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Abstract

The categories and appearance of salient objects vary

from image to image, therefore, saliency detection is an

image-specific task. Due to lack of large-scale saliency

training data, using deep neural networks (DNNs) with pre-

training is difficult to precisely capture the image-specific

saliency cues. To solve this issue, we formulate a zero-shot

learning problem to promote existing saliency detectors.

Concretely, a DNN is trained as an embedding function

to map pixels and the attributes of the salient/background

regions of an image into the same metric space, in which

an image-specific classifier is learned to classify the pix-

els. Since the image-specific task is performed by the clas-

sifier, the DNN embedding effectively plays the role of a

general feature extractor. Compared with transferring the

learning to a new recognition task using limited data, this

formulation makes the DNN learn more effectively from

small data. Extensive experiments on five data sets show

that our method significantly improves accuracy of exist-

ing methods and compares favorably against state-of-the-

art approaches.

1. Introduction

Detecting salient objects or regions of an image, i.e.

saliency detection, is useful for many computer vision

tasks. As a preprocessing step, saliency detection is appeal-

ing for many practical applications, such as content-ware

video compression [37], image resizing [2], and image re-

trieval [10]. A plethora of saliency models have been pro-

posed in the past two decades to locate conspicuous image

regions [4, 6, 5]. Although much effort has been devoted

and significant progress has been made, saliency detection

remains a challenging open problem.

Conventional saliency detection methods usually utilize

low-level features and heuristic priors which are not robust

enough to discover salient objects in complex scenes, nei-

ther are capable of capturing semantic objects. Deep neural
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Figure 1. Images and the corresponding feature maps from the last

convolution layer of VGG16 [25]. The small binary mask in each

image indicates the salient object of this image.

networks (DNNs) have been used to remedy the drawbacks

of conventional methods. They can learn high-level seman-

tic features from training samples, thus are more effective

in locating semantically salient regions, yielding more ac-

curate results in complex scenes.

DNNs usually need to be trained on a large dataset, while

training data for saliency detection is very limited. This is-

sue is generally solved by pre-training on a large dataset for

other tasks, such as image classification, which easily leads

to several problems. First, saliency detection is an image-

specific task, and labels should be assigned to pixels de-

pending on the image content. However, features produced

by pre-trained feature extractors are supposed to work for

all images. For example, signs and persons are salient ob-

jects in the first column of Figure 1 , while they belong to

the background in the second column. However, the regions

of signs and persons are indiscriminately highlighted in the

feature maps in the two columns. With this kind of feature

extractor, the prediction model might be enforced to learn

to map similar features into opposite labels, which is diffi-

cult for small training dataset. Second, categories and ap-

pearance of salient objects vary from image to image, while

small training data is not enough to capture the diversity.

For example, the six salient objects shown in Figure 1 come

from six different categories and differ wildly in their ap-

pearance. Consequently, it might be hard to learn a unified

detector to handle all varieties of salient objects.
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Considering the large diversity of salient objects, we

avoid training a deep neural network (DNN) that directly

maps images into labels. Instead, we train a DNN as an

embedding function to map pixels and the attributes of the

salient/background regions into a metric space. The at-

tributes of the salient/background regions are mapped as

anchors in the metric space. Then, a nearest neighbor

(NN) classifier is constructed in this space, which assigns

each pixel with the label of its nearest anchor. As a non-

parametric model, the NN classifier can adapt well to new

data and handle the diversity of salient objects. Addition-

ally, since the classification task is performed by the NN

classifier, the goal of the DNN is turned to learning a gen-

eral mapping from the attributes of the salient/background

regions to anchors in the embedding space. Compared with

directly learning to detect diverse salient objects, this would

be easier for the network to learn on limited data.

Concretely, we show the pipeline of our proposed

method in Figure 2. During training, the DNN is provided

with the true salient and background regions, of which the

label of a few randomly selected pixels are flipped, to pro-

duce anchors. The output of the NN classifier constitutes a

saliency map. The DNN can be trained end-to-end super-

vised by the loss between this saliency map and the ground

truth. When testing on an image, the saliency map of each

image is obtained as in training, but using approximate

salient/background regions detected by an existing method.

Although the approximate salient/background region is not

completely correct, it is often with similar attributes to the

true salient/background region. Thus, the corresponding

embedding vectors (i.e. anchors) would be close to the ones

of the true salient/background regions. Further, to produce

better results, we propose an iterative testing scheme. The

result of the NN classifier is utilized to revise anchors, yield-

ing increasingly more accurate results.

Our method can be viewed as a zero-shot learning prob-

lem, in which the approximate salient/background regions

detected by an existing method provide attributes for unseen

salient objects, and the model learns from the training data

to learn an image-specific classifier from the attributes to

classify pixels of this image. Extensive experiments on five

data sets show that our method can significantly improve ac-

curacy of existing methods and compares favorably against

state-of-the-art approaches.

2. Related works

Generally, saliency detection methods can be catego-

rized into two streams: top-down and bottom-up saliency.

Since our work addresses bottom-up saliency, here we

mainly review recent works on bottom-up saliency, mean-

while shortly mention top-down saliency. We also explore

the relation between our proposed method and top-down

saliency.

Bottom-up (BU) saliency is stimuli-driven, where

saliency is derived from contrast among visual stimuli.

Conventional bottom-up saliency detection methods often

utilize low-level features and heuristic priors. Jiang et

al. [12] formulate saliency detection via an absorbing

Markov chain on an image graph model, where saliency of

each region is defined as its absorbed time from boundary

nodes. Yang et al. [32] rank the similarity of the image re-

gions with foreground cues or background cues via graph-

based manifold ranking. Since the conventional methods

are not robust in complex scenes neither capable of cap-

turing semantic objects, deep neural networks (DNNs) are

introduced to overcome these drawbacks. Li et al. [16] train

CNNs with fully connected layers to predict saliency value

of each superpixel, and to enhance the spatial coherence

of their saliency results using a refinement method. Li et

al. [18] propose a FCN trained under the multi-task learn-

ing framework for saliency detection. Zhang et al. [34]

present a generic framework to aggregate multi-level con-

volutional features for saliency detection. Although the pro-

posed method is also based on DNNs, the main difference

between ours and these methods is that they learn a gen-

eral model that directly maps images to labels, while our

method learns a general embedding function as well as an

image-specific NN classifier.

Top-down (TD) saliency aims at finding salient regions

specified by a task, and is usually formulated as a super-

vised learning problem. Yang and Yang [33] propose a su-

pervised top-down saliency model that jointly learns a Con-

ditional Random Field (CRF) and a discriminative dictio-

nary. Gao et al. [9] introduced a top-down saliency algo-

rithm by selecting discriminant features from a pre-defined

filter bank.

Integration of TD and BU saliency has been exploited

by some methods. For instance, Borji [3] combines low-

level features and saliency maps of previous bottom-up

models with top-down cognitive visual features to predict

fixations. Tong et al. [26] proposed a top-down learning

approach where the algorithm is bootstrapped with training

samples generated using a bottom-up model to exploit the

strengths of both bottom-up contrast-based saliency mod-

els and top-down learning methods. Our method also can

be viewed as an integration of TD and BU saliency. Al-

though both our method and the method of Tong et al. [26]

formulate the problem as top-down saliency detection spec-

ified by initial saliency maps, there are certain difference

between the two. First, Tong’s method trains a strong model

via boostrap learning with training samples generated by a

weak model. In contrast, our method maps pixels and the

approximate salient/background regions into a learned met-

ric space, which is related to zero-shot learning. Second,

thanks to deep learning, our method is capable of captur-

ing semantically salient regions and does well on complex
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Figure 2. The pipeline of the proposed method. The input image (a) is first passed through our revised VGG network, resulting in an 512

channel feature map (b) of the same size as the input image. Each pixel is mapped to vectors e.g., (g) and (h) in the learned metric space

(j). Salient and background regions is also mapped to vectors i.e. anchors in the learned metric space. For instance, (e) and (f) are salient

and background anchors of this image respectively. During training, the salient and background pixels for producing anchors are selected

using a randomly flipped ground truth ((d) and (e) in the figure), see Sec.3.1. An nearest neighbor classifier is built that classifies each pixel

based on its distance to the anchors (see Eqn.3). Classification results of all pixels constitute a saliency map (i), of which loss between the

ground truth is used to supervise the network. During testing, the anchors are firstly produced according to an initial saliency map, here

(e) is the initial saliency map. Given anchors, the nearest neighbor classifier can produce a new saliency map (i), which is utilized to revise

the initial map as in Eqn.3. Then the revised map is used to produce new approximation to the anchors. Iterating the testing process would

result in an increasingly more accurate result.

scenes, while Tong’s method uses hand-crafted features and

heuristic priors, which are less robust, Third, our method

produces pixel-level results, while Tong’s method computes

saliency value of each image region to assemble a saliency

map, which tends to be coarser.

3. The Proposed Method

Our method consists of three components: 1) a DNN as

an embedding function i.e. the anchor network, that maps

pixels and regions of the input image into a learned metric

space, 2) a nearest neighbor (NN) classifier in the embed-

ding space learned specifically for this image to classify its

pixels, and 3) an iterative testing scheme that utilizes the

result of the NN classifier to revise anchors, yielding in-

creasingly more accurate results.

3.1. The anchor network

Let xmn denote a pixel of an image Xm. Each im-

age consists a salient and a background region, i.e. Xm =
Cm1 ∪Cm2. Each pixel of an image either belongs to salient

or background regions, denoted as n ∈ Cmk, k = 1, 2, re-

spectively. We use an embedding function modeled by a

DNN φ with parameter θ, to map each pixel to a vector in

a D-dimensional space:

φmn = φ(xmn;θ), (1)

where φmn is the embedding vector to the corresponding

pixel xmn.

The salient or background region Cmk is also mapped

into vectors in D-dimensional metric space by a DNN ψ

with parameter η:

µmk = ψ(Cmk;η), (2)

in which µmk is the mapping of the salient or background

region, i.e. anchors.

We assume that in the embedding space, all pixels of an

image cluster around the corresponding anchors of this im-

age. Then a nearest neighbor classifier can be built specif-

ically for this image by classifying each pixel according to

its nearest anchor. The probability of a pixel xmn of image

Xm belonging to Cmk can be given by the softmax over its

distance to the anchors:

p(Cmk|xmn) =
exp{−d(φmn,µmk)}∑
j exp{−d(φmn,µmj)}

, (3)

where φmn and µmk are the vectors of pixel xmn and the

salient / background anchor given by Eqn.1 and 2. d(·) de-

notes Euclidean distance.

The CNN embeddings can be trained using a gradient-

based optimization algorithm through maximizing the log

likelihood with respect to θ and η on the training set:

L =
∑

m,n

tmn log p(Cm1|xmn)+(1−tmn) log p(Cm2|xmn),

(4)

where tmn is the label of pixel xmn. tmn = 1 when

xmn ∈ C1, i.e. salient and tmn = 0 when xmn ∈ C2, i.e.

background.
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In practice, the ground-truth will not be available dur-

ing testing, and the anchors are produced according to a

prior saliency map, which is inaccurate. Therefore, to match

training and testing conditions, during training we randomly

flip the label of each pixel with probability p when pro-

ducing the anchors using Eqn.2. In addition, this random

flipping also increases diversity of training samples, thus

helping reduce overfitting. We explain the training process

of the anchor network in Alg.1. Here, Lm denotes the log

likelihood on the image Xm.

Algorithm 1: Training the anchor network.

Input : Training set {(Xm, tm)},
in which tmn = 1 indicates xmn ∈ Cm1,

and tmn = 0 otherwise.

Output: CNN embedding φ(·;θ) and ψ(·;η)
1 for training iterations do

2 Sample a pair of training image and ground truth

map (Xm, tm) from the training set.

3 Randomly flip the elements in tm with probability

p.

4 Compute the embedding vector φmn of each pixel

given by Eqn.1 and produce anchors µmk as in

Eqn.2.

5 Compute gradient of log likelihood Lm on this

image with respect to θ and η.

6 Update θ and η according to ∇θ,ηLm using a

gradient based optimization method.

7 end

3.2. Iterative testing scheme

In the testing phase, since the ground-truth is unknown,

it is not possible to obtain precise salient and background re-

gions to produce anchors as in the training time. Therefore,

we produce anchors using approximate salient/background

regions Ĉmk selected according to the saliency map Y
(0)
m of

an existing method. An iterative testing scheme is proposed

to gradually revise the anchors using the result of the NN

classifier.

In the t-th iteration (t > 0), the anchors are generated

according to salient/background region Ĉmk selected by the

prior saliency map Y
(t)
m . Given the anchors, we use the near-

est neighbor classifier as in Eqn.3 to compute the probabil-

ity of each pixel belonging to salient regions, i.e. saliency

value, constructing another saliency map Z
(t)
m . Then, the

prior saliency map is updated with

Y (t+1)
m =

t

t+ 1
Y (t)
m +

1

t+ 1
Z(t)
m , (5)

where Y
(t+1)
m is the prior saliency map which will be used

for selecting salient and background regions in the next it-

eration. This means that the prior map is updated to a

weighted sum of itself and the new result. After the first

iteration, the prior map is completely replaced by the new

result. The weight of the new result decreases with iterating,

which insures stability of the iteration process. The testing

algorithm of the proposed method is shown in Alg.2.

Figure 3 shows the process of the initial maps being

promoted by the proposed method. Although the initial

saliency map may not precisely separate the foreground and

background, it can often partially separate them, and thus

can provide information regarding categories and appear-

ance of salient objects in the image. For instance, in the

first image of Figure 3, though only a small part of the

foreground is highlighted, the initial map can tell us that

the foreground may be a gorilla, and the background con-

tains a piece of green. Then, its selected foreground / back-

ground regions should be similar to the true foreground /

background regions, leading to the corresponding anchors

close to the true ones in the learned metric space. Thereby

the nearest neighbor classification given by Eqn.3 can pro-

duce a good result. As the iterations progress, the approx-

imate anchors gradually approach to the true ones, which

would result in a better result. This, in turn could provide

an increasingly accurate approximation to the anchors, and

thus a more accurate result. As shown in Figure 3, the ini-

tial maps are not appealing, while the modified maps by our

method look much better.

Algorithm 2: Testing algorithm of the proposed method.

Input : The input image X , the initial saliency map

Y (0), the number of iterations T .

Output: The promoted saliency map Y (T ).

1 Compute the embedding vector φn of each pixel xn

of X . for t ∈ {1, ..., T} do

2 Select the approximate salient Ĉ1 and background

region Ĉ2 according to Y (t).

3 Produce the approximate anchor

µ̂k = ψ(Ĉk;η), k = 1, 2.

4 Compute saliency value of each pixel according to

Eqn.3 to constitute another saliency map Z
(t)
m .

5 Update the prior saliency map:

Y (t+1) ← t
t+1Y

(t) + 1
t+1Z

(t)

6 end

It is known that DNNs, which typically consist of many

parameters, have to be trained on large datasets to obtain

good performance. For tasks where training data is scarce,

such as saliency detection, revising a DNN that has been

pre-trained on image classification datasets is the most vi-

able option. Therefore, we also adopt a pre-trained DNN for

our purpose rather than training a DNN from scratch. We

modify the VGG16 [25] network, pre-trained on the Im-

1647



Image GT t = 0 t = 1

t = 2 t = 3 t = 4 t = 10

Figure 3. The process of the initial maps being promoted by the

proposed method.

ageNet [7] dataset, into the pixel embedding φ(·,θ) and

region embedding ψ(·,η). Since the DNN serves as an em-

bedding instead of a classifier in the proposed method, we

remove all the fully connected layers of VGG, and only re-

tain its feature extractor component (VGG feature extrac-

tor). The VGG feature extractor consists of 5 convolution

blocks, each of which contains several convolution and non-

linear layers, as well as a pooling layer. We show the net-

work architecture and the overall structure of the proposed

method in Figure 2, and describe the details in the next

two subsections. In the figures and the text of this section,

nonlinearity layers and batch-normalization layers are omit

to avoid clutter. The combination of a convolution/fully

connected layer, a batch-normalization layer and a ReLU

nonlinear Convolution layers are referred to as a convolu-

tion/fully connected layers in this section.

3.3. Pixel embedding

Although effective in extracting hierarchical features,

VGG feature extractor makes the feature maps smaller than

the input image. This is not desirable for our method, be-

cause in order to map each pixel of the input image to a

vector in the learned metric space, the embedding CNN

should produce feature maps of the same resolution as the

input image. We adopt two strategies to obtain larger feature

maps: 1) remove the pooling layers of the last two convo-

lution blocks and use dilated convolutions in these blocks

to maintain receptive filed of the convolution filters, and 2)

append a subpixel convolution layer after each convolution

block of the VGG feature extractor to upsample the feature

maps of each convolution blocks to the input image size.

Subpixel convolution is an upsampling strategy originally

proposed in [24] for image super-resolution. To produce a

C-channel tensor of N times the input size, the subpixel

convolution firstly performs convolution on the feature map

5C-channel
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Figure 4. Two different structures of the region embedding. The

Σ symbol denotes averaging over pixels of the region. Top and

bottom streams indicates Conv-based and FC-based region em-

bedding respectively.

to get a N2 × C-channel tensor of the input size. Then, the

elements of the N2 × C-channel tensor are rearranged into

a C-channel output tensor of N times the size of the input

tensor.

Five C-channel feature maps can be produced though

adding a subpixel convolution layer after each of the five

convolution blocks. Then the five C-channel feature maps

are cascaded into a 5C-channel feature map. Directly us-

ing the features of this 5C-channel feature map to represent

each pixel is not the best option since features of different

convolution blocks are in different ranges. To solve this, we

add two extra convolution layers after the subpixel convo-

lution layers, to convert the 5C-channel feature maps into a

D-channel feature map, in which each pixel corresponds to

a D-dimensional vector. In our implementation, we set C

to 64 and D to 512.

3.4. Region embedding

For simplicity, we let the pixel embedding φ(·,θ) and

the the region embeddingψ(·,η) share the common feature

extractor and subpixel convolution upsample layers. New

layers are append after the subpixel convolution layers to

map the 5C-channel feature map of an image region to a

D-dimensional vector.

As shown in Figure 4, we consider two different struc-

ture of the region embedding: Conv-based and FC-based re-

gion embedding. In the Conv-based region embedding, the

5C-channel feature map of an image region is passed into

convolution layers, resulting in a D-channel feature map.

Then the D-dimensional embedding vector is given by av-

eraging the D-channel feature map over pixels. The FC-

based region embedding uses fully connected layers to map

the average over pixels of the 5C-channel feature map into

a D-dimensional vector.

4. Experiments

4.1. Datasets

We apply our method to five benchmark datasets to eval-

uate its performance. Details of these datasets are as fol-
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lows.

ECSSD [31] contains 1000 natural images with multiple

objects of different sizes. Some of the images come from

the challenging Berkeley-300 dataset.

PASCAL-S [19] stems from the validation set of PAS-

CAL VOC2010 [8] segmentation challenge and contains

850 natural images.

HKU-IS [16] has 4447 images with high-quality pixel-

wise annotations. Images in this dataset are chosen to in-

clude multiple disconnected objects or objects touching the

image boundary.

SOD [31] has 300 images, and was originally designed

for image segmentation. Pixel-wise annotations of salient

objects were generated by [13]. This dataset is challenging

since many images contain multiple objects either with low

contrast or touching the image boundary.

DUTS [27] is a large scale dataset containing 10533

training images and 5019 test images. All the training

images are collected from the ImageNet DET training/val

sets [7], while test images are collected from the ImageNet

DET test set and the SUN dataset [30]. Accurate pixel-level

ground truths are provided.

4.2. Evaluation metrics

We employ Precision-Recall curve, F-measure curve, F-

measure score and MAE score to quantitatively evaluate

the performance of the proposed method and compare with

other methods.

The precision of a binary map is defined as the ratio of

the number of salient pixels it correctly labels, to all salient

pixels in this binary map. The recall value is the ratio of

the number of correctly labeled salient pixels to all salient

pixels in the ground-truth map:

precision =
|TS ∩DS|

|DS|
, recall =

|TS ∩DS|

|TS|
, (6)

in which TS denotes true salient pixels, DS denotes de-

tected salient pixels by the binary map, and | · | denotes

cardinality of a set.

The F-measure, denoted as Fβ , is an overall performance

indicator computed by the weighted harmonic of precision

and recall:

Fβ =
(1 + β2) · precision · recall

β2 · precision + recall
, (7)

where β2 is set to 0.3 as suggested in [1] to emphasize the

precision.

Given a saliency map whose intensities are in the range

of 0 and 1, a series of binary maps can be produced by

thresholding the saliency map with different values in [0,

1]. Precision and recall values of these binary maps can be

computed according to Eqn. 6. F-measure can be computed

according to Eqn. 7. Plotting the (precision, recall) pairs

of all the binary maps results in the precision-recall curve,

and plotting the (F-measure, threshold) pairs results in the

F-measure curve.

Also as suggested in [1], we use twice the mean value

of the saliency maps as the threshold to generate binary

maps for computing the F-measure. Notice that some works

have reported slightly different F-measures using different

thresholds. But as far as we know, twice the mean value is

the most commonly used threshold.

As complementary to PR curves, mean absolute error

(MAE) is used to quantitatively measure the average dif-

ference between the saliency map S and the ground truth

map G:

MAE =
1

H

H∑

i=1

|Si −Gi|.

MAE indicates how similar a saliency map is compared to

the ground truth. It is widely used in different pixel-level

prediction tasks such as semantic segmentation and image

cropping [22].

4.3. Implementation details

Our method is implemented in Python with the PyTorch1

toolbox. We train and test our model on a PC with a 3.6GHz

CPU, 32GB RAM and a GTX 1080 GPU.

We train our model on the training set of DUTS dataset.

As in [20], we augment the training data by horizontal flip-

ping and cropping the images to reduce overfitting. The

probability p of randomly flipping ground truth when pro-

ducing anchors during training is set to 0.05. We compare

two type of region embedding in Sec.4.4, and adopt the

Conv-based one in other experiments. Adam [14] optimiza-

tion method is used for training our model. Learning rate

is set to 1e-3. We do not use a validation set, and train our

model until its training loss converges. The training pro-

cess takes almost 16 hours and converges after around 300k

iterations with mini-batch of size 1.

When comparing performance with other methods, the

number of iterations T in the iterative testing scheme

(Alg. 2) is set to 1. We discuss the effect of larger T val-

ues in Sec.4.4. When testing, the proposed method runs at

about 15 fps with 256 256 resolution on our computer with

a 3.6GHz CPU and a GTX 1080 GPU. We release our code

for future comparisons23.

4.4. Ablation studies

Quantitative comparison between the two types of re-

gion embedding is shown in Table 1. From this comparison

1https://github.com/pytorch
2http://ice.dlut.edu.cn/lu/
3https://github.com/zengxianyu/lps
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Baseline UCF RFCN ELD

Methods Fβ MAE Fβ MAE Fβ MAE

BS 0.8394 0.0776 0.8337 0.1069 0.8098 0.0789

FC 0.8902 0.0575 0.8941 0.0628 0.8820 0.0592

Conv 0.8805 0.0560 0.8885 0.0570 0.8689 0.0577

Table 1. Comparison in terms of F-measure (the larger the better)

and MAE (the smaller the better) between two types of region em-

bedding evaluated on ECSSD dataset. The best and the second

best methods are in red and green respectively. BS: baseline; FC:

baseline promoted by the proposed method with FC-based region

embedding; Conv: baseline promoted by the proposed method

with Conv-based region embedding.

Figure 5. Quantitative effect evaluated on ECSSD dataset in terms

of F-measure and MAE of the proposed iterative testing scheme.

Different lines represents the effect of applying the proposed

method on different algorithms.

we can see that the performance of FC-based and Conv-

based region embedding is comparable. The FC-based re-

gion embedding yields relatively larger F-measure, while

Conv-based region embedding is more superior in terms of

MAE.

We show the effect of the proposed iterative approxima-

tion scheme in Figure 5. As shown in Figure 5, the first

iteration improve the F-measure and decrease MAE most

significantly. The improvement slows down with iterations,

and saturates gradually.

4.5. Performance

We choose 13 state-of-the-art methods as baselines,

including 8 deep learning based methods (Amulet [34],

SRM [29], UCF [35], DHS [20], NLDF [21], ELD [15],

RFCN [28], DSS [11]), and 5 conventional contenders

(BSCA [23], DRFI [13], wCO [36], DSR [17], BL [26]).

We apply our method to promote the performance of each

baseline method, by using its predicted saliency maps to

generate initial anchors in Eqn.3. Figure 6 shows the PR

curves of the baseline methods and the one promoted by our

method. Table 2 shows the F-measure and MAE scores of

8 deep learning based methods and the corresponding pro-

moted results. The quantified improvements in F-measure

and MAE of applying our method to conventional methods

are shown in Table 3. As shown in Figure 6, Table 2, and

Table 3, our method drastically promotes all the baseline

methods.

Based on our results, we make several fundamental ob-

ECSSD

HKU-IS

PASCAL-S

DUTS-Test

SOD

Figure 6. PR curves and F-measure curves of our method and the

the state-of-the-art methods.

servations:

1. Our proposed method decreases the MAE of SRM, the

best-performing method to date, by 15.3% on HKU-IS

dataset and 14.2% on ECSSD dataset.

2. Although our method is based on deep learning, it also

performs well when applied to conventional methods.

For instance, our method decreases the MAE of DRFI

by around 50% on both ECSSD and HKU-IS datasets.

Our method does not rely on any specific choice of

the initial map, and generalizes well across different

baseline methods.

1650



ECSSD HKU-IS PASCALS DUTS-Test SOD

Methods Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

Amulet
BS 0.8691 0.0590 0.8388 0.0521 0.7677 0.0982 0.6755 0.0851 0.7546 0.1407

Ours 0.8963 0.0509 0.8772 0.0446 0.7985 0.0920 0.7281 0.0828 0.7769 0.1336

SRM
BS 0.8921 0.0542 0.8739 0.0458 0.8007 0.0850 0.7570 0.0587 0.8004 0.1265

Ours 0.9151 0.0465 0.9042 0.0388 0.8240 0.0810 0.8023 0.0558 0.8036 0.1170

UCF
BS 0.8394 0.0776 0.8076 0.0740 0.7056 0.1262 0.6288 0.1173 0.6989 0.1640

Ours 0.8805 0.0560 0.8530 0.0546 0.7703 0.1044 0.6911 0.1051 0.7520 0.1470

DHS
BS 0.8716 0.0588 0.8550 0.0525 0.7787 0.0937 0.7242 0.0670 0.7736 0.1278

Ours 0.9058 0.0482 0.8923 0.0421 0.8155 0.0859 0.7822 0.0610 0.7925 0.1216

NLDF
BS 0.8781 0.0626 0.8735 0.0477 0.7787 0.0990 0.7426 0.0650 0.7906 0.1242

Ours 0.9046 0.0523 0.8986 0.0413 0.8121 0.0905 0.7867 0.0612 0.8058 0.1206

ELD
BS 0.8098 0.0789 0.7694 0.0736 0.7179 0.1227 0.6277 0.0923 0.7115 0.1545

Ours 0.8689 0.0577 0.8443 0.0511 0.7694 0.1022 0.7043 0.0805 0.7606 0.1384

RFCN
BS 0.8337 0.1069 0.8349 0.0889 0.7511 0.1323 0.7135 0.0901 0.7425 0.1696

Ours 0.8885 0.0570 0.8831 0.0437 0.7968 0.0946 0.7688 0.0666 0.7856 0.1323

DSS
BS 0.8728 0.0617 0.8557 0.0501 0.7733 0.1031 0.7202 0.0648 0.7867 0.1262

Ours 0.9075 0.0492 0.8995 0.0394 0.8117 0.0906 0.7867 0.0588 0.8061 0.1187

Table 2. Comparison in terms of F-measure (the larger the better) and MAE (the smaller the better) score of our method against other deep

learning based methods. The best and the second best methods are in red and green respectively. BS: the baseline; Ours: the promoted

result of applying our method on the baseline.

ECSSD HKU-IS PASCALS DUTS-Test SOD

Methods Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

BSCA
BS 0.7046 0.1821 0.6544 0.1747 0.6005 0.2228 0.4995 0.1961 0.5835 0.2516

Ours 0.7823 0.1043 0.7386 0.1075 0.6690 0.1654 0.5533 0.1711 0.6634 0.2001

DRFI
BS 0.7329 0.1642 0.7218 0.1444 0.6181 0.2065 0.5406 0.1746 0.6343 0.2240

Ours 0.8136 0.0872 0.8061 0.0722 0.6943 0.1443 0.5895 0.1457 0.7069 0.1686

wCO
BS 0.6763 0.1711 0.6769 0.1423 0.5998 0.2018 0.5058 0.1531 0.5987 0.2293

Ours 0.7792 0.1084 0.7765 0.0883 0.6844 0.1551 0.5932 0.1365 0.6732 0.1878

DSR
BS 0.6617 0.1783 0.6773 0.1421 0.5574 0.2148 0.5182 0.1454 0.5962 0.2344

Ours 0.7993 0.1018 0.7992 0.0798 0.6806 0.1570 0.6353 0.1201 0.6916 0.1834

BL
BS 0.6838 0.2159 0.6597 0.2070 0.5742 0.2487 0.4896 0.2379 0.5797 0.2669

Ours 0.7445 0.1255 0.7066 0.1255 0.6397 0.1788 0.5074 0.2007 0.6354 0.2053

Table 3. Comparison in terms of F-measure (the larger the better) and MAE (the smaller the better) score of our method against the

conventional methods. The best and the second best methods are in red and green respectively. BS: the baseline; Ours: the promoted result

of applying our method on the baseline.

3. Notice that the results shown here are obtained by iter-

ating Alg. 2 only once for fast testing speed. As shown

in Sec.4.4, better results can be achieved through iter-

ating Alg. 2 more times.

Figure 7 shows a visual comparison of saliency maps pro-

duced by some state-of-the-art methods and the promoted

ones by our method. It can be seen that the saliency maps

produced by our methods highlight salient regions that are

missed by the baselines. Further, our method can suppress

the background regions that are wrongly labeled as salient

by the baseline methods.

5. Conclusion

In this paper, we propose a novel learning method to

promote existing salient object detection methods. Ex-

tensive experiments on five benchmark datasets show that

our method can significantly improve accuracy of existing

methods and compares favorably against state-of-the-arts.

11/12/2017 main.html

file:///home/zeng/data/datasets/saliency_Dataset/ECSSD/main.html 1/1

0090

0130

0303

0506

0783

name input GT SRM +SRM NLDF +NLDF ELD +ELD DRFI +DRFI BSCA +BSCA
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Figure 7. Visual comparison of the algorithms promoted by our

method against the baseline algorithms. Input: input images; GT:

ground truth maps; A plus sign denotes the algorithm promoted by

our method.
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