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Abstract

Human sensing has greatly benefited from recent ad-

vances in deep learning, parametric human modeling, and

large scale 2d and 3d datasets. However, existing 3d mod-

els make strong assumptions about the scene, considering

either a single person per image, full views of the person,

a simple background or many cameras. In this paper, we

leverage state-of-the-art deep multi-task neural networks

and parametric human and scene modeling, towards a fully

automatic monocular visual sensing system for multiple in-

teracting people, which (i) infers the 2d and 3d pose and

shape of multiple people from a single image, relying on

detailed semantic representations at both model and image

level, to guide a combined optimization with feedforward

and feedback components, (ii) automatically integrates scene

constraints including ground plane support and simultane-

ous volume occupancy by multiple people, and (iii) extends

the single image model to video by optimally solving the

temporal person assignment problem and imposing coherent

temporal pose and motion reconstructions while preserv-

ing image alignment fidelity. We perform experiments on

both single and multi-person datasets, and systematically

evaluate each component of the model, showing improved

performance and extensive multiple human sensing capa-

bility. We also apply our method to images with multiple

people, severe occlusions and diverse backgrounds captured

in challenging natural scenes, and obtain results of good

perceptual quality.

1. Introduction

Accurately detecting and reconstructing multiple people,

possibly involved in interactions with each other and with

the scene, based on images and video data, has extensive ap-

plications in areas as diverse as human-computer interaction,

human behavioral modeling, assisted therapy, monitoring

*Authors contributed equally

Figure 1: Automatic 3d reconstruction of the pose and

shape of multiple people from a monocular image, as esti-

mated by our model integrating person and scene constraints.

We leverage feedforward and semantic feedback calculations

for each person, with joint reasoning on ground plane and

volume occupancy over all the people in the scene.

sports performances, protection and security, special effects,

modeling and indexing archival footage, or self-driving cars.

To support the level of modeling accuracy required by

such applications, we ultimately need highly-detailed models

able not just to detect people and their body joints in images,

but also the spatial extent of body parts, as well as the three-

dimensional pose, shape and motion for each person in the

scene. For complex scenes, such demands would likely re-

quire a virtuous cycle between 2d and 3d reasoning, with

feedback. One should further consider integrating anthro-

pometry constraints, avoiding geometric collisions between

the estimated models of multiple people, and reasoning about

ground planes implicit in many scenes, as people rarely float,
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unsupported in space – and if so, usually not for long. Re-

constructions must also be temporally fluid and humanly

plausible. Most importantly, constraints need to be enforced

in the context of an image observation process which – even

with many cameras pointed at the scene – remains incom-

plete and uncertain, especially in scenarios where multiple

people interact. While the integration of such constraints

appears challenging, their use provides the opportunity to

considerably restrict the degrees of freedom of any natural

human parameterization towards plausible solutions.

In this paper, we address the monocular inference prob-

lem for multiple interacting people, by providing a model

for 2d and 3d pose and shape reconstruction over time. Our

contributions include (i) a semantic feedforward-feedback

module that combines 2d human joint detection, semantic

segmentation, and 3d pose prediction of people, with pose

and shape refinement based on a novel semantic cost that

aligns the model body parts with their corresponding se-

mantic images regions, producing solutions that explain the

complete person layout while taking into account its esti-

mation uncertainty, (ii) incorporation of scene consistency

measures including automatic estimation and integration of

ground plane constraints, as well as adaptively avoiding si-

multaneous volume occupancy by several people, and (iii)

resolution of the temporal person assignment problem based

on body shape, appearance and motion cues within a Hungar-

ian matching method, then solving a joint multiple-person

smoothing problem under both 2d projection and 3d pose

temporal fluidity constraints. Our quantitative results on

datasets like Panoptic [12] and Human3.6M [11] validate

the importance of the ingredients in the proposed design.

Qualitative results in complex monocular images and video

show that the model is able to reconstruct multiple interact-

ing people in challenging scenes in a perceptually plausible

way. The model also supports the realistic synthesis of hu-

man clothing and appearance (human appearance transfer)

as shown in our companion paper [39].

2. Related Work

Our work relates to recently developed deep architectures

for 2d human pose estimation [4, 9, 21, 35, 36], 3d human

pose estimation based on fitting volumetric models [2, 15],

feedforward deep models for 3d prediction [18, 22, 40], as

well as integrated deep models for 2d and 3d reasoning

[23, 27, 34, 19]. Accurate shape and motion-capture sys-

tems, based on multiple cameras or simplified backgrounds,

have also been proposed with impressive reconstruction re-

sults [3, 7, 13, 26]. Systems designed for the 3d reconstruc-

tion of multiple people are relatively rare and existing ones

are based on multiple cameras [1, 6, 5, 12, 14]. In [6], the

method uses an arguably low number of cameras (3-4) to

reconstruct several people, with promising results, but the

level of interaction is somewhat limited. The work of [12]

proposes a multi-person tracking system (which we also use

for our ‘ground-truth’ monocular evaluation), although the

system relies on a massive number of RGB and RGB-D cam-

eras for inference, and the capture dome offers inherently

limited background variability. Our single person initializa-

tion relies on the Deep Multitask Human Sensing Network

(DMHS) [23] for initial 2d and 3d pose inference (body

joints, semantic segmentation, pose prediction), which is

then refined based on our own implementation of the human

body model SMPL [15], augmented with learned semantic

vertex labeling information, and using a new semantic loss

function, which represents one of our contributions. Systems

based on discriminative-generative (feedforward-feedback)

components for 3d human pose estimation date, in princi-

ple, back at least to [25, 28, 31] but our approach leverages

considerably different image representations, body models,

cost functions and optimization techniques. Our automatic

ground plane and adaptive people volume occupancy exclu-

sion constraints, as well as our multiple people assignment

and smoothing costs are integrated in a novel and coherent

way, although monocular single person costs based on sim-

pler model formulations and/or multiple hypotheses tracking

techniques exist in the literature [2, 20, 24, 29, 30, 38].

3. Multiple Persons in the Scene Model

Problem formulation. Without loss of generality, we

consider Np uniquely detected persons in a video with

Nf frames. Our objective is to infer the best pose state

variables Θ = [θf
p ] ∈ R

Np×Nf×72, shape parameters

B = [βf
p ] ∈ R

Np×Nf×10 and individual person transla-

tions T = [tfp ] ∈ R
Np×Nf×3, with p ∈ Np and f ∈ Nf .

We start by first writing a per-frame, person-centric objective

function Lp,f
I (B,Θ,T)

Lp,f
I = Lp,f

S + Lp,f
G + Lp,f

R +

Np
∑

p′=1
p′ 6=p

Lf
C(p, p

′), (1)

where the cost LS takes into account the visual evidence

computed in every frame in the form of semantic body part

labeling, LC penalizes simultaneous (3d) volume occupancy

between different people in the scene, and LG incorporates

the constraint that some of the people in the scene may have

a common supporting plane. The term Lp,f
R = Lp,f

R (θ) is

a Gaussian mixture prior similar to [2]. The image cost for

multiple people under all constraints can be written as

Lf
I =

Np
∑

p=1

Lp,f
I (2)

If a monocular video is available, the static cost Lf is aug-

mented with a trajectory model applicable to each person
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Figure 2: Processing pipeline of our monocular model for the estimation of 3d pose and body shape of multiple people. The

system combines a single person model that incorporates feedforward initialization and semantic feedback, with additional

constraints such as ground plane estimation, mutual volume exclusion, and joint inference for all people in the scene. For

monocular video, the 3d temporal assignment of people is resolved using a Hungarian method, and trajectory optimization is

performed jointly over all people and timesteps, under all constraints, including image consistency, for optimal results.

once the temporal assignment throughout the entire video

has been resolved. The complete video loss writes

L = LI + LT =

Np
∑

p=1

Nf
∑

f=1

(

Lp,f
I + Lp,f

T

)

(3)

where LT can incorporate prior knowledge on human mo-

tion, ranging from smoothness, assumptions of constant ve-

locity or acceleration, or more sophisticated models learned

from human motion capture data. In the next sections, we

describe each cost function in detail.1

In order to infer the pose and 3d position of multiple peo-

ple we rely on a parametric human representation, SMPL

[15], with a state-of-the-art deep multitask neural network

for human sensing, DMHS [23]. In practice, we cannot as-

sume a constant number of people throughout a video and

we first infer the parameters B,Θ, T independently for each

frame by minimizing the sum of the first two cost functions:

LS and LC . Then, we temporally track the persons obtained

in each frame by means of optimally solving an assignment

problem, then re-optimize the objective, by adding the tem-

poral and ground plane constraints, LT and LG. For those

people detected in only some of the frames, optimization

will proceed accordingly over the corresponding subset. An

overview of the method is shown in fig. 2.

3.1. Single Person FeedforwardFeedback Model

SMPL [15] is a differentiable parametric human model –

represented by template vertices V0 – and controlled by

pose vectors θ ∈ R
1×72 and shape parameters β ∈ R

1×10.

The pose of the model is defined by a standard skeletal rig

that has the main body joints. For each body part, the vectors

controlling the pose are provided in axis-angle represen-

tations of the relative rotations w.r.t. their parents in the

kinematic tree. The axis angle for every joint is transformed

to a rotation matrix using the Rodrigues transformation. The

1Whenever unambiguous, we drop the f and p super-scripts.

shape parameters β impact limb size, height and weight

and represent coefficients of a low dimensional shape space

learned from registered meshes. SMPL provides matrix func-

tions dependent on θ and β, namely V(θ,β|V0) ∈ R
nV ×3,

which gives the transformed vertex positions for the whole

mesh, and J(θ,β|V0) ∈ R
nJ×3, which outputs the joint

positions for the associated kinematic tree. The total num-

ber of vertices in the SMPL model is nV = 6890 and the

total number of joints in the kinematic tree is nJ = 24. For

simplicity of explanation, let v denote V(θ,β|V0) and let

x be J(θ,β|V0). We refer to the translation of the model in

camera space as t ∈ R
1×3.

DMHS [23] is a state-of-the-art feedforward multi-task deep

neural network for human sensing that provides, for a given

image I ∈ R
W×H×3, the following estimates: the 2d and 3d

joints of a single person as well as the semantic body parts

at pixel level. We denote these 3 outputs by the matrices

y3D ∈ R
mJ×3, y2D ∈ R

mJ×2 and ys ∈ R
Ns×W×H , re-

spectively. We denote by mJ = 17 the number of joints in

the representation considered by the network and Ns = 25
the number of semantic body parts. The method has been

shown to perform well for both indoor images as well as

outdoor. The challenges of integrating DMHS and SMPL

stem from accurately fitting (transferring) the parametric

SMPL model to the 3d joint positions predicted by DMHS,

as well as designing semantic-based cost functions that al-

low to efficiently couple the model to the observations –

perform 3d fitting in order to best explain the human layout

in the image. In order to semantically assign model mesh

components to corresponding image regions, one needs a

consistent ‘coloring’ of their vertices according to the NS

human body part labels available e.g. in Human3.6M [11].

This can be achieved robustly, during a training process.

We project and fit the SMPL model in multiple (4) views

and for different ground truth poses from Human3.6M (we

chose 100 different poses). Then each model vertex was

associated the median image body part label, available in

Human3.6M, transferred from images to the corresponding
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(a) (b) (c) (d) (e) (f)

Figure 3: 3d pose transfer from DMHS to SMPL. (a) input image. (b) 3d joints with links, as estimated by DMHS. (c)

transfer after applying (4) directly minimizing Euclidean distances between common 3d joints in both representations. Notice

unnatural body shape and weak perceptual resemblance with the DMHS output. (d) is also obtained using (4) but with extra

regularization on pose angles – offering plausible configurations but weak fits. (e) transfer results obtained using our proposed

cost (5) which preserves limb orientation, and (f) inferred configurations after our semantic optimization, initialized by (e).

vertex projections. See fig. 4 for coloring examples.

3.1.1 Feedforward Prediction, Pose & Shape Transfer

We detail the transfer procedure for a single person and

perform the same steps for all people in each frame of a video.

To transfer the feedforward prediction of the configuration

of joints y3D obtained from DMHS to the SMPL model, we

have to define a cost function Φ3d(θ,β), and infer optimal

θ and β parameters. One such cost function is the Euclidean

distance between joints shared in both representations (i.e.

i, j ∈ CJ , where 1 ≤ i ≤ mJ and 1 ≤ j ≤ nJ and CJ is the

set of compatible joint indices)

Φ3d(θ,β) =
1

|CJ |

∑

i,j∈CJ

∥

∥y3D(i)− (x(j)− x(h))
∥

∥ (4)

where h indicates the index of the pelvis and x(j) − x(h)
represents the centered 3d pose configuration with respect to

the pelvis joint. Unless otherwise stated, we use ‖·‖ for the

ℓ2 norm, ‖·‖2.

However, based on (4) the DMHS to SMPL transfer is

unsatisfactory. This is because 1) the prediction made by

DMHS is not necessarily a valid human shape, and 2) a

configuration in the parameter space of β or even in the

space of θ does not necessarily represent an anatomically

correct human pose. In [2], multiple regularizers were added:

a norm penalty on β and a prior distribution on θ. However,

these risk excessive bias.

We propose an alternative transfer equation, focusing

on qualitatively modeling the pose predicted by DMHS so

to preserve the 3d orientation of limbs. Our function Φcos

penalizes the cosine distance between limbs – or selected

pairs of joints – that are shared in both representations (prop-

erty denoted by (i, j), (a, b) ∈ CL where 1 ≤ i, j ≤ mJ

and 1 ≤ k, l ≤ nJ ). Given aij = y3D(i) − y3D(j) and

bkl = x(k)− x(l), the cost is

Φcos(θ,β) =
1

|CL|

∑

(i,j),(k,l)∈CL

1−
〈aij ,bkl〉

‖aij‖ ‖bkl‖
(5)

While in practice the minimization of Φcos converges

quickly to a perfect solution (often close to 0) and the re-

sulting pose is perceptually similar to DMHS, the implicit

shape information provided by DMHS is lost. In situations

where the original 3d joint prediction confidence is high (e.g.

training and testing distributions are expected to be similar,

as in Human3.6M), one can further optimize over β, starting

from solutions of (5)

θ0 = argmin
θ

Φcos(y
3D,θ,β) (6)

β0 = argmin
β

Φ3d(y
3D,θ0,β) (7)

Results of the proposed transfer variants are shown in fig. 3.

3.1.2 Semantic 3d Pose and Shape Feedback

Figure 4: Importance of semantic feedback in capturing

the correct 3d pose and body shape. From left to right: input

image, semantic body labeling produced by DMHS, inferred

body shape and pose without the semantic term (ΦJ only)

and the semantically fitted model ΦS .

After transferring the pose from DMHS to SMPL we

obtain an initial set of parameters θ0 and β0 and one can
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refine the initial DMHS estimate. One way to fit the 3d pose

and shape model starting from an initialization [2, 32], is

to minimize the projection error between the model joints

and the corresponding detected image joint locations, y2d.

We denote by P(·) the image projection function, with fixed

camera intrinsincs. One possible loss is the Euclidean dis-

tance, computed over sparse joint sets weighted by their

detection confidence w (some may not be visible at all)

ΦJ =

m
∑

j=1

wj

∥

∥y2d(j)− P(x(j) + t)
∥

∥ (8)

The problem of minimizing θ and β for monocular er-

ror functions, defined over distances between sparse sets

of joints, is its ambiguity, as the system is clearly under-

determined, especially for depth related state space direc-

tions that couple along camera’s ray of sight [33]. We pro-

pose a new error function based on projecting the mesh v in

the image I and measuring the dense, pixel-wise semantic

error between the semantic segmentation transferred by the

model projection and a given DMHS semantic body part

segmentation prediction yS .

We are given NS semantic classes that describe body

parts with yS storing semantic confidence maps. We con-

struct a function fS(p = (x, y)⊤) = argmaxk y
S(p, k)

with 1 ≤ x ≤ W, 1 ≤ y ≤ H integers, that returns the body

part label 1 ≤ k ≤ NS of pixel location p in the image I.

Let vk be vertices pertaining to the body part indexed in k
and pk = P(vk(j) + t) their image projection.

We design a cost ΦS(Θ,B,T), where each point p from

the semantic body part segmentation maps finds its nearest-

neighbour in pk, and drags it in place. Appropriately using

pixel label confidences (x, y) for a given class k as yS is

important for robust estimates in a cost that writes

ΦS =

NS
∑

k=1

∑

p

fS(p)=k

yS(p, k) min
1≤j≤NS

∥

∥p− pk
j

∥

∥ (9)

In practice, our semantic cost is further weighted by a

normalization factor 1/Z, with Z =
∑ns

k=1[[fS(p) = k]] en-

suring φS remains stable to scale transformations impacting

the area of the semantic map (closer or further away, with

larger or smaller number of pixels, respectively). Another

desirable property of the semantic loss is that when confi-

dences are small, ΦS will have a lower weight in the total

loss, emphasizing other qualitatively different terms in the

cost. The total semantic loss can then be written

LS = ΦJ +ΦS (10)

3.2. Simultaneous Volume Occupancy Exclusion

To ensure that estimated models of people in a scene are

not inconsistent, by occupying the same 3d space volume

simultaneously, we need additional processing. We design

adaptive representations to first compute enclosing paral-

lelepipeds for each person according to its current model

estimates, rapidly test for intersections (far-range check),

and only integrate detailed, close range collision avoidance

into the loss when the far-range response is negative. For

close-range volume occupancy exclusion, we use special-

ized terms obtained as follows: for each person model, we

fit tapered superquadrics to each limb, and represent the

limb by a series of Nb fitted spheres inside the superquadric,

with centers c and radius r. For any two persons, p and

p′, we define the loss LC(p, p
′) based on distances between

all spheres belonging, respectively, to the first and second

person

ΦC(p, p
′) =

Nb
∑

i=1

Nb
∑

j=1

exp
[

− αd(c(p, i), c(p′, j))
]

(11)

d(c, c′) =
‖c− c′‖

2

r2 + r′2
. (12)

The loss for Np persons in a frame is defined as the sum

over all pair-wise close-range losses LC(p, p
′) among people

with negative far-range tests. People with positive far-range

tests do not contribute to the volume occupancy loss. Notice

how this cost potentially couples parameters from all people

and requires access to their estimates. See fig. 5 for visual

illustrations.

3.3. Ground Plane Estimation and Constraint

We include a prior that the scene has a ground-plane on

which, on average, the subjects stand and perform actions. To

build a correct hypothesis for the location and orientation of

the plane, we design a cost that models interactions between

the plane and all human subjects, but leaves room for outliers,

including people who, temporarily or permanently, are not

in contact with the ground. Specifically, we select the 3d

ankle positions of all persons in all the frames of a video, be

these xi, and fit a plane to their locations.

We assume that a point z is on a plane with a surface

normal n if the following equation is satisfied (z− p)⊤n =
0, where p is any fixed point on the plane. Given that some

of the ankles might be occluded, we use a confidence term to

describe the impact they have on the fitting process. We use

the confidence wi from the DMHS 2d joint detector, with a

two-folded purpose to 1) select the initial point p belonging

to the plane as the weighted median of all ankle locations

of the detected persons, and 2) weight measurements used

in the robust L1 norm estimate of the plane hypothesis. Our

plane estimation objective is

n∗ = argmin
n

∑

i

wi

∣

∣

∣

∣

(xi − p)⊤
n

‖n‖

∣

∣

∣

∣

1

+ α
∣

∣1− n⊤n
∣

∣

1

(13)
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(a) (b) (c) (d) (e)

Figure 5: Adaptive volume occupancy avoidance. (a) input image where people are far apart, (b) visual representation for

far-range collision check. (c) image where people are in contact. (d) inferred body shapes without and (e) with collision

constraint, which ensures correct contact without simultaneous volume occupancy.

The estimates (p,n∗) are then used in the ground-plane

constraint term LG to penalize configurations with 3d ankle

joints estimates away from the plane

Lp,f
G =

∣

∣(xl − p)⊤n∗
∣

∣

1
+
∣

∣(xr − p)⊤n∗
∣

∣

1
(14)

Where the subscripts l and r identify the left and the right

ankles for a person p at time f . The weighting of the terms

is performed adaptively based on confidences wl, wr of the

associated ankle joints. If these are not visible, or are visible

within some distance of the ground and not confident, con-

straints are applied. If the joints are visible and confident, or

far from the ground, constraints are not applied.

3.4. Assignment and Trajectory Optimization

Independently performing 3d human body pose and shape

optimization in a monocular video can lead to large transla-

tion variations along depth directions and movements that

lack natural smoothness. For this reason, we propose a tem-

poral constraint that ensures for each of the inferred models

that estimates in adjacent frames are smooth. To achieve it,

we first need to resolve the assignment problem over time

(identify or track the same individual throughout the video),

then perform temporal smoothing for each individual track.

To solve the person assignment problem, we use the Hun-

garian algorithm to optimally build tracks based on an inter-

frame inter-person cost combining the appearance consis-

tency (measured as distances between vectors containing the

median colors of the different body parts, computed over the

model vertices), the body shape similarity, and the distance

between the appropriately translated 3d joints inferred for

each person, at frame level.

Once the assignment has been resolved between every

pair of estimated person models in every successive set of

frames, and tracks are built, several motion priors can be

used, ranging from a constant velocity model, to more sophis-

ticated auto-regressive processes or deep recursive predictors

learned from training data [17, 8, 37]. The integration of

such motion representations in our framework is straight-

forward as long as they remain differentiable. Here we ex-

periment with constant velocity priors on pose angles, Θ as

well as translation variables, T. Our temporal loss function

component at Lf
T = Lp,f

T (Θ,T) frame f ≥ 2 for a person

(track) p is defined as

Lf
T =

∥

∥(θf+1 − θf )− (θf − θf−1)
∥

∥+
∥

∥(tf+1 − tf )− (tf − tf−1)
∥

∥ (15)

The shape parameters βp are set as the median of βf
p , ∀f .

Because smoothing axis-angle representations is difficult,

the angle-related costs in (15) are represented using quater-

nions, which are easier to smooth. Gradients are propagated

through the axis-angle to quaternion transformation during

the optimization.

4. Experiments

We numerically test our inference method on two datasets,

CMU Panoptic [12] and Human3.6M [11], as well as qual-

itatively on challenging natural scenes (see fig. 7). On

Human3.6M we test different components of the model

including semantic feedback, smoothing and the effect of

multiview constraints. Panoptic in turn provides the real

quantitative test-bed for the complete monocular system.

Given a video with multiple people, we first detect the

persons in each frame and obtain initial feedforward DMHS

estimates for their 2d body joints, semantic segmentation

and 3d pose. Similarly to [16], we extend DMHS to partially

visible people, by fine-tuning both the semantic and the 3d

pose estimation components of DMHS on a partial view

version of Human80K[10]. For each person we perform the

transfer proposed in (5) that aligns the limb directions of

3d estimates predicted by DMSH with the limb directions

of SMPL. The transfer gives an initialization for pose and

shape. The initial translation of each person is set to 3 meters

in front of the camera.

Human3.6M is a large-scale dataset that contains single per-

son images recorded in a laboratory setup using a motion

capture system. The dataset has been captured using 4 syn-

chronized RGB cameras and contains videos of 11 actors

performing different daily activities. We select 3 of the most

difficult actions: sitting, sitting down and walking dog to test
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Haggling Mafia Ultimatum Pizza Mean

Method Pose Translation Pose Translation Pose Translation Pose Translation Pose Translation

DMHS [23] 217.9 - 187.3 - 193.6 - 221.3 - 203.4 -

2d Loss 135.1 282.3 174.5 502.2 143.6 357.6 177.8 419.3 157.7 390.3
Semantic Loss 144.3 260.5 179.0 459.8 160.7 376.6 178.6 413.6 165.6 377.6
Smoothing 141.4 260.3 173.6 454.9 155.2 368.0 173.1 403.0 160.8 371.7
Smoothing Ground Plane 140.0 257.8 165.9 409.5 150.7 301.1 156.0 294.0 153.4 315.5

Table 1: Automatic 3d human pose and translation estimation errors (in mm) on the Panoptic dataset (9,600 frames, 21,404

people). Notice the value of each component and the impact of the ground-plane constraint on correct translation estimation.

Method WalkingDog Sitting Sitting Down

DMHS [23] 78 119 106
Semantic Loss 75 109 101
Multi View 51 71 65
Smoothing 48 68 64

Table 2: Mean per joint 3d position error (in mm) on the

Human3.6M dataset, evaluated on the test set of several

very challenging actions. Notice the importance of various

constraints in improving estimation error.

our single-person model. We use the official left-out test set

from the selected actions, consisting of 160K examples. On

this dataset we can only evaluate the pose inference under

MPJPE error, but without the translation relative to the cam-

era. We show results in table 2. We obtain an improvement

over DMHS by using the proposed semantic 3d pose and

shape feedback, cf. (10). On this dataset, we also experiment

with multi-view inference and show a consistent improve-

ment in 3d pose estimation. For multi-view inference, the

loss function proposed in (10) is easily extended as a sum

over measurements in all available cameras. Adding a tem-

poral smoothness constraint further reduces the error. We

also evaluated our method on all 15 actions from the official

test set (911,744 configurations) and obtain an average error

of 69 mm.2

CMU Panoptic Dataset. We selected data from 4 activities

(Haggling, Mafia, Ultimatum and Pizza) which contain mul-

tiple people interacting with each other. For each activity we

selected 2 sub-sequences, each lasting 20 seconds (i.e. 600

frames), from HD cameras indices 30 and 163. In total, we

obtain 9,600 frames that contain 21,404 people. We do not

validate/train any part of our method on this data.

Evaluation Procedure. We evaluate both the inferred pose,

centered in its hip joint, under mean per joint position error

(MPJPE), and the estimated translation for each person under

standard Euclidean distance. We perform the evaluation for

each frame in a sequence, and average the results across

persons and frames. We match each ground-truth person in

the scene with an estimation of our model. For every ground-

2Detailed results can be seen at http://vision.imar.ro/

human3.6m/ranking.php (Testset H36M_NOS10).
3For variability only, all testing is monocular.

truth pose, we select the closest inferred model under the

Euclidean distance, in camera space.

Ablation Studies. We systematically test the main compo-

nents of the proposed monocular inference system and show

the results detailed for each activity in table 1. Compared to

DMHS, our complete method reduces the MPJPE error sig-

nificantly, from 203.4 mm to 153.4 mm on average (-25%),

while also computing the translation of each person in the

scene. The translation error is, on average, 315.5 mm. The

semantic projection term helps disambiguate the 3d position

of persons and reduces the translation error compared to us-

ing only the 2d projection term. Temporally smoothing the

pose estimates decreases the translation error further. Impos-

ing the ground plane constraint makes the most significant

contribution in this setup, decreasing the total translation er-

ror from 371 mm to 315 mm (-15%). Even though the total

pose error also decreases when all constraints are imposed,

on some sequences (e.g. Haggling) the error did not decrease

when semantic terms are used. At a closer look, we noticed

that the semantic maps and 3d initialization from DMHS

were particularly noisy on those sequences of Haggling, cam-

era index 30. Qualitative results in monocular images from

the Panoptic dataset are shown in fig. 6. Our method pro-

duces perceptually plausible 3d reconstructions with good

image alignment in scenes with many people, some only par-

tially visible, and captured under non-conventional viewing

angles.

5. Conclusions

We have presented a monocular model for the integrated

2d and 3d pose and shape estimation of multiple people,

under multiple scene constraints. The model relies on feed-

forward predictors for initialization and semantic fitting for

feedback and precise refinement (shape adaption) to the ob-

served person layout. It estimates and further integrates

ground plane and volume occupancy constraints, as well as

temporal priors for consistent, plausible estimates, within a

single joint optimization problem over the combined repre-

sentation of multiple people, in space and time. Our experi-

mental evaluation, including ablation studies, is extensive,

covers both single-person and multiple-person datasets and

illustrates the importance of integrating multiple constraints.
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Figure 6: Automatic monocular 3d reconstruction of multiple people in Panoptic videos. Left to right: input image,

inferred model overlaid to assess fitting quality, two different views of the 3d reconstruction. Unusual viewing angles, pose

variability, partial views and occlusions, make monocular reconstruction challenging. Quantitative results are given in table 1.

Figure 7: Automatic 3d reconstruction of multiple people from monocular images of complex natural scenes. Left to

right: input image, inferred model overlaid, and two different views of 3d reconstructions obtained by our model (including

ground plane). Challenging poses, occlusions, different scales and close interactions are correctly resolved in the reconstruction.

Moreover, we qualitatively show that the method produces

3d reconstructions with tight image alignment and good per-

ceptual quality, in both monocular images and video filmed

in complex scenes, with multiple people, severe occlusion

and challenging backgrounds. To our knowledge, such a

large-scale fully automatic monocular system for multiple

person sensing under scene constraints has been presented

here for the first time.
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