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Abstract

In this work, we propose Adversarial Complementary

Learning (ACoL) to automatically localize integral objects

of semantic interest with weak supervision. We first math-

ematically prove that class localization maps can be ob-

tained by directly selecting the class-specific feature maps

of the last convolutional layer, which paves a simple way

to identify object regions. We then present a simple net-

work architecture including two parallel-classifiers for ob-

ject localization. Specifically, we leverage one classifica-

tion branch to dynamically localize some discriminative ob-

ject regions during the forward pass. Although it is usually

responsive to sparse parts of the target objects, this clas-

sifier can drive the counterpart classifier to discover new

and complementary object regions by erasing its discovered

regions from the feature maps. With such an adversarial

learning, the two parallel-classifiers are forced to leverage

complementary object regions for classification and can fi-

nally generate integral object localization together. The

merits of ACoL are mainly two-fold: 1) it can be trained

in an end-to-end manner; 2) dynamically erasing enables

the counterpart classifier to discover complementary object

regions more effectively. We demonstrate the superiority of

our ACoL approach in a variety of experiments. In particu-

lar, the Top-1 localization error rate on the ILSVRC dataset

is 45.14%, which is the new state-of-the-art.

1. Introduction

Weakly Supervised Object Localization (WSOL) refers

to learning object locations in a given image using the

image-level labels. Currently, WSOL has drawn increas-

ing attention since it does not require expensive bounding

box annotations for training and thus can save much labour

compared to fully-supervised counterparts [32, 13, 12].
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Figure 1: An illustration of the proposed ACoL method.

We prove object localization maps can be conveniently ob-

tained during feed-forward pass. Based on this, we design

the parallel adversarial classifier architecture, where com-

plementary regions (the head and hind legs vs. forelegs) are

discovered by two classifiers (A and B) via adversarial eras-

ing feature maps. GAP refers to global average pooling.

It is a very challenging task to learn deep models for lo-

cating objects of interest using only image-level supervi-

sion. Some pioneer works [48, 45] have been proposed to

generate class-specific localization maps according to pre-

trained convolutional classification networks. For exam-

ple, Zhou et al. [48] modified classification networks (e.g.,

AlexNet [21] and VGG-16 [34]) via replacing a few high-

level layers by a global average pooling layer [23] and a

fully connected layer, which can aggregate the features of

the last convolutional layer to generate discriminative class

activation maps (CAM) for the localization purpose. How-

ever, we observe that some critical issues exist in such so-

lutions, mainly including: 1) over-relying on category-wise

discriminative features for image classification; 2) failing to

localize integral regions of the target objects densely within

an image. The two issues are mainly due to the classifica-

tion networks are inclined to identify patterns from the most

discriminative parts for recognition, which inevitably leads

to the second issue. For instance, given an image containing

a cat, the network can recognize it by identifying the head

regardless of the remaining parts such as body and legs.

To tackle such issues, Wei et al. [39] proposed an ad-
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versarial erasing (AE) approach to discover integral object

regions by training additional classification networks on

images whose discriminative object regions have partially

been erased. Nevertheless, one main disadvantage of AE

is that it needs to train several independent classification

networks for obtaining integral object regions, which costs

more training time and computing resources. Recently,

Singh et al. [35] enhanced CAM by randomly hiding the

patches of input images so as to force the network to look

for other discriminative parts. However, randomly hiding

patches without any high-level guidance is inefficient and

cannot guarantee that networks always discover new object

regions.

In this paper, we propose a novel Adversarial

Complementary Learning (ACoL) approach for discovering

entire objects of interest via end-to-end weakly supervised

training. The key idea of ACoL is to find the complemen-

tary object regions by two adversary classifiers motivated

by AE [39]. In particular, one classifier is firstly leveraged

to identify the most discriminative regions and guide the

erasing operation on the intermediate feature maps. Then,

we feed the erased features into its counterpart classifier for

discovering new and complementary object-related regions.

Such a strategy drives the two classifiers to mine comple-

mentary object regions and finally obtain integral object lo-

calization as desired. To easily conduct end-to-end training

for ACoL, we mathematically prove that object localization

maps can be obtained by directly selecting from the class-

specific feature maps of the last convolutional layer, rather

than using a post-inference manner in [48]. Thus discrim-

inative object regions can be identified in a convenient way

during the training forward pass according to the online in-

ferred object localization maps.

Our approach offers multiple appealing advantages over

AE [39]. First, AE trains three networks independently for

adversarial erasing. ACoL trains two adversarial branches

jointly by integrating them into a single network. The

proposed joint training framework is more capable of in-

tegrating the complementary information among the two

branches. Second, AE adopts a recursive method to gen-

erate localization maps, and it has to forward the networks

for multiple times. Instead, our method generates localiza-

tion map by forwarding the network only once. This advan-

tage greatly improves the efficiency and have our method

much easier for implementation. Third, AE directly adopts

CAM [48] to generate localization maps. Thus AE gener-

ates localization maps in two steps. Differently, our method

generates localization maps in one step, by selecting the fea-

ture map which best matches the groundtruth as the local-

ization map. We have also provided detailed proof with the-

oretical rigor that our method is simpler and more efficient,

but yields identical results to CAM [48] (see Section 3.1).

The process of ACoL is illustrated in Figure 1, where an

image is processed to estimate the regions of a horse. We

can observe that Classifier A leverages some discriminative

regions (the horse’s head and hind legs) for recognition. By

erasing such discriminative regions in feature maps, Classi-

fier B is guided to use features of new and complementary

object regions (the horse’s forelegs) for classification. Fi-

nally, the integral target regions are obtained by fusing the

object localization maps from both branches. To validate

the effectiveness of the proposed ACoL, we conduct a se-

ries of object localization experiments using the bounding

boxes inferred from the generated localization maps.

To sum up, our main contributions are three-fold:

• We provide theoretical support of producing class-

specific feature maps during the forward pass, so that

object regions can be simply identified in a convenient

way, which can benefit future relevant researches.

• We propose a novel ACoL approach to efficiently mine

different discriminative regions by two adversary clas-

sifiers in a weakly supervised manner, which discover

integral target regions of objects for localization.

• This work achieves the current state-of-the-art with the

error rate of Top-1 45.14% and Top-5 30.03% on the

ILSVRC 2016 dataset in weakly supervised setting.

2. Related Work

Fully supervised detection has been intensively studied

and achieved extraordinary successes. One of the earliest

deep networks to detect objects in a one-stage manner is

OverFeat [32], which employs a multiscale and sliding win-

dow approach to predict object boundaries. These bound-

aries are then applied for accumulating bounding boxes.

SSD [25] and YOLO [28] use a similar one-stage method,

and they are specifically designed for speeding up the detec-

tion. Faster-RCNN [29] utilize a novel two-stage approach

and has achieved great success in the object detection. It

generates region proposals using sliding windows and pre-

dicts highly reliable object locations in a unified network in

real time. Lin et al. [24] presented that the performance of

Faster-RCNN can be significantly improved by constructing

feature pyramids with marginal extra cost.

Weakly supervised detection and localization aims to

apply an alternative cheaper way by only using image-level

supervision [2, 35, 1, 38, 30, 19, 10, 9, 18, 22, 26]. Oquab

et al. [26] and Wei et al. [42] adopted a similar strategy to

learn multi-label classification networks with max-pooling

MIL. The networks are then applied to coarse object local-

ization [26]. Bency et al. [2] applied a beam search method

to leverage local spatial patterns, which progressively local-

izes bounding box candidates. Singh et al. [35] proposed

a method to augment the input images by randomly hid-

ing patches so as to look for more object regions. Simi-

larly, Bazzani et al. [1] analysed the scores of a classifica-

tion network by randomly masking regions of input images
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and proposed a clustering technique to generate self-taught

localization hypotheses. Deselaers et al. [7] used extra im-

ages with available location annotations to learn object fea-

tures and then applied a conditional random field to gener-

ally adapt the generic knowledge to specific detection tasks.

Weakly supervised segmentation applies similar tech-

niques to predict pixel-level labels [40, 41, 39, 16, 20, 27,

43]. Wei et al. [40] utilized extra images with simple scenes

and proposed a simple to complex approach to progres-

sively learn better pixel annotations. Kolesnikov et al. [20]

proposed SEC that integrates three loss functions i.e., seed-

ing, expansion and boundary constrain, into a unified frame-

work to learn a segmentation network. Wei et al. [39] pro-

posed a similar idea as ours to find more discriminative re-

gions, they trained extra independent networks for generat-

ing class-specific activation maps with the assistance of the

pre-trained networks in a post-processing step.

3. Adversarial Complementary Learning

In this section, we describe details of the proposed Ad-

versarial Complementary Learning (ACoL) approach for

WSOL. We first revisit CAM [48] and introduce a more

convenient way for producing localization maps. Then, the

details of the proposed ACoL, founded on the above find-

ing, are presented for mining high-quality object localiza-

tion maps, and locating integral object regions.

3.1. Revisiting CAM

Object localization maps have been widely used in many

tasks [26, 40, 1, 45], offering a promising way to visualize

where deep neural networks focus on for recognition. Zhou

et al. [48] proposed a two-step approach which can produce

object localization maps by multiplying the weights from

the last fully connected layer to feature maps in a classifica-

tion network.

Suppose we are given a Fully Convolutional Network

(FCN) with last convolutional feature maps denoted as S ∈
R

H×H×K , where H × H is the spatial size and K is the

number of channels. In [48], the feature maps are fed into

a Global Average Pooling (GAP) [23] layer followed by a

fully connected layer. A softmax layer is applied on the top

for classification. We denote the average value of the kth

feature map as sk =
∑

i,j
(Sk)i,j

H×H
, k = 0, 1, ...,K − 1, where

(Sk)i,j is the element of the kth feature map Sk at the ith
row and the jth column. The weight matrix of the fully con-

nected layer is denoted as W fc ∈ RK×C , where C is the

number of target classes. Here, we ignore the bias term for

convenience. Therefore, for the target class c, the input of

the cth softmax node yfcc can be defined as

y
fc
c =

K−1∑

k=0

skW
fc
k,c, (1)
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Figure 2: Comparison of methods for generating localiza-

tion maps. Our method can produce the same-quality maps

as CAM [48] but in a more convenient way.

where W
fc
k,c ∈ R denotes the element of the matrix W fc

at the kth row and the cth column. The row W
fc
k,c, k =

0, 1, ...,K − 1 contributes to calculating the value yfcc .

Therefore, the object localization map Afc
c of class c pro-

posed in [48] can be obtained by aggregating the feature

map S as follows,

A
fc
c =

K−1∑

k=0

Sk ·W fc
k,c. (2)

CAM provides a useful way to inspect and locate the tar-

get object regions, but it needs an extra step to generate ob-

ject localization maps after the forward pass. In this work,

we reveal that object localization maps can be conveniently

obtained by directly selecting from the feature maps of the

last convolutional layer. Recently, some methods [17, 4]

have already obtained localization maps like this, but we

are the first to prove this convenient approach can generate

same-quality localization maps with CAM, which is mean-

ingful and contributes to embedding localization maps into

complex networks. In the following, we provide both theo-

retical proof and visualized comparison to support our dis-

covery. Given the output feature maps S of an FCN, we

add a convolutional layer of C channels with the kernel size

of 1 × 1, stride 1 on top of the feature maps S. Then, the

output is fed into a GAP layer followed by a softmax layer

for classification. Suppose the weight matrix of the 1 × 1
convolutional layer is W conv ∈ RK×C . We define the lo-

calization maps Aconv
c , c = 0, 1, ..., C − 1 as the output

feature maps of the 1×1 convolutional layer and Aconv
c can

be calulated by

Aconv
c =

K−1∑

k=0

Sk ·W conv
k,c , (3)

where W conv
k,c ∈ R denotes the element of the matrix W conv

at the kth row and the cth column. Therefore, the cth in-
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Figure 3: Overview of the proposed ACoL approach. The input images are processed by Backbone to extract mid-level

feature maps, which are then fed into two parallel-classifiers for discovering complementary object regions. Each classifier

consists of several convolutional layers followed by a global average pooling (GAP) layer and a softmax layer. Different

from Classifier A, the input feature maps of Classifier B are erased with the guidance of the object localization maps from

Classifier A. Finally, the object maps from the two classifiers are fused for localization.

put value yconvc of the softmax layer is the average value of

Aconv
c . So, yconvc can be calculated by

yconvc =

∑
i,j(A

conv
c )i,j

H ×H
. (4)

It is observed that the yfcc and yconvc are equal if we

initialize the parameters of the both networks in the same

way. Also, Afc
c and Aconv

c have the same mathematical

form. Therefore, we get the same-quality object localiza-

tion maps Afc
c and Aconv

c after the networks are convergent.

In practice, the object localization maps from both methods

are very similar and highlight the same target regions ex-

pect for some marginal differences caused by the stochastic

optimization process. Figure 2 compares the object local-

ization maps generated by CAM and our revised approach.

We observe that the both approaches can generate the same

quality maps and highlight the same regions in a given im-

age. However, with our revised method, the object local-

ization maps can be directly obtained in the forward pass

rather than a post-processing step proposed in CAM.

3.2. The proposed ACoL

The mathematical proof in Section 3.1 provides theoret-

ical support of the proposed ACoL. We identify that deep

classification networks usually leverage the unique pattern

of a specific category for recognition and the generated ob-

ject localization maps can only highlight a small region

of the target object instead of the entire object. Our pro-

posed ACoL aims at discovering the integral object regions

through an adversarial learning manner. In particular, it in-

cludes two classifiers, which can mine different but comple-

mentary regions of the target object in a given image.

Figure 3 shows the architecture of the proposed ACoL,

including three components, Backbone, Classifier A and

Classifier B. Backbone is a fully convolutional network act-

ing as a feature extractor, which takes the original RGB im-

ages as input and produces high-level position-aware fea-

ture maps of multiply channels. The feature maps from

Backbone are then fed into the following parallel classi-

fication branches. The object localization maps for each

classifier can be conveniently obtained as described in Sec-

tion 3.1. Both branches consist of the same number of

convolutional layers followed by a GAP layer and a soft-

max layer for classification. The input feature maps of the

two classifiers are different. In particular, the input features

of Classifier B are erased with the guidance of the mined

discriminative regions produced by Classifier A. We iden-

tify the discriminative regions by conducting a threshold on

the localization maps of Classifier A. The corresponding re-

gions within the input feature maps for Classifier B are then

erased in an adversarial manner via replacing the values by

zeros. Such an operation encourage Classifier B to leverage

features from other regions of the target object for support-

ing image-level labels. Finally, the integral localization map

of the target object will be obtained by combining the local-

ization maps produced by the two branches.

Formally, we denote the training image set as I =
{(Ii, yi)}

N−1
i=0 , where yi is the label of the image Ii and

N is the number of images. The input image Ii is firstly

transformed by Backbone f(θ0) to the spatial feature maps

S ∈ RH1×H1×K with K channels and H1×H1 resolution.

We use θ to denote the learnable parameters of the CNN.

Classifier A is denoted as f(θA) which can generate object
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map MA ∈ RH2×H2 of the size H2 × H2 given the input

feature maps S in a weakly supervised manner, as explained

in Section 3.1. MA usually highlights the unique discrimi-

native regions for the target class.

We identify the most discriminative region as the set of

pixels whose value is larger than the given threshold δ in

object localization maps. MA is resized by linear interpo-

lation to H1 ×H1 if H1 �= H2. We erase the discriminative

regions in S according to the mined discriminative regions.

Let S̃ denote the erased feature maps, which can be gener-

ated via replacing the pixel values of the identified discrim-

inative regions by zeros. Classifier B f(θB) can generate

the object localization maps MB ∈ RH2×H2 with the input

S̃. Then, the parameters θ of the network can be updated by

back-propagation. Finally, we can obtain the integral object

map for the class c by merging the two maps MA and MB .

Concretely, we normalize both maps to the range [0, 1] and

denote them as M̄A and M̄B . The fused object localization

map M̄fuse is calculated by M̄
fuse
i,j = max(M̄A

i,j , M̄
B
i,j),

where M̄i,j is the element of the normalized map M̄ at the

ith row and jth column. The whole process is trained in

an end-to-end way. Both classifiers adopt the cross entropy

loss function for training. Algorithm 1 illustrates the train-

ing procedure of the proposed ACoL approach.

Algorithm 1 Training algorithm for ACoL

Input: Training data I = {(Ii, yi)}
N
i=1, threshold δ

1: while training is not convergent do

2: Update feature maps S ← f(θ0, Ii)
3: Extract localization map MA ← f(θA, S, yi)
4: Discover the discriminative region R = M̄A > δ

5: Obtain erased feature maps S̃ ← erase(S,R)
6: Extract localization map MB ← f(θA, S, yi)
7: Obtain fused map M̄

fuse
i,j = max(M̄A

i,j , M̄
A
i,j)

8: Update θ0, θA and θB
9: end while

Output: M̄fuse

During testing, we extract the fused object maps accord-

ing to the predicted class and resize them to the same size

with the original images by linear interpolation. For fair

comparison, we apply the same strategy detailed in [48]

to produce object bounding boxes based on the generated

object localization maps. In particular, we firstly segment

the foreground and background by a fixed threshold. Then,

we seek the tight bounding boxes covering the largest con-

nected area in the foreground pixels. For more details please

refer to [48].

4. Experiments

4.1. Experiment setup

Datasets and evaluation metrics We evaluate the classi-

fication and localization accuracy of ACoL on two datasets,

Methods top-1 err. top-5 err.

GoogLeNet-GAP [48] 35.0 13.2

GoogLeNet 30.6 10.5

GoogLeNet-ACoL(Ours) 29.0 11.8

VGGnet-GAP [48] 33.4 12.2

VGGnet 31.2 11.4

VGGnet-ACoL(Ours) 32.5 12.0

Table 1: Classification error on ILSVRC validation set.

i.e., ILSVRC 2016 [6, 31] and CUB-200-2011 [37].

ILSVRC 2016 contains 1.2 million images of 1,000 cate-

gories for training. We compare our approach with other

approaches on the validation set which has 50,000 images.

CUB-200-2011 [37] has 11,788 images of 200 categories

with 5,994 images for training and 5,794 for testing. We

leverage the localization metric suggested by [31] for com-

parison. The metric calculates the percentage of the images

whose bounding boxes have over 50% IoU with the ground-

truth. In addition, we also implement our approach on

Caltech-256 [14] to visualize the outstanding performance

in locating the integral target object.

Implementation details We evaluate the proposed

ACoL using VGGnet [34] and GoogLeNet [36]. Particu-

larly, we remove the layers after conv5-3 (from pool5 to

prob) of VGG-16 network and the last inception block of

GoogLeNet. Then, we add two convolutional layers of ker-

nel size 3 × 3, stride 1, pad 1 with 1024 units and a con-

volutional layer of size 1× 1, stride 1 with 1000 units (200

and 256 units for CUB-200-2011 and Caltech-256 datasets,

respectively). As the proof in Section 3.1, localization maps

can be conveniently obtained from the feature maps of the

1 × 1 convolutional layer. Finally, a GAP layer and a soft-

max layer are added on the top of the convolutional layers.

Both networks are fine-tuned on the pre-trained weights of

ILSVRC [31]. The input images are randomly cropped to

224 × 224 pixels after being resized to 256 × 256 pixels.

We test different erasing thresholds δ from 0.5 to 0.9. In

testing, the threshold δ maintains constant w.r.t. the value

in training. For classification results, we average the scores

from the softmax layer with 10 crops (4 corners plus cen-

ter, same with horizontal flip). We train the networks on

NVIDIA GeForce TITAN X GPU with 12GB memory.

4.2. Comparisons with the state-of-the-arts

Classification: Table 1 shows the Top-1 and Top-

5 error on the ILSVRC validation set. Our proposed

methods GoogLeNet-ACoL and VGGnet-ACoL achieve

sightly better classification results than GoogLeNet-GAP

and VGGnet-GAP, respectively, and are comparable to the

original GoogLeNet and VGGnet. For the fine-grained

recognition dataset CUB-200-2011, it also achieves remark-

able performance. Table 2 summarizes the benchmark ap-

proaches for classification with or without (w/o) bounding

1329



Methods Train/Test anno. err.

Alignments [11] w/o 46.4

Alignments [11] BBox 33.0

DPD [47] BBox+Parts 49.0

DeCAF+DPD [8] BBox+Parts 35.0

PANDA R-CNN [46] BBox+Parts 23.6

GoogLeNet-GAP on full image [48] w/o 37.0

GoogLeNet-GAP on crop [48] w/o 32.2

GoogLeNet-GAP on BBox [48] BBox 29.5

VGGnet-ACoL(Ours) w/o 28.1

Table 2: Classification error on fine-grained CUB-200-2011

test set.

Methods top-1 err. top-5 err.

Backprop on GoogLeNet [33] 61.31 50.55

GoogLeNet-GAP [48] 56.40 43.00

GoogLeNet-HaS-32 [35] 54.53 -

GoogLeNet-ACoL(Ours) 53.28 42.58

GoogLeNet-ACoL*(Ours) 53.28 35.22

Backprop on VGGnet [33] 61.12 51.46

VGGnet-GAP [48] 57.20 45.14

VGGnet-ACoL(Ours) 54.17 40.57

VGGnet-ACoL*(Ours) 54.17 36.66

Table 3: Localization error on ILSVRC validation set (*

indicates methods which improve the Top-5 performance

only using predictions with high scores).

Methods top-1 err. top-5 err.

GoogLeNet-GAP [48] 59.00 -

VGGnet-ACoL(Ours) 54.08 43.49

VGGnet-ACoL*(Ours) 54.08 39.05

Table 4: Localization error on CUB-200-2011 test set.

box annotations. We find our VGGnet-ACoL achieves the

lowest error 28.1% among all the methods without using

bounding box.

To summarize, the proposed method can enable the net-

works to achieve equivalent classification performance with

the original networks though our modified networks actu-

ally do not use fully connected layers. We attribute it to

the erasing operation which guides the network to discover

more discriminative patterns so as to obtain better classifi-

cation performance.

Localization: Table 3 illustrates the localization error

on the ILSVRC val set. We observe that our ACoL ap-

proach outperforms all baselines. VGGnet-ACoL is sig-

nificantly better than VGGnet-GAP and GoogLeNet-ACoL

also achieves better performance than GoogLeNet-HaS-32

which adopts the strategy of randomly erasing the input

images. We illustrate the localization performance on the

CUB-200-2011 dataset in Table 4. Our method outperforms

GoogLeNet-GAP by 4.92% in Top-1 error.

We further improve the localization performance by

Methods top-1 err. top-5 err.

VGGnet-ACoL-ResNet-50 49.82/26.22 40.38/8.47

VGGnet-ACoL-ResNet-101 49.26/24.90 40.08/7.80

VGGnet-ACoL-ResNet-152 48.96/24.39 39.97/7.59

VGGnet-ACoL-DPN-92 46.30/17.70 38.96/3.83

VGGnet-ACoL-DPN-98 46.16/17.42 38.99/3.67

VGGnet-ACoL-DPN-131 46.06/17.08 38.85/3.42

VGGnet-ACoL-DPN-ensemble 45.14/15.47 38.45/2.70

VGGnet-ACoL-DPN-ensemble* 45.14/15.47 30.03/2.70

Table 5: Localization/Classification error on ILSVRC vali-

dation set with the state-of-the-art classification results.

combining our localization results with the state-of-the-art

classification results, i.e., ResNet [15] and DPN [5], to

break the limitation of classification when calculating lo-

calization accuracy. As shown in Table 5, the localization

accuracy constantly improves with the classification results

getting better. We have a boost to 45.14% in Top-1 error

and 38.45% in Top-5 error when applying the classification

results generated from the ensemble DPN. In addition, we

boost the Top-5 localization performance (indicated by *)

by only selecting the bounding boxes from the top three

predicted classes following [48] and VGGnet-ACoL-DPN-

ensemble* achieves 30.03% on ILSVRC.

Figure 4 visualizes the localization bounding boxes of

the proposed method and CAM method [48]. The object

localization maps generated by ACoL can cover larger ob-

ject regions to obtain more accurate bounding boxes. For

example, our method can discover nearly entire parts of a

bird, e.g., the wing and head, while the CAM method [48]

can only find a small part of a bird, e.g., the head. Figure 5

compares the object localization maps of the two classifiers

in mining object regions. We observe that Classifier A and

Classifier B are successful in discovering different but com-

plementary target regions. The localization maps from the

two classifiers can finally fuse into a robust one, in which

the integral object is effectively highlighted. Consequently,

we get boosted localization performance.

4.3. Ablation study

In the proposed method, the two classifiers locate dif-

ferent regions of interest via erasing the input feature maps

of Classifier B. We identify the discriminative regions by

a hard threshold δ. In order to inspect its influence on

localization accuracy, we test different threshold values

δ ∈ {0.5, 0.6, 0.7, 0.8, 0.9} shown in Table 6. We ob-

tain the best performance in Top-1 error when the thresh-

old δ = 0.6 on ILSVRC, and it becomes worse when the

erasing threshold is larger or smaller. We can conclude:

1) The proposed complementary branch (Classifier B) suc-

cessfully works collaboratively with Classifier A, because

the former can mine complementary object regions so as to

generate integral object regions; 2) a well-designed thresh-
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Figure 4: Comparison with CAM method. Our method can locate larger object regions to improve localization performance

(ground-truth bounding boxes are in red and the predicted are in green).

Dataset threshold top-1 err. top-5 err.

CUB-200-2011

0.5 58.34 48.11

0.6 54.15 42.79

0.7 54.08 43.49

0.8 55.78 45.17

0.9 55.22 45.76

ILSVRC

0.5 62.62 52.03

0.6 54.17 40.57

0.7 54.55 42.53

0.8 56.61 45.45

0.9 55.72 44.42

Table 6: Localization error with different erasing thresh-

olds.

old can improve the performance as a too large threshold

cannot effectively encourage Classifier B to discover more

useful regions and a too small threshold may bring back-

ground noises.

We also test a cascade network of three classifiers. In

particular, we add the third classifier and erase its input fea-

ture maps guided by the fused object localization maps from

both Classifier A and B. We observe there is no significant

improvement in both classification and localization perfor-

mance. Therefore, adding the third branch does not neces-

sarily improve the performance and two branches are usu-

ally enough for locating the integral object regions.

Furthermore, we eliminate the influence caused by clas-

sification results and compare the localization accuracy us-

ing ground-truth labels. As shown in Table 7, the proposed

ACoL approach achieves 37.04% in Top-1 error and sur-

passes the other approaches. This reveals the superiority of

the object localization maps generated by our method, and

shows that the proposed two classifiers can successfully lo-

cate complementary object regions.

Methods GT-known loc. err.

AlexNet-GAP [48] 45.01

AlexNet-HaS [35] 41.26

AlexNet-GAP-ensemble [48] 42.98

AlexNet-HaS-emsemble [35] 39.67

GoogLeNet-GAP [48] 41.34

GoogLeNet-HaS [35] 39.43

Deconv [44] 41.6

Feedback [3] 38.8

MWP [45] 38.7

ACoL (Ours) 37.04

Table 7: Localization error on ILSVRC validation data with

ground-truth labels.

5. Conclusion

We firstly mathematically prove that object localization

maps can be conveniently obtained by selecting from fea-

ture maps. Based on it, we proposed Adversarial Com-

plementary Learning for locating target object regions in a

weakly supervised manner. The proposed two adversarial

classification classifiers can locate different object parts and

discover the complementary regions belonging to the same

objects or categories. Extensive experiments show the pro-

posed method can successfully mine integral object regions

and outperform the state-of-the-art localization methods.
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Figure 5: Object localization maps of the proposed method. We compare complementary effects of the two branches on

ILSVRC, Caltech256 and CUB-200-2011 datasets. For each image, we show object localization maps from Classifier A

(middle left), Classifier B (middle right) and the fused maps (right). The proposed two classifier (A and B) can discover

different parts of target objects so as to locate the entire regions of the same category in a given image.
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