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Abstract

Do visual tasks have a relationship, or are they unre-

lated? For instance, could having surface normals sim-

plify estimating the depth of an image? Intuition answers

these questions positively, implying existence of a structure

among visual tasks. Knowing this structure has notable val-

ues; it is the concept underlying transfer learning and pro-

vides a principled way for identifying redundancies across

tasks, e.g., to seamlessly reuse supervision among related

tasks or solve many tasks in one system without piling up

the complexity.

We proposes a fully computational approach for model-

ing the structure of space of visual tasks. This is done via

finding (first and higher-order) transfer learning dependen-

cies across a dictionary of twenty six 2D, 2.5D, 3D, and

semantic tasks in a latent space. The product is a computa-

tional taxonomic map for task transfer learning. We study

the consequences of this structure, e.g. nontrivial emerged

relationships, and exploit them to reduce the demand for

labeled data. We provide a set of tools for computing and

probing this taxonomical structure including a solver users

can employ to find supervision policies for their use cases.

1. Introduction

Object recognition, depth estimation, edge detection,

pose estimation, etc are examples of common vision tasks

deemed useful and tackled by the research community.

Some of them have rather clear relationships: we under-

stand that surface normals and depth are related (one is a

derivate of the other), or vanishing points in a room are use-

ful for orientation. Other relationships are less clear: how

keypoint detection and the shading in a room can, together,

perform pose estimation.

The field of computer vision has indeed gone far without

explicitly using these relationships. We have made remark-

able progress by developing advanced learning machinery

(e.g. ConvNets) capable of finding complex mappings from
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Figure 1: A sample task structure discovered by the computational

task taxonomy (taskonomy). It found that, for instance, by combining the

learned features of a surface normal estimator and occlusion edge detector,

good networks for reshading and point matching can be rapidly trained

with little labeled data.

X to Y when many pairs of (x, y) s.t. x ∈ X, y ∈ Y are

given as training data. This is usually referred to as fully su-

pervised learning and often leads to problems being solved

in isolation. Siloing tasks makes training a new task or a

comprehensive perception system a Sisyphean challenge,

whereby each task needs to be learned individually from

scratch. Doing so ignores their quantifiably useful relation-

ships leading to a massive labeled data requirement.

Alternatively, a model aware of the relationships among

tasks demands less supervision, uses less computation, and

behaves in more predictable ways. Incorporating such

a structure is the first stepping stone towards develop-

ing provably efficient comprehensive/universal perception

models [32, 4], i.e. ones that can solve a large set of tasks

before becoming intractable in supervision or computation

demands. However, this task space structure and its effects
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are still largely unknown. The relationships are non-trivial,

and finding them is complicated by the fact that we have

imperfect learning models and optimizers. In this paper,

we attempt to shed light on this underlying structure and

present a framework for mapping the space of visual tasks.

Here what we mean by “structure” is a collection of com-

putationally found relations specifying which tasks supply

useful information to another, and by how much (see Fig. 1).

We employ a fully computational approach for this pur-

pose, with neural networks as the adopted computational

function class. In a feedforward network, each layer succes-

sively forms more abstract representations of the input con-

taining the information needed for mapping the input to the

output. These representations, however, can transmit statis-

tics useful for solving other outputs (tasks), presumably if

the tasks are related in some form [80, 17, 56, 44]. This is

the basis of our approach: we computes an affinity matrix

among tasks based on whether the solution for one task can

be sufficiently easily read out of the representation trained

for another task. Such transfers are exhaustively sampled,

and a Binary Integer Programming formulation extracts a

globally efficient transfer policy from them. We show this

model leads to solving tasks with far less data than learn-

ing them independently and the resulting structure holds on

common datasets (ImageNet [75] and Places [101]).

Being fully computational and representation-based, the

proposed approach avoids imposing prior (possibly incor-

rect) assumptions on the task space. This is crucial because

the priors about task relations are often derived from either

human intuition or analytical knowledge, while neural net-

works need not operate on the same principles [60, 31, 38,

43, 99, 85]. For instance, although we might expect depth

to transfer to surface normals better (derivatives are easy),

the opposite is found to be the better direction in a compu-

tational framework (i.e. suited neural networks better).

An interactive taxonomy solver which uses our model

to suggest data-efficient curricula, a live demo, dataset, and

code are available at http://taskonomy.vision/.

2. Related Work

Assertions of existence of a structure among tasks date

back to the early years of modern computer science, e.g.

with Turing arguing for using learning elements [92, 95]

rather than the final outcome or Jean Piaget’s works on

developmental stages using previously learned stages as

sources [71, 37, 36], and have extended to recent works [73,

70, 48, 16, 94, 58, 9, 63]. Here we make an attempt to actu-

ally find this structure. We acknowledge that this is related

to a breadth of topics, e.g. compositional modeling [33, 8,

11, 21, 53, 89, 87], homomorphic cryptography [40], life-

long learning [90, 13, 82, 81], functional maps [68], certain

aspects of Bayesian inference and Dirichlet processes [52,

88, 87, 86, 35, 37], few-shot learning [78, 23, 22, 67, 83],

transfer learning [72, 81, 27, 61, 64, 57], un/semi/self-

supervised learning [20, 6, 15, 100, 17, 80], which are stud-

ied across various fields [70, 91, 10]. We review the topics

most pertinent to vision within the constraints of space:

Self-supervised learning methods leverage the inherent

relationships between tasks to learn a desired expensive one

(e.g. object detection) via a cheap surrogate (e.g. coloriza-

tion) [65, 69, 15, 100, 97, 66]. Specifically, they use a

manually-entered local part of the structure in the task space

(as the surrogate task is manually defined). In contrast, our

approach models this large space of tasks in a computational

manner and can discover obscure relationships.

Unsupervised learning is concerned with the redundan-

cies in the input domain and leveraging them for forming

compact representations, which are usually agnostic to the

downstream task [6, 47, 18, 7, 30, 74]. Our approach is not

unsupervised by definition as it is not agnostic to the tasks.

Instead, it models the space tasks belong to and in a way

utilizes the functional redundancies among tasks.

Meta-learning generally seeks performing the learning

at a level higher than where conventional learning occurs,

e.g. as employed in reinforcement learning [19, 29, 26],

optimization [2, 79, 46], or certain architectural mecha-

nisms [25, 28, 84, 62]. The motivation behind meta learn-

ing has similarities to ours and our outcome can be seen as

a computational meta-structure of the space of tasks.

Multi-task learning targets developing systems that can

provide multiple outputs for an input in one run [48, 16].

Multi-task learning has experienced recent progress and the

reported advantages are another support for existence of a

useful structure among tasks [90, 97, 48, 73, 70, 48, 16, 94,

58, 9, 63]. Unlike multi-task learning, we explicitly model

the relations among tasks and extract a meta-structure. The

large number of tasks we consider also makes developing

one multi-task network for all infeasible.

Domain adaption seeks to render a function that is de-

veloped on a certain domain applicable to another [42, 96,

5, 77, 50, 24, 34]. It often addresses a shift in the input do-

main, e.g. webcam images to D-SLR [45], while the task

is kept the same. In contrast, our framework is concerned

with output (task) space, hence can be viewed as task/output

adaptation. We also perform the adaptation in a larger space

among many elements, rather than two or a few.

3. Method

We define the problem as follows: we want to max-

imize the collective performance on a set of tasks T =
{t1, ..., tn}, subject to the constraint that we have a limited

supervision budget γ (due to financial, computational, or

time constraints). We define our supervision budget γ to be

the maximum allowable number of tasks that we are willing

to train from scratch (i.e. source tasks). The task dictionary

is defined as V=T ∪S where T is the set of tasks which we

want solved (target), and S is the set of tasks that can be

trained (source). Therefore, T − T ∩ S are the tasks that
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Figure 2: Computational modeling of task relations and creating the taxonomy. From left to right: I. Train task-specific networks. II. Train (first

order and higher) transfer functions among tasks in a latent space. III. Get normalized transfer affinities using AHP (Analytic Hierarchy Process). IV. Find

global transfer taxonomy using BIP (Binary Integer Program).

we want solved but cannot train (“target-only”), T ∩ S are

the tasks that we want solved but could play as source too,

and S − T ∩ S are the “source-only” tasks which we may

not directly care about to solve (e.g. jigsaw puzzle) but can

be optionally used if they increase the performance on T .

The task taxonomy (taskonomy) is a computationally

found directed hypergraph that captures the notion of task

transferability over any given task dictionary. An edge be-

tween a group of source tasks and a target task represents a

feasible transfer case and its weight is the prediction of its

performance. We use these edges to estimate the globally

optimal transfer policy to solve T . Taxonomy produces a

family of such graphs, parameterized by the available su-

pervision budget, chosen tasks, transfer orders, and transfer

functions’ expressiveness.

Taxonomy is built using a four step process depicted in

Fig. 2. In stage I, a task-specific network for each task in S
is trained. In stage II, all feasible transfers between sources

and targets are trained. We include higher-order transfers

which use multiple inputs task to transfer to one target. In

stage III, the task affinities acquired from transfer function

performances are normalized, and in stage IV, we synthe-

size a hypergraph which can predict the performance of any

transfer policy and optimize for the optimal one.

A vision task is an abstraction read from a raw image.

We denote a task t more formally as a function ft which

maps image I to ft(I). Our dataset, D, contains for each

task t a set of training pairs (I, ft(I)), e.g. (image, depth).
Task Dictionary: Our mapping of task space is done

via (26) tasks included in the dictionary, so we ensure they

cover common themes in computer vision (2D, 3D, seman-

tics, etc) to the elucidate fine-grained structures of task

space. See Fig. 3 for some of the tasks with detailed def-

inition of each task provided in the supplementary material.

It is critical to note the task dictionary is meant to be

a sampled set, not an exhaustive list, from a denser space

of all conceivable visual tasks. This gives us a tractable

way to sparsely model a dense space, and the hypothesis is

that (subject to a proper sampling) the derived model should
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Figure 3: Task Dictionary. Outputs of 24 (of 26) task-specific networks

for a query (top left). See results of applying frame-wise on a video here.

generalize to out-of-dictionary tasks. The more regular /

better sampled the space, the better the generalization. We

evaluate this in Sec. 4.2 with supportive results. For evalu-

ation of the robustness of results w.r.t the choice of dictio-

nary, see the supplementary material.

Dataset: We need a dataset that has annotations for ev-

ery task on every image. Training all of our tasks on exactly

the same pixels eliminates the possibility that the observed

transferabilities are affected by different input data peculiar-

ities rather than only task intrinsics. We created a dataset of

4 million images of indoor scenes from about 600 build-

ings; every image has an annotation for every task. The

images are registered on and aligned with building-wide
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Figure 4: Transfer Function. A small readout function is trained to map

representations of source task’s frozen encoder to target task’s labels. If

order> 1, transfer function receives representations from multiple sources.

meshes similar to [3, 98, 12] enabling us to programmati-

cally compute the ground truth for many tasks without hu-

man labeling. For the tasks that still require labels (e.g.

scene classes), we generate them using Knowledge Distil-

lation [41] from known methods [101, 55, 54, 75]. See the

supplementary material for full details of the process and

a user study on the final quality of labels generated using

Knowledge Distillation (showing < 7% error).

3.1. Step I: Task­Specific Modeling

We train a fully supervised task-specific network for

each task in S . Task-specific networks have an encoder-

decoder architecture homogeneous across all tasks, where

the encoder is large enough to extract powerful represen-

tations, and the decoder is large enough to achieve a good

performance but is much smaller than the encoder.

3.2. Step II: Transfer Modeling

Given a source task s and a target task t, where s ∈ S
and t ∈ T , a transfer network learns a small readout func-

tion for t given a statistic computed for s (see Fig 4). The

statistic is the representation for image I from the encoder

of s: Es(I). The readout function (Ds→t) is parameterized

by θs→t minimizing the loss Lt:

Ds→t := argmin
θ

EI∈D

[

Lt

(

Dθ

(

Es(I)
)

, ft(I)
)]

, (1)

where ft(I) is ground truth of t for image I . Es(I) may or

may not be sufficient for solving t depending on the relation

between t and s (examples in Fig. 5). Thus, the performance

of Ds→t is a useful metric as task affinity. We train transfer

functions for all feasible source-target combinations.

Accessibility: For a transfer to be successful, the latent

representation of the source should both be inclusive of suf-

ficient information for solving the target and have the in-

formation accessible, i.e. easily extractable (otherwise, the

raw image or its compression based representations would

be optimal). Thus, it is crucial for us to adopt a low-capacity

(small) architecture as transfer function trained with a small

amount of data, in order to measure transferability condi-

tioned on being highly accessible. We use a shallow fully

convolutional network and train it with little data (8x to

120x less than task-specific networks).
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Figure 5: Transfer results to normals and 2.5D Segmentation from

5 different source tasks. The spread in transferability among sources is

apparent. “Scratch” was trained from scratch without transfer learning.

Higher-Order Transfers: Multiple source tasks can

contain complementary information for solving a target task

(see examples in Fig 6). We include higher-order transfers

which are the same as first order but receive multiple rep-

resentations in the input. Thus, our transfers are functions

D : ℘(S) → T , where ℘ is the powerset operator.

As there is a combinatorial explosion in the number of

feasible higher-order transfers (|T | ×
(

|S|
k

)

for kth order),

we employ a sampling procedure with the goal of filtering

out higher-order transfers that are less likely to yield good

results, without training them. We use a beam search: for

transfers of order k ≤ 5 to a target, we select its 5 best

sources (according to 1st order performances) and include

all of their order-k combination. For k ≥ 5, we use a beam

of size 1 and compute the transfer from the top k sources.

We also tested transitive transfers (s → t1 → t2) which

showed they do not improve the results, and thus, were not

include in our model (results in supplementary material).

3.3. Step III: Ordinal Normalization using Analytic
Hierarchy Process (AHP)

We want to have an affinity matrix of transferabilities

across tasks. Aggregating the raw losses/evaluations Ls→t

from transfer functions into a matrix is obviously problem-

atic as they have vastly different scales and live in different

spaces (see Fig. 7-left). Hence, a proper normalization is

needed. A naive solution would be to linearly rescale each

row of the matrix to the range [0, 1]. This approach fails

when the actual output quality increases at different speeds

w.r.t. the loss. As the loss-quality curve is generally un-

known, such approaches to normalization are ineffective.

Instead, we use an ordinal approach in which the output

quality and loss are only assumed to change monotonically.

For each t, we construct Wt a pairwise tournament matrix

between all feasible sources for transferring to t. The ele-

ment at (i, j) is the percentage of images in a held-out test

set, Dtest, on which si transfered to t better than sj did (i.e.

Dsi→t(I) > Dsj→t(I)).

We clip this intermediate pairwise matrix Wt to be in

[0.001, 0.999] as a form of Laplace smoothing. Then we

divide W ′
t = Wt/W

T
t so that the matrix shows how many

times better si is compared to sj . The final tournament ratio

matrix is positive reciprocal with each element w′
i,j of W ′

t :
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Figure 6: Higher-Order Transfers. Representations can contain com-

plementary information. E.g. by transferring simultaneously from 3D

Edges and Curvature individual stairs were brought out. See our publicly

available interactive transfer visualization page for more examples.

w′
i,j =

EI∈Dtest
[Dsi→t(I) > Dsj→t(I)]

EI∈Dtest
[Dsi→t(I) < Dsj→t(I)]

. (2)

We quantify the final transferability of si to t as the cor-

responding (ith) component of the principal eigenvector of

W ′
t (normalized to sum to 1). The elements of the principal

eigenvector are a measure of centrality, and are proportional

to the amount of time that an infinite-length random walk on

W ′
t will spend at any given source [59]. We stack the prin-

cipal eigenvectors of W ′
t for all t ∈ T , to get an affinity

matrix P (‘p’ for performance)—see Fig. 7, right.

This approach is derived from Analytic Hierarchy Pro-

cess [76], a method widely used in operations research to

create a total order based on multiple pairwise comparisons.

3.4. Step IV: Computing the Global Taxonomy

Given the normalized task affinity matrix, we need to

devise a global transfer policy which maximizes collective

performance across all tasks, while minimizing the used su-

pervision. This problem can be formulated as subgraph se-

lection where tasks are nodes and transfers are edges. The

optimal subgraph picks the ideal source nodes and the best

edges from these sources to targets while satisfying that

the number of source nodes does not exceed the supervi-

sion budget. We solve this subgraph selection problem us-

ing Boolean Integer Programming (BIP), described below,

which can be solved optimally and efficiently [39, 14].

Our transfers (edges), E, are indexed by i with the form

({si1, . . . , s
i
mi

}, ti) where {si1, . . . , s
i
mi

} ⊂ S and ti ∈ T .

We define operators returning target and sources of an edge:

(

{si1, . . . , s
i
mi

}, ti
) sources

7−−−−−→ {si1, . . . , s
i
mi

}
(

{si1, . . . , s
i
mi

}, ti
) target

7−−−−→ ti.

Solving a task t by fully supervising it is denoted as
(

{t}, t
)

.

We also index the targets T with j so that in this section, i
is an edge and j is a target.

The parameters of the problem are: the supervision bud-

get (γ) and a measure of performance on a target from each

of its transfers (pi), i.e. the affinities from P . We can also

optionally include additional parameters of: rj specifying
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Figure 7: First-order task affinity matrix before (left) and after (right)

Analytic Hierarchy Process (AHP) normalization. Lower means better

transfered. For visualization, we use standard affinity-distance method

dist = e−β·P (where β = 20 and e is element-wise matrix exponential).

See supplementary material for the full matrix with higher-order transfers.

the relative importance of each target task and ℓi specifying

the relative cost of acquiring labels for each task.

The BIP is parameterized by a vector x where each trans-

fer and each task is represented by a binary variable; x indi-

cates which nodes are picked to be source and which trans-

fers are selected. The canonical form for a BIP is:

maximize cTx ,

subject to Ax � b

and x ∈ {0, 1}|E|+|V| .

Each element ci for a transfer is the product of the im-

portance of its target task and its transfer performance:

ci := rtarget(i) · pi . (3)

Hence, the collective performance on all targets is the sum-

mation of their individual AHP performance, pi, weighted

by the user specified importance, ri.
Now we add three types of constraints via matrix A to

enforce each feasible solution of the BIP instance corre-

sponds to a valid subgraph for our transfer learning prob-

lem: Constraint I: if a transfer is included in the subgraph,

all of its source nodes/tasks must be included too, Con-

straint II: each target task has exactly one transfer in, Con-

straint III: supervision budget is not exceeded.

Constraint I: For each row ai in A we require ai ·x ≤ bi,
where

ai,k =











|sources(i)| if k = i

−1 if (k − |E|) ∈ sources(i)

0 otherwise

(4)

bi = 0. (5)

Constraint II: Via the row a|E|+j , we enforce that each

target has exactly one transfer:

a|E|+j,i := 2 · ✶{target(i)=j}, b|E|+j := −1. (6)

Constraint III: the solution is enforced to not exceed the

budget. Each transfer i is assigned a label cost ℓi, so

a|E|+|V|+1,i := ℓi, b|E|+|V|+1 := γ. (7)

The elements of A not defined above are set to 0. The

problem is now a valid BIP and can be optimally solved in

a fraction of a second [39]. The BIP solution x̂ corresponds

to the optimal subgraph, which is our taxonomy.
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Figure 8: Computed taxonomies for solving 22 tasks given various supervision budgets (x-axes), and maximum allowed transfer orders (y-axes). One

is magnified for better visibility. Nodes with incoming edges are target tasks, and the number of their incoming edges is the order of their chosen transfer

function. Still transferring to some targets when tge budget is 26 (full budget) means certain transfers started performing better than their fully supervised

task-specific counterpart. See the interactive solver website for color coding of the nodes by Gain and Quality metrics. Dimmed nodes are the source-only

tasks, and thus, only participate in the taxonomy if found worthwhile by the BIP optimization to be one of the sources.

4. Experiments

With 26 tasks in the dictionary (4 source-only tasks), our

approach leads to training 26 fully supervised task-specific

networks, 22× 25 transfer networks in 1st order, and 22×
(

25
k

)

for kth order, from which we sample according to the

procedure in Sec. 3. The total number of transfer functions

trained for the taxonomy was ∼3,000 which took 47,886

GPU hours on the cloud.

Out of 26 tasks, we usually use the following 4 as source-

only tasks (described in Sec. 3) in the experiments: col-

orization, jigsaw puzzle, in-painting, random projection.

However, the method is applicable to an arbitrary partition-

ing of the dictionary into T and S . The interactive solver

website allows the user to specify any desired partition.

Network Architectures: We preserved the architectural

and training details across tasks as homogeneously as possi-

ble to avoid injecting any bias. The encoder architecture is

identical across all task-specific networks and is a fully con-

volutional ResNet-50 without pooling. All transfer func-

tions include identical shallow networks with 2 conv layers

(concatenated channel-wise if higher-order). The loss (Lt)

and decoder’s architecture, though, have to depend on the

task as the output structures of different tasks vary; for all

pixel-to-pixel tasks, e.g. normal estimation, the decoder is a

15-layer fully convolutional network; for low dimensional

tasks, e.g. vanishing points, it consists of 2-3 FC layers.

All networks are trained using the same hyperparameters

regardless of task and on exactly the same input images.

Tasks with more than one input, e.g. relative camera pose,

share weights between the encoder towers. Transfer net-

works are all trained using the same hyperparameters as the

task-specific networks, except that we anneal the learning

rate earlier since they train much faster. Detailed definitions

of architectures, training process, and experiments with dif-

ferent encoders can be found in the supplementary material.

Data Splits: Our dataset includes 4 million images. We

made publicly available the models trained on full dataset,

but for the experiments reported in the main paper, we

used a subset of the dataset as the extracted structure stabi-

lized and did not change when using more data (explained

in Sec. 5.2). The used subset is partitioned into training

(120k), validation (16k), and test (17k) images, each from

non-overlapping sets of buildings. Our task-specific net-

works are trained on the training set and the transfer net-

works are trained on a subset of validation set, ranging from

1k images to 16k, in order to model the transfer patterns un-

der different data regimes. In the main paper, we report all

results under the 16k transfer supervision regime (∼10% of

the split) and defer the additional sizes to the supplementary

material and website (see Sec. 5.2). Transfer functions are

evaluated on the test set.

How good are the trained task-specific networks? Win

rate (%) is the proportion of test set images for which a

baseline is beaten. Table 1 provides win rates of the task-

specifc networks vs. two baselines. Visual outputs for a ran-

dom test sample are in Fig. 3. The high win rates in Table 1

and qualitative results show the networks are well trained

and stable and can be relied upon for modeling the task

space. See results of applying the networks on a YouTube

video frame-by-frame here. A live demo for user uploaded

queries is available here.
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Task avg rand Task avg rand Task avg rand

Denoising 100 99.9 Layout 99.6 89.1 Scene Class. 97.0 93.4

Autoenc. 100 99.8 2D Edges 100 99.9 Occ. Edges 100 95.4

Reshading 94.9 95.2 Pose (fix) 76.3 79.5 Pose (nonfix) 60.2 61.9

Inpainting 99.9 - 2D Segm. 97.7 95.7 2.5D Segm. 94.2 89.4

Curvature 78.7 93.4 Matching 86.8 84.6 Egomotion 67.5 72.3

Normals 99.4 99.5 Vanishing 99.5 96.4 2D Keypnt. 99.8 99.4

Z-Depth 92.3 91.1 Distance 92.4 92.1 3D Keypnt. 96.0 96.9

Mean 92.4 90.9

Table 1: Task-Specific Networks’ Sanity: Win rates vs. random (Gaus-

sian) network representation readout and statistically informed guess avg.

To get a sense of the quality of our networks vs. state-of-

the-art task-specific methods, we compared our depth esti-

mator vs. released models of [51] which led to outperform-

ing [51] with a win rate of 88% and losses of 0.35 vs. 0.47

(further details in the supplementary material). In general,

we found the task-specific networks to perform on par or

better than state-of-the-art for many of the tasks, though we

do not formally benchmark or claim this.

4.1. Evaluation of Computed Taxonomies

Fig. 8 shows the computed taxonomies optimized to

solve the full dictionary, i.e. all tasks are placed in T and S
(except for 4 source-only tasks that are in S only). This was

done for various supervision budgets (columns) and max-

imum allowed order (rows) constraints. Still seeing trans-

fers to some targets when the budget is 26 (full dictionary)

means certain transfers became better than their fully super-

vised task-specific counterpart.

While Fig. 8 shows the structure and connectivity, Fig. 9

quantifies the results of taxonomy recommended transfer

policies by two metrics of Gain and Quality, defined as:

Gain: win rate (%) against a network trained from scratch

using the same training data as transfer networks’. That

is, the best that could be done if transfer learning was not

utilized. This quantifies the gained value by transferring.

Quality: win rate (%) against a fully supervised network

trained with 120k images (gold standard).

Each column in Fig. 9 shows a supervision budget. As

apparent, good results can be achieved even when the super-

vision budget is notably smaller than the number of solved

tasks, and as the budget increases, results improve (ex-

pected). Results are shown for 2 maximum allowed orders.

4.2. Generalization to Novel Tasks

The taxonomies in Sec. 4.1 were optimized for solving

all tasks in the dictionary. In many situations, a practitioner

is interested in a single task which even may not be in the

dictionary. Here we evaluate how taxonomy transfers to a

novel out-of-dictionary task with little data.

This is done in an all-for-one scenario where we put one

task in T and all others in S . The task in T is target-only

and has no task-specific network. Its limited data (16k) is

used to train small transfer networks to sources. This basi-

cally localizes where the target would be in the taxonomy.

Gain Quality
max transfer order=1 max transfer order=4 max transfer order=1 max transfer order=4

Supervision Budget Increase (→)

Budget

Figure 9: Evaluation of taxonomy computed for solving the full task

dictionary. Gain (left) and Quality (right) values for each task using the

policy suggested by the computed taxonomy, as the supervision budget

increases(→). Shown for transfer orders 1 and 4.
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Object Cls.
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2.5D Segm.
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Occ. Edges
93 96 95 93 94 93 94 42 -
.16 .19 .18 .17 .18 .16 .17 .12 .13

Curvature
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8.60 8.58 9.26 8.41 8.34 8.15 7.94 7.32 6.85

Layout
80 76 85 79 77 78 70 36 -
.66 .66 .85 .65 .65 .62 .54 .37 .41

Figure 10: Generalization to Novel Tasks. Each row shows a novel

test task. Left: Gain and Quality values using the devised “all-for-one”

transfer policies for novel tasks for orders 1-4. Right: Win rates (%) of the

transfer policy over various self-supervised methods, ImageNet features,

and scratch are shown in the colored rows. Note the large margin of win

by taxonomy. The uncolored rows show corresponding loss values.

Fig. 10 (left) shows the Gain and Quality of the transfer

policy found by the BIP for each task. Fig. 10 (right) com-

pares the taxonomy suggested policy against some of the

best existing self-supervised methods [93, 100, 65, 97, 1],

ImageNet FC7 features [49], training from scratch, and a

fully supervised network (gold standard).

The results in Fig. 10 (right) are noteworthy. The large

win margin for taxonomy shows that carefully selecting

transfer policies depending on the target is superior to fixed

transfers, such as the ones employed by self-supervised

methods. ImageNet features which are the most popular

off-the-shelf features in vision are also outperformed by

those policies. Additionally, though the taxonomy transfer

policies lose to fully supervised networks (gold standard) in

most cases, the results often get close with win rates in 40%

range. These observations suggests the space has a rather

predicable and strong structure. For graph visualization of
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Figure 11: Structure Significance. Our taxonomy compared with ran-

dom transfer policies (random feasible taxonomies that use the maximum

allowable supervision budget). Y-axis shows Quality or Gain, and X-axis

is the supervision budget. Green and gray represent our taxonomy and ran-

dom connectivities, respectively. Error bars denote 5th–95th percentiles.

the all-for-one taxonomy policies please see the supplemen-

tary material. The solver website allows generating the tax-

onomy for arbitrary sets of target-only tasks.

5. Significance Test of the Structure

The previous evaluations showed good transfer results in

terms of Quality and Gain, but how crucial is it to use our

taxonomy to choose smart transfers over just choosing any

transfer? In other words, how significant/strong is the dis-

covered structure of task space? Fig. 11 quantifies this by

showing the performance of our taxonomy versus a large

set of taxonomies with random connectivities. Taxonomy

outperformed all other connectivities by a large margin sig-

nifying both existence of a strong structure in the space as

well as a good modeling of it by our approach. See the sup-

plementary material for full experimental details.

5.1. Evaluation on MIT Places & ImageNet

To what extent are our findings dataset dependent, and

would the taxonomy change if done on another dataset? We

examined this by finding the ranking of all tasks for trans-

ferring to two target tasks of object classification and scene

classification on our dataset. We then fine tuned our task-

specific networks on other datasets (MIT Places [101] for

scene classification, ImageNet [75] for object classification)

and evaluated them on their respective test sets and metrics.

Fig. 12 shows how the results correlate with taxonomy’s

ranking from our dataset. The Spearman’s rho between the

taxonomy ranking and the Top-1 ranking is 0.857 on Places

and 0.823 on ImageNet showing a notable correlation. See

the supplementary material for full experimental details.

5.2. Universality of the Structure

We employed a computational approach with various de-

sign choices. It is important to investigate how specific to

those the discovered structure is. We did stability tests by

computing the variance in our output when making changes

in one of the following system choices: I. architecture of

task-specific networks, II. architecture of transfer func-

tion networks, III. amount of data available for training

transfer networks, IV. datasets, V. data splits, VI. choice

of dictionary. Overall, despite injecting large changes (e.g.

varying the size of training data of transfer functions by 16x,

Transferring to ImageNet
(Spearman’s correlation = 0.823)

Top-1

Top-5

A
cc

u
ra

cy

Transferring to MIT Places
(Spearman’s correlation = 0.857)

Top-1

Top-5

A
cc

u
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cy

Figure 12: Evaluating the discovered structure on other datasets:

ImageNet [75] and MIT Places [101]. Y-axis shows accuracy on the

external benchmark while bars on x-axis are ordered by taxonomy’s pre-

dicted performance based on our dataset. A monotonically decreasing plot

corresponds to preserving identical orders and perfect generalization.

size and architecture of task-specific networks and transfer

networks by 4x), we found the outputs to be remarkably

stable leading to almost no change in the output taxonomy

computed on top. Detailed results and experimental setup

of each tests are reported in the supplementary material.

6. Limitations and Discussion

We presented a method for modeling the space of visual

tasks by way of transfer learning and showed its utility in

reducing the need for supervision. The space of tasks is an

interesting object of study in its own right and we have only

scratched the surface in this regard. We also made a number

of assumptions in the framework which should be noted.

Model Dependence: We used a computational approach

and adopted neural networks as our function class. Though

we validated the stability of the findings w.r.t various archi-

tectures and datasets, it should be noted that the findings are

in principle model and data specific.

Compositionality: We performed the modeling via a set

of common human-defined visual tasks. It is natural to con-

sider a further compositional approach in which such com-

mon tasks are viewed as observed samples which are com-

posed of computationally found latent subtasks.

Space Regularity: We performed modeling of a dense

space via a sampled dictionary. Though we showed a good

tolerance w.r.t. to the choice of dictionary and transferring

to out-of-dictionary tasks, this outcome holds upon a proper

sampling of the space as a function of its regularity. More

formal studies on properties of the computed space is re-

quired for this to be provably guaranteed for a general case.

Lifelong Learning: We performed the modeling in one

go. In many cases, e.g. lifelong learning, the system is

evolving and the number of mastered tasks constantly

increase. Such scenarios require augmentation of the

structure with expansion mechanisms based on new beliefs.
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