (1) isolated 3D hand pose estimation achieves low

mean errors (10 mm) in the view point range of [70, 120]

degrees, but it is far from being solved for extreme view

points; (2) 3D volumetric representations outperform 2D

CNNs, better capturing the spatial structure of the depth

data; (3) Discriminative methods still generalize poorly to

unseen hand shapes; (4) While joint occlusions pose a chal-

lenge for most methods, explicit modeling of structure con-

straints can significantly narrow the gap between errors on

visible and occluded joints.

1. Introduction

The field of 3D hand pose estimation has advanced

rapidly, both in terms of accuracy [2, 4, 5, 6, 7, 26, 28,

32, 38, 45, 48, 49, 53, 54, 57, 60, 62] and dataset qual-

ity [10, 22, 43, 47, 52, 59]. Most successful methods treat

the estimation task as a learning problem, using random

1Imperial College London, 2Rakuten Institute of Technology, 3University

of Crete and FORTH, 4Seoul National University, 5Kwangwoon Univer-

sity, 6NVIDIA, 7University of Montreal, 8Nanyang Technological Uni-

versity, 9State University of New York at Buffalo, 10Tsinghua Univer-

sity, 11Nara Institute of Science and Technology, 12Fudan University,
13Computer Vision Center, 14University of Barcelona, 15Technical Uni-

versity of Munich, 16German Aerospace Center.

Corresponding author’s email: s.yuan14@imperial.ac.uk

forests or convolutional neural networks (CNNs). How-

ever, a review from 2015 [44] surprisingly concluded that

a simple nearest-neighbor baseline outperforms most exist-

ing systems. It concluded that most systems do not gener-

alize beyond their training sets [44], highlighting the need

for more and better data. Manually labeled datasets such

as [31, 41] contain just a few thousand examples, making

them unsuitable for large-scale training. Semi-automatic

annotation methods, which combine manual annotation

with tracking, help scaling the dataset size [43, 46, 52], but

in the case of [46] the annotation errors are close to the low-

est estimation errors. Synthetic data generation solves the

scaling issue, but has not yet closed the realism gap, leading

to some kinematically implausible poses [37].

A recent study confirmed that cross-benchmark testing is

poor due to different capture set-ups and annotation meth-

ods [59]. It showed that training a standard CNN on a

million-scale dataset achieves state-of-the-art results. How-

ever, the estimation accuracy is not uniform, highlighting

the well-known challenges of the task: variations in view

point and hand shape, self-occlusion, and occlusion caused

by objects being handled.

In this paper we analyze the top methods of the HIM2017

challenge [58]. The benchmark dataset includes data

from BigHand2.2M [59] and the First-Person Hand Action

dataset (FHAD) [10], allowing the comparison of different

algorithms in a variety of settings. The challenge considers

three different tasks: single-frame pose estimation, track-

ing, and hand-object interaction. In the evaluation we con-

sider different network architectures, preprocessing strate-

gies, and data representations. Over the course of the chal-

lenge the lowest mean 3D estimation error could be reduced

from 20mm to less than 10mm. This paper analyzes the

errors with regard to seen and unseen subjects, joint visibil-

ity, and view point distribution. We conclude by providing

insights for designing the next generation of methods.
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Figure 1: Evaluated tasks. For each scenario the goal is to infer the 3D locations of the 21 hand joints from a depth image. In Single

frame pose estimation (left) and the Interaction task (right), each frame is annotated with a bounding box. In the Tracking task (middle),

only the first frame of each sequence is fully annotated.

Related work. Public benchmarks and challenges in

other areas such as ImageNet [35] for scene classification

and object detection, PASCAL [9] for semantic and ob-

ject segmentation, and the VOT challenge [19] for object

tracking, have been instrumental in driving progress in their

respective field. In the area of hand tracking, the review

from 2007 by Erol et al. [8] proposed a taxonomy of ap-

proaches. Learning-based approaches have been found ef-

fective for solving single-frame pose estimation, optionally

in combination with hand model fitting for higher precision,

e.g., [50]. The review by Supancic et al. [44] compared 13

methods on a new dataset and concluded that deep models

are well-suited to pose estimation [44]. It also highlighted

the need for large-scale training sets in order to train mod-

els that generalize well. In this paper we extend the scope

of previous analyses by comparing deep learning methods

on a large-scale dataset, carrying out a fine-grained analysis

of error sources and different design choices.

2. Evaluation tasks

We evaluate three different tasks on a dataset containing

over a million annotated images using standardized evalu-

ation protocols. Benchmark images are sampled from two

datasets: BigHand2.2M [59] and First-Person Hand Action

dataset (FHAD) [10]. Images from BigHand2.2M cover a

large range of hand view points (including third-person and

first-person views), articulated poses, and hand shapes. Se-

quences from the FHAD dataset are used to evaluate pose

estimation during hand-object interaction. Both datasets

contain 640 × 480-pixel depth maps with 21 joint anno-

tations, obtained from magnetic sensors and inverse kine-

matics. The 2D bounding boxes have an average diagonal

length of 162.4 pixels with a standard deviation of 40.7 pix-

els. The evaluation tasks are 3D single hand pose estima-

tion, i.e., estimating the 3D locations of 21 joints, from (1)

individual frames, (2) video sequences, given the pose in

the first frame, and (3) frames with object interaction, e.g.,

with a juice bottle, a salt shaker, or a milk carton. See Fig-

ure 1 for an overview. Bounding boxes are provided as input

for tasks (1) and (3). The training data is sampled from the

BigHand2.2M dataset and only the interaction task uses test

data from the FHAD dataset. See Table 1 for dataset sizes

and the number of total and unseen subjects for each task.

Number of Train Test Test Test

single track interact

frames 957K 295K 294K 2,965

subjects (unseen) 5 10 (5) 10 (5) 2 (0)

Table 1: Data set sizes and number of subjects.

3. Evaluated methods

We evaluate the top 10 among 17 participating meth-

ods [58]. Table 2 lists the methods with some of their key

properties. We also indirectly evaluate DeepPrior [29] and

REN [15], which are components of rvhand [1], as well as

DeepModel [61], which is the backbone of LSL [20]. We

group methods based on different design choices.

2D CNN vs. 3D CNN. 2D CNNs have been popular for

3D hand pose estimation [1, 3, 14, 15, 20, 21, 23, 29, 57,

61]. Common pre-processing steps include cropping and

resizing the hand volume by normalizing the depth values

to [-1, 1]. Recently, several methods have used a 3D CNN

[12, 24, 56], where the input can be a 3D voxel grid [24, 56],

or a projective D-TSDF volume [12]. Ge et al. [13] project

the depth image onto three orthogonal planes and train a

2D CNN for each projection, then fusing the results. In

[12] they propose a 3D CNN by replacing 2D projections

with a 3D volumetric representation (projective D-TSDF

volumes [40]). In the HIM2017 challenge [58], they ap-

ply a 3D deep learning method [11], where the inputs are

3D points and surface normals. Moon et al. [24] propose

a 3D CNN to estimate per-voxel likelihoods for each hand

joint. NAIST RV [56] proposes a 3D CNN with a hierarchi-

cal branch structure, where the input is a 50
3-voxel grid.

Detection-based vs. Regression-based. Detection-

based methods [23, 24] produce a probability density map

for each joint. The method of RCN-3D [23] is an RCN+ net-

work [17], based on Recombinator Networks (RCN) [18]

with 17 layers and 64 output feature maps for all layers ex-

cept the last one, which outputs a probability density map

for each of the 21 joints. V2V-PoseNet [24] uses a 3D

CNN to estimate per-voxel likelihood of each joint, and a

CNN to estimate the center of mass from the cropped depth

map. For training, 3D likelihood volumes are generated by

placing normal distributions at the locations of hand joints.

Regression-based methods [1, 3, 11, 14, 20, 21, 29, 56]
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Method Model Input Aug. range (s,θ,t) 3D De Hi St M R

V2V-PoseNet [24] 3D CNN, per-voxel likelihood of each joint
88×88×88

voxels

[0.8, 1.2] [-40,40]

[-8,8]
✓ ✓ ✗ ✗ ✗ ✓

RCN-3D [23] RCN+ network [17] with 17 convolutional layers 80×80
[0.7, 1.1] [0, 360]

[-8,8]
✗ ✓ ✗ ✗ ✓ ✓

oasis [11]
Hierarchical PointNet with three set abstraction

levels and three full-connected layers

1024 3D

points
random scaling* ✗ ✗ ✗ ✓ ✗ ✗

THU VCLab [3]
Pose-REN [3]: REN [15] + cascaded +

hierarchical.
96×96

[0.9,1.1] [-45,45]

[-5,5]
✗ ✗ ✓ ✗ ✓ ✓

NAIST RV [56] 3D CNN with 5 branches, one for each finger
50×50×50

3D grid

[0.9,1.1] [-90, 90]

[-15,15]
✓ ✗ ✓ ✗ ✗ ✗

Vanora [14] shallow CNN trained end-to-end resized 2D random scaling* ✗ ✗ ✗ ✗ ✗ ✗

strawberryfg [55] ResNet-152 + [42] 224×224 None ✗ ✗ ✗ ✓ ✗ ✓

rvhand [1] ResNet [16] + REN [15] + Deep Prior [29] 192×192
[0.9,1.1] [-90, 90]

[-15,15]
✗ ✗ ✓ ✓ ✗ ✓

mmadadi [21] Hierarchical tree-like structured CNN [21] 192×192
[random] [-30, 30]

[-10,10]
✗ ✗ ✓ ✓ ✗ ✗

LSL [20]
ScaleNet to estimate hand scale +

DeepModel [61]
128×128

[0.85,1.15] [0,360]

[-20,20]
✗ ✗ ✗ ✓ ✗ ✗

Table 2: Methods evaluated in the hand pose estimation challenge. Methods are ordered by average error on the leader-board.

* in both methods, hand segmentation is performed considering different hand arm lengths. 3D, De, Hi, St, M, and R denote 3D CNN,

Detection-based method, Hierarchical model, Structure model, Multistage model, and Residual net, respectively.

directly map the depth image to the joint locations or the

joint angles of a hand model [39, 61]. rvhand [1] com-

bines ResNet [16], Region Ensemble Network (REN) [15],

and DeepPrior [29] to directly estimate the joint locations.

LSL [20] uses one network to estimate a global scale fac-

tor and a second network [61] to estimate all joint angles,

which are fed into a forward kinematic layer to estimate the

hand joints.

Hierarchical models divide the pose estimation prob-

lem into sub-tasks [1, 3, 15, 21, 56]. The evaluated meth-

ods divide the hand joints either by finger [21, 56], or by

joint type [1, 3, 15]. mmadadi [21] designs a hierarchically

structured CNN, dividing the convolution+ReLU+pooling

blocks into six branches (one per finger with palm and

one for palm orientation), each of which is then fol-

lowed by a fully connected layer. The final layers of

all branches are concatenated into one layer to predict all

joints. NAIST RV [56] chooses a similar hierarchical struc-

ture of a 3D CNN, but uses five branches, each to predict

one finger and the palm. THU VCLab [3], rvhand [1], and

REN [15] apply constraints per finger and joint-type (across

fingers) in their multiple regions extraction step, each region

containing a subset of joints. All regions are concatenated

in the last fully connected layers to estimate the hand pose.

Structured methods embed physical hand motion con-

straints into the model [11, 20, 21, 29, 55, 61]. Structural

constraints are included in the CNN model [20, 27, 29]

or in the loss function [21, 55]. DeepPrior [29] learns a

prior model and integrates it into the network by introduc-

ing a bottleneck in the last CNN layer. LSL [20] uses prior

knowledge in DeepModel [61] by embedding a kinematic

model layer into the CNN and using a fixed hand model.

mmadadi [21] includes the structure constraints in the loss

function, which incorporates physical constraints about nat-

ural hand motion and deformation. strawberryfg [55] ap-

plies a structure-aware regression approach, Compositional

Pose Regression [42], and replaces the original ResNet-50

with ResNet-152. It uses phalanges instead of joints for

representing pose, and defines a loss function that encodes

long-range interaction between the phalanges.

Multi-stage methods propagate results from each stage

to enhance the training of the subsequent stages [3, 23].

THU VCLab [3] uses REN [15] to predict an initial hand

pose. In the following stages, feature maps are computed

with the guidance of the hand pose estimate in the previous

stage. RCN-3D [23] has five stages: (1) 2D landmark esti-

mation using an RCN+ network [17], (2) estimation of cor-

responding depth values by multiplying probability density

maps with the input depth image, (3) inverse perspective

projection of the depth map to 3D, (4) error compensation

for occlusions and depth errors (a 3-layer network of resid-

ual blocks) and, (5) error compensation for noise (another

3-layer network of residual blocks).

Residual networks. ResNet [16] is adopted by several

methods [1, 3, 15, 23, 24, 42]. V2V-PoseNet [24] uses resid-

ual blocks as main building blocks. strawberryfg [55] im-

plements the Compositional Pose Regression method [42]

by using ResNet-152 as basic network. RCN-3D [23] uses

two small residual blocks in its fourth and fifth stage.

4. Results

The aim of this evaluation is to identify success cases

and failure modes. We use both standard error met-

rics [30, 37, 51] and new proposed metrics to provide

further insights. We consider joint visibility, seen vs.

unseen subjects, hand view point distribution, articulation

distribution, and per-joint accuracy.

2638



0 10 20 30 40 50 60 70 80

error threshold e (mm)

0  %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%
p
ro

p
o
rt

io
n
 o

f 
fr

a
m

e
s
 w

it
h
 m

a
x
 e

rr
o
r 

<
 e

V2V-PoseNet

RCN-3D

oasis

THU_VCLab

NAIST_RV

Vanora

strawberryfg

rvhand

mmadadi

LSL

0 5 10 15 20 25 30 35 40

error threshold e (mm)

0  %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

p
ro

p
o
rt

io
n
 o

f 
jo

in
ts

 w
it
h
 e

rr
o
r 

<
 e

V2V-PoseNet

RCN-3D

oasis

THU_VCLab

NAIST_RV

Vanora

strawberryfg

rvhand

mmadadi

LSL

Figure 2: Estimation errors. (top) proportion of frames within

maximum error threshold [51], (bottom) proportion of joints

within an error threshold [37].

Method

Case Seen

Visible

Seen

Occ

Unseen

Visible

Unseen

Occ

V2V-PoseNet 6.2 8.0 11.1 14.6

RCN-3D 6.9 9.0 10.6 14.8

oasis 8.2 9.8 12.4 14.9

THU VCLab 8.4 10.2 12.5 16.1

NAIST RV 8.8 10.1 13.1 15.6

Vanora 8.8 10.5 12.9 15.5

strawberryfg 9.3 10.7 16.4 18.8

rvhand 12.2 11.9 16.1 17.6

mmadadi 10.6 13.6 15.6 19.7

LSL 11.8 13.1 18.1 19.2

Top5 7.7 9.4 11.9 15.2

All 9.1 10.7 13.9 16.7

Table 3: Mean errors (in mm) for single frame pose estimation,

divided by cases. ‘Seen’ and ‘Unseen’ refers to whether or not the

hand shape was in the training set, and ‘Occ’ denotes ‘Occluded

joints’.

4.1. Single frame pose estimation

Over the 6-week period of the challenge the lowest mean

error could be reduced from 19.7mm to 10.0mm by ex-

ploring new model types and improving data augmentation,

optimization and initialization. For hand shapes seen dur-

ing training, the mean error was reduced from 14.6mm

Figure 3: Estimating annotation errors. Two examples of Easy

Poses overlayed with estimates by the top five methods (shown in

different colors). Poses vary slightly, but are close to the ground

truth (black).

to 7.0mm, and for unseen hand shapes from 24.0mm to

12.2mm. Considering typical finger widths of 10-20mm,

these methods are becoming applicable to scenarios like

pointing or motion capture, but may still lack sufficient ac-

curacy for fine manipulation that is critical in some UI in-

teractions.

We evaluate ten state-of-the-art methods (Table 2) di-

rectly and three methods indirectly, which were used as

components of others, DeepPrior [29], REN [15], and

DeepModel [61]. Figure 2 shows the results in terms of two

metrics: (top) the proportion of frames in which all joint

errors are below a threshold [51] and (bottom) the total pro-

portion of joints below an error threshold [37].

Figure 4 (top-left) shows the success rates based on per-

frame average joint errors [30] for a varying threshold. The

top performer, V2V-PoseNet, estimates 70% of frames with

a mean error of less than 10mm, and 20% of frames with

mean errors under 5mm. All evaluated methods achieve a

success rate greater than 80% with an average error of less

than 20 mm.

As has been noted by [15, 27], data augmentation is ben-

eficial, especially for small datasets. However, note that

even though the top performing methods employ data aug-

mentation, it is still difficult to generalize to hands from

unseen subjects, see Table 3, with an error gap of around

6mm between seen and unseen subjects. Some methods

generalize better than others, in particular RCN-3D is the

top performer on unseen subjects, even though it is not the

best on seen subjects.

4.1.1 Annotation error

The annotation error takes into account inaccuracies due

to small differences of 6D sensor placement for different

subjects during the annotation, and uncertainty in the wrist

joint location. To quantify this error we selected poses for

which all methods achieved a maximum error [51] of less

than 10mm. We denote these as Easy Poses. The pose es-

timation task for these can be considered solved, as shown

in Figure 3. The outputs of the top five methods are visu-
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Figure 4: Success rates for different methods. Top-left: all evaluated methods using all test data. Top-middle: the average of the top five

methods for four cases. Top-right: the average of top-two detection-based and regression-based methods in four cases. Bottom-left: direct

comparison with 2D CNN and 3D CNN, mmadadi is a 2D CNN, NAIST RV has the same structure but replaced 2D CNN with 3D CNN.

Bottom-middle: comparison among structured methods. Bottom-right: comparison of a cascaded multistage method (THU VCLab) and

a one-off method (rvhand). Both of them use REN [15] as backbone.

ally accurate and close to the ground truth. We estimate the

Annotation Error as the error on these poses, which has a

mean value of 2.8mm and a standard deviation of 0.5mm.

4.1.2 Analysis by occlusion and unknown subject

Average error for four cases: To analyze the results with

respect to joint visibility and hand shape, we partition the

joints into four groups, based on whether or not they are

visible, and whether or not the subject was seen at training

time. Different hand shapes and joint occlusions are respon-

sible for a large proportion of errors, see Table 3. The error

for unseen subjects is significantly larger than for seen sub-

jects. Moreover, the error for visible joints is smaller than

for occluded joints. Based on the first group (visible, seen),

we carry out a best-case performance estimate for the cur-

rent state-of-the-art. For each frame of seen subjects, we

first choose the best result from all methods, and calculate

the success rate based on the average error for each frame,

see the black curve in Figure 4 (top-middle).

2D vs. 3D CNNs: We compare two hierarchical meth-

ods with similar structure but different representation. The

bottom-left plot of Figure 4 shows mmadadi [21], which

employs a 2D CNN, and NAIST RV [56], using a 3D CNN.

mmadadi and NAIST RV have almost the same structure,

but NAIST RV [56] uses a 3D CNN, while mmadadi [21]

uses a 2D CNN. NAIST RV [56] outperforms mmadadi [21]

in all four cases.

Detection-based vs. regression-based methods: We

compare the average of the top two detection-based meth-

ods with the average of the top two regression-based meth-

ods. In all four cases, detection-based methods outperform

regression-based ones, see the top-right plot of Figure 4.

In the challenge, the top two methods are detection-based

methods, see Table 2. Note that a similar trend can be seen

in the field of full human pose estimation, where only one

method in a recent challenge was regression-based [25].

Hierarchical methods: Hierarchical constraints can

help in the case of occlusion. The hierarchical model

in rvhand [1] shows similar performance on visible and

occluded joints. rvhand [1] has better performance on

occluded joints when the error threshold is smaller than

15mm, see the bottom-right plot of Figure 4. The underly-

ing REN module [15], which includes finger and joint-type

constraints seems to be critical. Methods using only per-

finger constraints, e.g., mmadadi [21] and NAIST RV [56],

generalize less well to occluded joints, see the bottom-left

plot of Figure 4.

Structural methods: We compare four structured meth-

ods LSL [20], mmadadi [21], rvhand [1], and strawber-

ryfg [55], see the bottom-middle plot of Figure 4. straw-

berryfg [55] and mmadadi [21] have higher success rates

when the error threshold is below 15mm, while LSL [20]

and rvhand [1] perform better for thresholds larger than

25mm. Embedding structural constraints in the loss func-
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Figure 6: View point distributions. The error is significantly

higher for small angles between hand and camera orientations.

tion has been more successful than including them within

the CNN layers. strawberryfg [55] performs the best, using

constraints on phalanges rather than on joints.

Single- vs. multi-stage methods: Cascaded methods

work better than single-stage methods, see the bottom-right

plot of Figure 4. Compared to other methods, rvhand [1]

and THU VCLab [3] both embed structural constraints, em-

ploying REN as their basic structure. THU VCLab [3] takes

a cascaded approach to iteratively update results from pre-

vious stages, outperforming rvhand [1].

4.1.3 Analysis by number of occluded joints

Most frames contain joint occlusions, see Figure 5 (top).

We assume that a visible joint lies within a small range of

the 3D point cloud. We therefore detect joint occlusion by

thresholding the distance between the joint’s depth anno-

tation value and its re-projected depth value. As shown

in Figure 5 (bottom), the average error decreases nearly

monotonously for increasing numbers of visible joints.
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Figure 7: Articulation distribution. Errors increase for larger

finger articulation angles.

4.1.4 Analysis based on view point

The view point is defined as the angle between the palm

and camera directions. The test data covers a wide range of

view points for the Single frame pose estimation task, see

Figure 6 (top). View points in the [70, 120] range have a

low mean error of below 10mm. View points in the [0, 10]

range have a significantly larger error due to the amount of

self occlusion. View points in the [10, 30] range have an

average error of 15−20mm. View point ranges of [30,70]

and [120, 180] show errors of 10−15mm. Third-person

and egocentric views are typically defined by the hand fac-

ing toward or away from the camera, respectively. However,

as shown in Figure 6, there is no clear separation by view

point, suggesting a uniform treatment of both cases is sen-

sible. Note that RCN-3D [23] outperforms others with a

margin of 2-3mm on extreme view points in the range of

[150,180] degrees due to their depth prediction stage.

4.1.5 Analysis based on articulation

We evaluate the effect of hand articulation on estimation ac-

curacy, measured as the average of 15 finger flexion angles,

see Figure 7. To reduce the influence from other factors

such as view point, we select frames with view point an-

gles within the range of [70, 120]. We evaluate the top five

performers, see Figure 7 (bottom). For articulation angles

smaller than 30 degrees, the mean error is 7mm, when the

average articulation angle increases to the range of [35, 70],

errors increase to 9-10 mm. When the articulation angle is

larger than 70 degrees, close to a fist pose, the mean error

increases to over 12mm.

4.1.6 Analysis by joint type

As before we group joints according to their visibility and

the presence of the subject in the training set. We report the

top five performers, see Figure 10. For the easiest case (vis-

ible joints of seen subjects), all 21 joints have a similar av-

erage error of 6−10mm. For seen subjects, along the kine-

matic hand structure from the wrist to finger tips, occluded

joints have increasingly larger errors, reaching 14mm in the

2641



0 0.05 0.1 0.15 0.2 0.25

IoU threshold

0    

100  

200  

300  

400  

500  

600  

700  

800  

900  

1000 

1100 

1200 

n
u

m
b

e
r 

o
f 

fr
a

m
e

s
 w

it
h

 I
o

U
 <

 t
h

re
s
h

o
ld

THU_VCLab seen

THU_VCLab unseen

NAIST_RV seen

NAIST_RV unseen

RCN-3D seen

RCN-3D unseen

0.5 0.6 0.7 0.8 0.9 1

IoU threshold

0  %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

p
ro

p
o
rt

io
n
 o

f 
fr

a
m

e
s
 w

it
h
 I
o
U

 >
 t
h
re

s
h
o
ld

THU_VCLab seen
THU_VCLab unseen

NAIST_RV seen
NAIST_RV unseen

RCN-3D seen

RCN-3D unseen

0 5 10 15 20 25 30 35 40

error threshold e (mm)

0  %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100%

p
ro

p
o
rt

io
n
 o

f 
fr

a
m

e
s
 w

it
h
 m

e
a
n
 e

rr
o
r 

<
 e

THU_VCLab seen visible
THU_VCLab seen occluded

THU_VCLab unseen visible
THU_VCLab unseen occluded

NAIST_RV seen visible
NAIST_RV seen occluded

NAIST_RV unseen visible
NAIST_RV unseen occluded

RCN-3D seen visible

RCN-3D seen occluded

RCN-3D unseen visible

RCN-3D unseen occluded

Figure 8: Error curves for hand tracking. Left: number of frames with IoU below threshold. Middle: success rate for the detection part

of each method in two cases. Right: success rate for three methods in four cases.
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0  

5  

10 

15 

20 

25 

30 

a
v
e

ra
g

e
 e

rr
o

r

W
ris

t

T_M
C
P

I_
M

C
P

M
_M

C
P

R
_M

C
P

P_M
C
P

T_P
IP

I_
PIP

M
_P

IP

R
_P

IP

P_P
IP

T_D
IP

I_
D
IP

M
_D

IP

R
_D

IP

P_D
IP

T_T
IP

I_
TIP

M
_T

IP

R
_T

IP

P_T
IP

unseen occluded

unseen visible

seen occluded

seen visible

Figure 10: Average error of the top five methods for each joint

in the Single frame pose estimation task. Finger tips have larger

errors than other joints. For non-tip joints, joints on ring finger

and middle finger have lower average errors than other fingers.

‘T’, ‘I’, ‘M’, ‘R’, ‘P’ denotes ‘Thumb’, ‘Index’, ‘Middle’, ‘Ring’,

and ‘Pinky’ finger, respectively.

finger tips. Visible joints of unseen subjects have larger er-

rors (10-13mm) than that of seen subjects. Occluded joints

of unseen subjects have the largest errors, with a relatively

smaller error for the palm, and larger errors for finger tips

(24−27mm). We draw two conclusions: (1) all the top

performers have difficulty in generalizing to hands from un-

seen subjects, (2) occlusions have more effect on finger tips

than other joints. An interesting observation is that middle

and ring fingers tend to have smaller errors in MCP and PIP

joints than other fingers. One reason may be that the motion

of these fingers is more restricted. The thumb’s MCP joint

has a larger error than for other fingers, because it tends to

have more discrepancy among different subjects.

Method Model AVG

RCN-3D track [23]
scanning window + post-processing +

pose estimator [23]
10.5

NAIST RV track [56]
hand detector [34] + hand verifier +

pose estimator [56]
12.6

THU VCLab track [3]
Estimation [3] with the aid of tracking

+ re-initialization [33]
13.7

Table 4: Methods evaluated on 3D hand pose tracking. The

last column is the average error in mm for all frames.

4.2. Hand pose tracking

In this task we evaluate three state-of-the-art meth-

ods, see Table 4 and Figure 8. Discriminative meth-

ods [3, 23, 56] break tracking into two sub-tasks: detec-

tion and hand pose estimation, sometimes merging the sub-

tasks [3]. Based on the detection methods, 3D hand pose

estimation can be grouped into pure tracking [23], tracking-

by-detection [56], and a combination of tracking and re-

initialization [3], see Table 4.

Pure tracking: RCN-3D track estimate the bounding

box location by scanning windows based on the result in

the previous frame, including a motion estimate. Hand pose

within the bounding box is estimated using RCN-3D [23].

Tracking-by-detection: NAIST RV track is a tracking-

by-detection method with three components: hand detector,

hand verifier, and pose estimator. The hand detector is built

on U-net [34] to predict a binary hand-mask, which, after
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Method Model AVG

NAIST RV obj [56]
Hand-object segmentation CNN + pose

estimation [56]
25.0

THU VCLab obj [3]
Hand-object segmentation (intuitive) +

pose estimation [3]
29.2

rvhand obj [1]
Hand-object segmentation CNN + pose

estimation [1]
31.3

RCN-3D obj [23]
Two RCNs: Feature maps of first are

used in the second RCN’s stage 2.
32.4

Table 5: Methods evaluated on hand pose estimation during

hand-object interaction. The last column is the average error

(mm) for all frames.

verification, is passed to the pose estimator NAIST RV [56].

If verification fails, the result from the previous frame is

chosen.

Hybrid tracking and detection: THU VCLab track [3]

makes use of the previous tracking result and the current

frame’s scanning window. The hand pose of the previous

frame is used as a guide to predict the hand pose in the

current frame. The previous frame’s bounding box is used

for the current frame. During fast hand motion, Faster R-

CNN [33] is used for re-initialization.

Detection accuracy: We first evaluate the detection ac-

curacy by evaluating the bounding box overlap, i.e., the

intersection over union (IoU) of the detection and ground

truth bounding boxes, see Figure 8 (middle). Overall, RCN-

3D track is more accurate than THU VCLab track, which

itself outperforms NAIST RV track. Pure detection meth-

ods have a larger number of false negatives, especially

when multiple hands appear in the scene, see Figure 8

(left). There are 72 and 174 missed detections (IoU of

zero), for NAIST RV track and THU VCLab track, respec-

tively. By tracking and re-initializing, THU VCLab track

achieves better detection accuracy overall. RCN-3D track,

using motion estimation and single-frame hand pose esti-

mation, shows the lowest error.

Tracking accuracy is shown in Figure 8 (right). Even

through THU VCLab performs better than NAIST RV in

the Single frame pose estimation task, NAIST RV track per-

forms better on the tracking tasks due to per-frame hand

detection.

4.3. Hand object interaction

For this task, we evaluate four state-of-the-art meth-

ods, see Table 5 and Figure 9. Compared to the

other two tasks there is significantly more occlusion,

see Figure 5 (top). Methods explicitly handling occlu-

sion achieve higher accuracy with errors in the range of

25−29mm: (1) NAIST RV obj [56] and rvhand obj [1]

segment the hand area from the object using a network.

(2) THU VCLab obj [3] removes the object region from

cropped hand images with image processing operations

[36]. (3) RCN-3D obj [23] modify their original network

to infer the depth values of 2D keypoint locations.

Current state-of-the-art methods have difficulty gener-

alizing to the hand-object interaction scenario. However,

NAIST RV obj [56] and rvhand obj [1] show similar per-

formance for visible joints and occluded joints, indicating

that CNN-based segmentation can better preserve structure

than image processing operations, see the middle plot of

Figure 9.

5. Discussion and conclusions

The analysis of the top 10 among 17 participating meth-

ods from the HIM2017 challenge [58] provides insights into

the current state of 3D hand pose estimation.

(1) 3D volumetric representations used with a 3D CNN

show high performance, possibly by better capturing the

spatial structure of the input depth data.

(2) Detection-based methods tend to outperform

regression-based methods, however, regression-based

methods can achieve good performance using explicit

spatial constraints. Making use of richer spatial models,

e.g., bone structure [42], helps further. Regression-based

methods perform better in extreme view point cases [23],

where severe occlusion occurs.

(3) While joint occlusions pose a challenge for most

methods, explicit modeling of structure constraints and spa-

tial relation between joints can significantly narrow the gap

between errors on visible and occluded joints [1].

(4) Discriminative methods still generalize poorly to un-

seen hand shapes. Data augmentation and scale estimation

methods model only global shape changes, but not local

variations. Integrating hand models with better generative

capability may be a promising direction.

(5) Isolated 3D hand pose estimation achieves low mean

errors (10mm) in the view point range of [70, 120] degrees.

However, errors remain large for extreme view points, e.g.,

view point range of [0,10], where the hand is facing away

from the camera. Multi-stage methods [23] tend to perform

better in these cases.

(6) In hand tracking, current discriminative methods di-

vide the problem into two sub-tasks: detection and pose es-

timation, without using the hand shape provided in the first

frame. Hybrid methods may work better by using the pro-

vided hand shape.

(7) Current methods perform well on single hand pose

estimation when trained on a million-scale dataset, but have

difficulty in generalizing to hand-object interaction. Two

directions seem promising, (a) designing better hand seg-

mentation methods, and (b) training the model with large

datasets containing hand-object interaction.
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