
BPGrad: Towards Global Optimality in Deep Learning via Branch and Pruning

Ziming Zhang∗ †

Mitsubishi Electric Research Laboratories

201 Broadway, Cambridge, MA 02139-1955

zzhang@merl.com

Yuanwei Wu∗, Guanghui Wang

EECS, The University of Kansas

1450 Jayhawk Blvd., Lawrence, KS 66045

{y262w558, ghwang}@ku.edu

Abstract

Understanding the global optimality in deep learning

(DL) has been attracting more and more attention recently.

Conventional DL solvers, however, have not been developed

intentionally to seek for such global optimality. In this pa-

per we propose a novel approximation algorithm, BPGrad,

towards optimizing deep models globally via branch and

pruning. Our BPGrad algorithm is based on the assumption

of Lipschitz continuity in DL, and as a result it can adap-

tively determine the step size for current gradient given the

history of previous updates, wherein theoretically no smaller

steps can achieve the global optimality. We prove that, by re-

peating such branch-and-pruning procedure, we can locate

the global optimality within finite iterations. Empirically an

efficient solver based on BPGrad for DL is proposed as well,

and it outperforms conventional DL solvers such as Ada-

grad, Adadelta, RMSProp, and Adam in the tasks of object

recognition, detection, and segmentation.

1. Introduction

Deep learning (DL) has been demonstrated successfully

in many different research areas such as image classifica-

tion [20], speech recognition [16] and natural language pro-

cessing [32]. In general, its empirical success stems mainly

from better network architectures [15], larger mount of train-

ing data [6], and better learning algorithms [12].

However, theoretical understanding of DL for its success

still remains elusive. Very recently researchers start to under-

stand DL from the perspective of optimization such as the

optimality of learned models [13, 14, 36]. It has been proved

that under certain (very restrictive) conditions the critical

points learned for the deep models actually achieve global

optimality, even though the optimization in deep learning is

highly nonconvex. These theoretical results may partially

explain why such deep models work well in practice.

∗Joint first authors for the paper.
†Corresponding author.

Figure 1. Illustration of how BPGrad works, where each black dot denotes

the solution at each iterations (i.e. branch), directed dotted lines denote the

current gradients, and red dotted circles denote the regions wherein there

should be no solutions achieving global optimality (i.e. pruning). BPGrad

can automatically estimate the scales of these regions based on the function

evaluation of solutions and the Lipschitz continuity assumption.

Global optimality is always desirable and preferred in op-

timization. Locating global optimality in deep learning, how-

ever, is extremely challenging due to its high non-convexity,

and thus no conventional DL solvers, e.g. stochastic gra-

dient descent (SGD) [2], Adagrad [7], Adadelta [37], RM-

SProp [33] and Adam [18], is intentionally developed for

this purpose, to our best knowledge. Alternatively different

regularization techniques are applied to smooth the objective

functions in DL so that the solvers can converge to some ge-

ometrically wider and flatter regions in the parameter space

where good model solutions may exist [39, 4, 40]. But these

solutions may not necessarily be the global optimum.

Inspired by the techniques in global optimization of non-

convex functions, we propose a novel approximation algo-

rithm, BPGrad, which has the ability of locating global

optimality in DL via branch and pruning (BP). BP [29] is

a well-known algorithm developed for searching for global

solutions for nonconvex optimization problems. Its basic

idea is to effectively and gradually shrink the gap between

the lower and upper bounds of global optimum by efficiently

branching and pruning the parameter space. Fig. 1 illustrates

the optimization procedure in BPGrad.

In order to branch and prune the space we assume that the

objective functions in DL are Lipschitz continuous [8], or can

be approximated by Lipschitz functions. This is motivated

by the facts that (1) Lipschitz continuity provides a natural

way to estimate the lower and upper bounds of the global

optimum (see Sec. 2.3.1) used in BP, and (2) it can also

serve as regularization, if needed, to smoothen the objective

functions so that the returned solutions can generalize well.

3301

Figure 2. Illustration of Lip-

schitz continuity as regulariza-

tion (red) to smoothen a function

(blue).

In Fig. 2 we illustrate

the functionality of Lipschitz

continuity as regularization,

where the noisy narrower but

deeper valley is smoothed

out, while the wider but shal-

lower valley is preserved.

Such regularization behavior

can prevent algorithms from

being stuck in bad local min-

ima. Also this is advocated and demonstrated to be crucial

in order to achieve good generalization of learned DL mod-

els in several recent works such as [4]. In this sense, our

BPGrad algorithm/solver essentially aims to locate global

optimality in the smoothed objective functions for DL.

Further BPGrad can generate solutions along the direc-

tions of gradients (i.e. branch) based on the estimated regions

wherein no global optimum should exist theoretically (i.e.

pruning), and by repeating such branch-and-pruning proce-

dure BPGrad can locate global optimum. Empirically the

high demand of computation as well as footprint in memory

for running BPGrad inspires us to develop an efficient DL

solver to approximate BPGrad towards global optimization.

Contributions: The main contributions of our work are:

C1. We propose a novel approximation algorithm, BPGrad,

which is intent on locating global optimum in DL. To

our best knowledge, our approach is the first algorith-

mic attempt towards global optimization in DL.

C2. Theoretically we prove that BPGrad can converge to

global optimality within finite iterations.

C3. Empirically we propose a novel and efficient DL solver

based on BPGrad to reduce the requirement of compu-

tation as well as footprint in memory. We provide both

theoretical and empirical justification for our solver to-

wards preserving the theoretical properties of BPGrad.

We demonstrate that our solver outperforms conven-

tional DL solvers in the applications of object recogni-

tion, detection, and segmentation.

1.1. Related Work

Global Optimality in DL: The empirical loss minimization

problem in learning deep models is highly dimensional and

nonconvex with potentially numerous local minima and sad-

dle points. Blum and Rivest [1] showed that it is difficult

to find the global optima because in the worst case even

learning a simple 3-node neural network is NP-complete.

In spite of the difficulties in optimizing deep models, re-

searchers have attempted to provide empirical as well as

theoretical justification for the success of these models w.r.t.

global optimality in learning. Zhang et al. [38] empirically

demonstrated that sufficiently over-parametrized networks

trained with stochastic gradient descent can reach global

optimality. Choromanska et al. [5] studied the loss surface

of multilayer networks using spin-glass model and showed

that for many large-size decoupled networks, there exists a

band with many local optima, whose objective values are

small and close to that of a global optimum. Brutzkus and

Globerson [3] showed that gradient descent converges to

the global optimum in polynomial time on a shallow neural

network with one hidden layer and a convolutional structure

and a ReLU activation function. Kawaguchi [17] proved

that the error landscape does not have bad local minima

in the optimization of linear deep neural networks. Yun et

al. [36] extended these results and proposed sufficient and

necessary conditions for a critical point to be a global min-

imum. Haeffele and Vidal [13] suggested that it is critical

to balance the degrees of positive homogeneity between the

network mapping and the regularization function to prevent

non-optimal local minima in the loss surface of neural net-

works. Nguyen and Hein [27] argued that almost all local

minima are global optimal in fully connected wide neural

networks, whose number of hidden neurons of one layer is

larger than that of training points. Soudry and Carmon [30]

employed smoothed analysis techniques to provide theoret-

ical guarantee that the highly nonconvex loss functions in

multilayer networks can be easily optimized using local gra-

dient descent updates. Hand and Voroninski [14] provided

theoretical properties for the problem of enforcing priors pro-

vided by generative deep neural networks via empirical risk

minimization by establishing the favorable global geometry.

DL Solvers: SGD [2] is the most widely used DL solver

due to its simplicity, whose learning rate (i.e., step size for

gradient) is predefined. In general, SGD suffers from slow

convergence, and thus its learning rate needs to be carefully

tuned. To improve the efficiency of SGD, several DL solvers

with adaptive learning rates have been proposed, including

Adagrad [7], Adadelta [37], RMSProp [33] and Adam [18].

These solvers integrate the advantages from both stochas-

tic and batch methods where small mini-batches are used

to estimate diagonal second-order information heuristically.

These solvers have the capability of escaping saddle points

and often yield faster convergence empirically.

Specifically, Adagrad is well suited for dealing with

sparse data, as it adapts the learning rate to the parame-

ters, performing smaller updates on frequent parameters

and larger updates on infrequent parameters. However, it

suffers from shrinking on the learning rate, which moti-

vates Adadelta, RMSProp and Adam. Adadelta accumulates

squared gradients to be fixed values rather than over time

in Adagrad, RMSProp updates the parameters based on the

rescaled gradients, and Adam does so based on the estimated

mean and variance of the gradients. Very recently, Mukka-

mala et al. [26] proposed variants of RMSProp and Adagrad

with logarithmic regret bounds.

Convention vs. Ours: Though the properties of global opti-

mality in DL are very attractive, as far as we know, however,

3302

there is no solver developed intentionally to capture such

global optimality so far. To fill this void, we propose our

BPGrad algorithm towards global optimization in DL.

From the optimization perspective, our algorithm shares

similarities with the recent work [25] on global optimiza-

tion of general Lipschitz functions (not specifically for DL).

In [25] a uniform sampler is utilized to maximize the lower

bound of the maximizer (equivalently minimizing the up-

per bound of the minimizer) subject to Lipschitz conditions.

Convergence properties w.h.p. are derived. In contrast, our

approach considers estimating both lower and upper bounds

of the global optimum, and employs the gradients as guid-

ance to more effectively sample the parameter space for

pruning. Convergence is proved to show that our algorithm

will terminate within finite iterations.

From the empirical solver perspective, our solver shares

similarities with the recent work [19] on improving SGD

using the feedback from the objective function. Specifi-

cally [19] tracks the relative changes in the objective func-

tion with a running average, and uses it to adaptively tune

the learning rate in SGD. No theoretical analysis, however, is

provided for justification. In contrast, our solver does use the

feedback from the object function to determine the learning

rate adaptively but based on the rescaled distance between

the feedback and the current lower bound estimation. Theo-

retical as well as empirical justifications are established.

2. BPGrad Algorithm for Deep Learning

2.1. Key Notation

We denote x ∈ X ⊆ R
d as the parameters in the neural

network, (ω, y) ∈ Ω × Y as a pair of a data sample ω and

its associated label y, φ : Ω × X → Y as the nonconvex

prediction function represented by the network, f as the

objective function for training the network with Lipschitz

constant L ≥ 0,∇f as the gradient of f over parameters x1,

∇f̃ = ∇f
‖∇f‖2

denotes the normalized gradient (i.e. direction

of the gradient), f∗ as the global minimum, and ‖ · ‖2 as the

ℓ2-norm operator over vectors.

Definition 1 (Lipschitz Continuity [8]). A function f is Lip-

schitz continuous with Lipschitz constant L on X , if there is

a (necessarily nonnegative) constant L such that

|f(x1)− f(x2)| ≤ L‖x1 − x2‖2, ∀x1,x2 ∈ X . (1)

2.2. Problem Setup

We would like to learn the parameters for a given network

by minimizing the following objective function f :

min
x∈X

f(x) ≡ E(ω×y)∈Ω×Y

[

L(y, φ(ω,x))
]

+R(x), (2)

1We assume ∇f 6= 0 w.l.o.g. Empirically we can randomly sample a

non-zero direction for update wherever ∇f = 0.

where E denotes the expectation over data pairs, L denotes a

loss function (e.g., hinge loss) for measuring the difference

between the ground-truth labels and the predicted labels

given data samples, andR denotes a regularizer over param-

eters. Particularly we assume that:

F1. f is lower bounded by 0 and upper bounded as well, i.e.

0 ≤ f(x) < +∞, ∀x ∈ X ;

F2. f is differentiable everywhere in the bounded space X ;

F3. f is Lipschitz continuous, or can be approximated by

Lipschitz functions, with constant L ≥ 0.

2.3. Algorithm

2.3.1 Lower & Upper Bound Estimation

Consider the situation where samples x1, · · · ,xt ∈ X ex-

ist for evaluation by function f with Lipschitz constant L,

whose global minimum f∗ is reached by the sample x
∗.

Then based on Eq. 1 and simple algebra, we can obtain

max
i=1,··· ,t

{

f(xi)− L‖xi − x
∗‖2

}

≤ f∗ ≤ min
i=1,··· ,t

f(xi).

(3)

This provides us a tractable upper bound and an intractable

lower bound, unfortunately, of the global minimum. The

intractability comes from the fact that x∗ is unknown, and

thus makes the lower bound in Eq. 3 unusable empirically.

To address this problem, we propose a novel tractable

estimator, ρmini=1,··· ,t f(xi) (0 ≤ ρ < 1). This estimator

intentionally introduces a gap from the upper bound, which

will be shrunk by either decreasing the upper bound or in-

creasing ρ. As proved in Thm. 1 (see Sec. 2.4), when the

parameter space X is fully covered by the samples {xi}, this

estimator will become the lower bound of f∗.

In summary, we define our lower and upper bound esti-

mators for the global minimum as ρmini=1,··· ,t f(xi) and

mini=1,··· ,t f(xi), respectively.

2.3.2 Branch & Pruning

Based on our estimators, we propose a novel approximation

algorithm, BPGrad, towards global optimization in DL via

branch and pruning. We show it in Alg. 1 where the prede-

fined constant ǫ ≥ 0 controls the precision of the solution.

Branch: The inner loop in Alg. 1 conducts the branch oper-

ation to split the parameter space recursively by sampling.

Towards this goal, we need a mapping between the parame-

ter space and the bounds. Considering the lower bound in

Eq. 3, we propose sampling xt+1 ∈ X based on the previous

samples x1, · · · ,xt ∈ X so that it satisfies

max
i=1,··· ,t

{

f(xi)− L‖xi − xt+1‖2

}

≤ ρ min
i=1,··· ,t

f(xi). (4)

Note that an equivalent constraint has been used in [25].

3303

Algorithm 1 BPGrad Algorithm for Deep Learning

Input :objective function f with Lipschitz constant L ≥ 0,

precision ǫ ≥ 0
Output :minimizer x∗

Randomly initialize x1, t← 1, ρ← 0;

while mini=1,··· ,t f(xi) ≤
ǫ

1−ρ
do

while ∃xt+1 ∈ X satisfies Eq. 4 do
Compute xt+1 by solving Eq. 5;

t← t+ 1;
end

Increase ρ such that 0 ≤ ρ < 1 still holds;

end

return x
∗ = xi∗ where i∗ ∈ argmini=1,··· ,t f(xi);

To improve sampling efficiency for decreasing the objec-

tive, we propose sampling along the directions of (stochas-

tic) gradients with small distortion. Though gradients only

encode local structures of (nonconvex) functions in a high di-

mensional space, they are good indicators for locating local

minima [23, 28]. Specifically, we propose a minimization

problem for generating samples:

min
xt+1∈X ,ηt≥0

∥

∥

∥
xt+1 −

(

xt − ηt∇f̃(xt)
)
∥

∥

∥

2

2
+ γη2t , (5)

s.t. max
i=1,··· ,t

{

f(xi)− L‖xi − xt+1‖2

}

≤ ρ min
i=1,··· ,t

f(xi),

where γ ≥ 0 is a predefine constant controlling the trade-off

between the distortion and the step size ηt ≥ 0. That is,

under the condition in Eq. 4, the objective in Eq. 5 aims to

generate a sample that has small distortion from an anchor

point, whose step size is small as well due to the locality

property of gradients, along the direction of the gradient.

Note that other reasonable objective functions may also

be utilized here for sampling purpose as long as the condition

in Eq. 4 is satisfied. More efficient sampling objectives will

be investigated in our future work.

Pruning: In fact Eq. 4 specifies that new samples should

be generated outside the union of a set of balls defined by

previous samples. To precisely describe this requirement,

we introduce a new concept of removable solution space in

our work as follows:

Definition 2 (Removable Parameter Space (RPS)). We de-

fine the RPS, denoted as XR, as

XR(t)
def
= ∪j=1,··· ,tB (xj , rj) , (6)

where B(xj , rj) = {x | ‖x − xj‖2 < rj ,x ∈ X}, ∀j
defines a ball centered at sample xj ∈ X with radius rj =
1
L
[f(xj)− ρmini=1,··· ,t f(xi)] , ∀j.

RPS specifies a region wherein the function evaluations

of all the points cannot be smaller than the lower bound esti-

mator conditioning on the Lipschitz continuity assumption.

Therefore, when the lower bound estimator is higher than the

global minimum f∗, we can safely remove all the points in

RPS without evaluation. However, when it becomes smaller

than f∗, we risk missing the global solutions.

To address this issue, we propose the outer loop in Alg. 1

to increase the lower bound for drawing more samples which

may further decrease the upper bound later.

2.4. Theoretical Analysis

Theorem 1 (Lower & Upper Bounds). Whenever XR(t) ≡
X holds, the samples generated by Alg. 1 satisfies

ρ min
i=1,··· ,t

f(xi) ≤ f∗ ≤ min
i=1,··· ,t

f(xi). (7)

Proof. Since f∗ is the global minimum, it always holds that

f∗ ≤ mini=1,··· ,t f(xi). Now when XR(t) ≡ X , suppose

ρmini=1,··· ,T f(xi) > f∗ holds, then there would exist at

least one point (i.e. global minimum) left for sampling, con-

tradicting the condition of XR(t) ≡ X . We then complete

the proof.

Corollary 1 (Approximation Error Bound). Whenever both

mini=1,··· ,t f(xi) ≤
ǫ

1−ρ
and XR(t) ≡ X hold, it is satis-

fied that

min
i=1,··· ,t

f(xi)− f∗ ≤ ǫ. (8)

Theorem 2 (Convergence within Finite Samples). The total

number of samples, T , in Alg. 1 is upper bounded by:

T ≤

[

2L

(1− ρ)fmin

]d

·
VX

C
, (9)

where VX denotes the volume of the space X , C = π
d
2

Γ(d
2+1)

denotes a constant, and fmin = mini=1,··· ,T f(xi) denotes

the minimum evaluation.

Proof. Given ∀j, ∀t such that 1 ≤ j ≤ t ≤ T − 1, we have

‖xt+1 − xj‖2 ≥
1

L

[

f(xj)− ρ min
i=1,··· ,t

f(xi)

]

(10)

≥
1− ρ

L
· min
i=1,··· ,t

f(xi) ≥
(1− ρ)fmin

L
.

This allows us to generate two balls B
(

xt+1,
(1−ρ)fmin

2L

)

and B
(

xj ,
(1−ρ)fmin

2L

)

so that they have no overlap with

each other. As a result we can generate T balls with radius

of
(1−ρ)fmin

2L and no overlaps, and their accumulated volume

should be no bigger than VX . That is,

VX ≥
T
∑

t=1

V
B
(

xt,
(1−ρ)fmin

2L

) = C

[

(1− ρ)fmin

2L

]d

T. (11)

Further using simple algebra we can complete the proof.

3304

Algorithm 2 BPGrad based Solver for Deep Learning

Input :number of evaluations n repeating N times at most,

objective function f with Lipschitz constant L ≥ 0,

momentum 0 ≤ µ ≤ 1
Output :minimizer x∗

t← 1,v1 ← 0, and randomly initialize x1;

for m← 1 to N do

ρ← 1− 1
m

;

while t < mn do

vt+1 ← µvt −
f(xt)−ρmini=1,··· ,t f(xi)

L
· ∇f(xt)
‖∇f(xt)‖2

;

xt+1 ← xt + vt+1;

t← t+ 1;
end

if mini=1,··· ,t f(xi) ≤
ǫ

1−ρ
holds then Break ;

end

return x
∗ = xi∗ where i∗ ∈ argmini=1,··· ,n f(xi);

3. Approximate DL Solver based on BPGrad

Though the BPGrad algorithm has nice theoretical prop-

erties for global optimization, directly applying Alg. 1 to

deep learning will incur the following problems that limit its

empirical usage:

P1. From Thm. 2 we can see that due to the high dimen-

sionality of the parameter space in DL it is impractical

to draw sufficient samples to cover the entire space.

P2. Solving Eq. 5 involves the knowledge of previous sam-

ples, which incurs significant amount of both computa-

tional and storage burden for deep learning.

P3. Computing f(xt) and ∇f̃(xt), ∀xt ∈ X is time-

consuming, especially for large-scale data.

To address problem P1, in practice we manually set the

maximum iterations for both inner and outer loops in Alg. 1.

To address problem P2, we further make some extra as-

sumptions to simplify the branching/sampling procedure

based on Eq. 5 as follows:

A1. Minimizing distortion is much important than minimiz-

ing step sizes, i.e. γ ≪ 1;

A2. X is sufficiently large where ∃ηt ≥ 0 so that xt+1 =
xt − ηt∇f̃(xt) ∈ X \ XR(t) always holds;

A3. ηt ≥ 0 is always sufficiently small for local update.

A4. xt+1 can be sampled only based on xt and ∇f̃(xt).

By imposing these assumptions upon Eq. 5, we can directly

compute the solution as follows:

ηt =
1

L

[

f(xt)− ρ min
i=1,··· ,t

f(xi)

]

. (12)

To address problem P3, we utilize mini-batches to esti-

mate f(xt) and ∇f̃(xt) efficiently in each iteration.

(a) Sampling using Eq. 5 (b) Sampling using Eq. 12

Figure 3. 1D illustration of difference in sampling between (a) using Eq. 5

and (b) using Eq. 12. Here the solid blue lines denote function f , the black

dotted lines denote the sampling paths starting from xt−1 → xt → xt+1,

and each big triangle surrounded by blue dotted lines denotes the RPS of

each sample. As we see, (b) suffers from being stuck locally, while (a) can

avoid the locality based on the RPS.

In summary, we list our BPGrad solver in Alg. 2 by mod-

ifying Alg. 1 for the sake of fast sampling as well as low

memory footprint in DL, but at the risk of being stuck in

local regions. Fig. 3 illustrates such scenarios in a 1D ex-

ample. In (b) the sampling method falls into a loop because

it does not consider the history of samples but only current

one. In contrast, the sampling method in (a) is able to keep

generating new samples by avoiding the RPS of previous

samples with more computation and storage, as expected.

3.1. Theoretical Analysis

Theorem 3 (Global Property Preservation). Let xt+1 =
xt − ηt∇f̃(xt) where ηt is computed using Eq. 12. Then

xt+1 satisfies Eq. 4 if it holds that

〈

xi − xt,∇f̃(xt)
〉

≥
f(xi)− f(xt)

L
, ∀i = 1, · · · , t, (13)

where 〈·, ·〉 denotes the inner product between two vectors.

Corollary 2. Suppose that a monotonically decreasing se-

quence {f(xi)}i=1,··· ,t is generated to minimize function f

by sampling using Eq. 12. Then the condition in Eq. 13 can

be rewritten as follows:

〈

xi − xj ,∇f̃(xj)
〉

≥ 0, 1 ≤ ∀i < ∀j ≤ t. (14)

Discussion: Both Thm. 3 and Cor. 2 imply that our solver

prefers sampling the parameter space along a path towards a

single direction, roughly speaking. However, the gradients in

conventional backpropagation have little guarantee to satisfy

Eq. 13 or Eq. 14 due to lack of such constraints in learning.

On the other hand, momentum [31] is a well-known tech-

nique in deep learning to dampen oscillations in gradients

and accelerate directions of low curvature. Therefore, our

solver in Alg. 2 involves momentum to compensate such

drawbacks in backpropagation for better approximation of

Alg. 1.

3.2. Empirical Justification

In this section we discuss the feasibility of the assump-

tions A1-A4 for reducing computation and storage as well

3305

0 600 1200 1800 2400

iterations

0

0.1

0.2

0.3

v
a

lu
e

mnist, L=15, =0

Left-Hand

Right-Hand

0 600 1200 1800 2400

iterations

-1.5

-1

-0.5

0

0.5

v
a

lu
e

mnist, L=15, =0.9

Left-Hand

Right-Hand

0 500 1000 1500 2000

iterations

0

0.5

1

v
a

lu
e

cifar10, L=50, =0

Left-Hand

Right-Hand

0 500 1000 1500 2000

iterations

-4

-3

-2

-1

0

1

v
a

lu
e

cifar10, L=50, =0.9

Left-Hand

Right-Hand

Figure 5. Comparison between LHS and RHS of Eq. 4 based on xt

returned by Alg. 2 using different values for momentum parameter µ.

as preserving the properties towards global optimization in

deep learning. We utilize MatConvNet [35] as our testbed,

and run our solver in Alg. 2 to train the default networks

in MatConvNet for MNIST [21] and CIFAR10 [20], respec-

tively, using the default parameters without explicit mention.

Also we set N = 1, µ = 0, L = 15 for MNIST and L = 50
for CIFAR10 by default. For justification purpose we only

run 4 epochs on each dataset, 600 and 500 iterations per

epoch for MNIST and CIFAR10, respectively. For more

experimental details, please refer to Sec. 4.

Essentially assumption A1 is made to support the other

three to simplify the objective in Eq. 5, and assumption A2

usually holds in deep learning due to its high dimensionality.

Therefore, below we only focus on empirical justification of

assumptions A3 and A4.

0 500 1000 1500 2000 2500

iterations

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t
 v

a
lu

e

mnist

cifar10

Figure 4. Plots of ηt on MNIST

and CIFAR10, respectively.

Feasibility of A3: To jus-

tify this, we collect ηt’s

by running Alg. 2 on both

datasets, and plot them

in Fig. 4. Overall these

numbers are indeed suffi-

ciently small for local up-

date based on gradients,

and ηt decreases with the

increase of iterations, in

general. This behavior is expected as the objective f is sup-

posed to decrease as well w.r.t. iterations. The value gap

at the beginning on the two datasets is induced mainly by

different L’s.

Feasibility of A4: To justify this, we show some evidences

in Fig. 5, where we plot the left-hand side (LHS) and right-

hand side (RHS) of Eq. 4 based on xt returned by Alg. 2.

As we see in all the subfigures on the right with µ = 0.9
the values on RHS are always no smaller than those on LHS

correspondingly. In contrast, in the remaining subfigures

on the left with µ = 0 (i.e. conventional SGD update) the

values on RHS are always no bigger than those on LHS cor-

respondingly. These observations appear to be robust across

different datasets, and irrelevant to parameter L which deter-

mines the radius of balls, i.e. step sizes for gradients. The

momentum parameter µ, which is related to the directions of

gradients for updating models, appear to be the only factor

to make the samples of our solver satisfy Eq. 4. This also

supports our claims in Thm. 3 and Cor. 2 about the relation

between model update and gradient in order to satisfy Eq. 4.

More evidences have been provided in Sec. 4.1.1. Given

these evidences we hypothesize that assumption A4 may

hold empirically when using sufficiently large values for µ.

4. Experiments

To demonstrate the generalization of our BPGrad solver,

we test it in the applications of object recognition, detection,

and segmentation by training deep convolutional neural net-

works (CNNs). We utilize MatConvNet as our testbed, and

employ its demo code as well as default network architec-

tures for different tasks. Since our solver has the ability of

determining learning rates adaptively, we compare ours with

another four widely used DL solvers with adaptive learning

rates, namely Adagrad, Adadelta, RMSProp, and Adam. We

tune the parameters in these solvers to achieve their best

performance as we can.

4.1. Object Recognition

4.1.1 MNIST & CIFAR10

The MNIST digital dataset consists of a training set of 60K
images and a test set of 10K images in 10 classes labeled

from 0 to 9, where all images have the resolution of 28× 28
pixels. The CIFAR-10 dataset consists of a training set

of 50K images and a test set of 10K images in 10 object

classes, where the image resolution is 32× 32 pixels.

We follow the default implementation to train an indi-

vidual CNN similar to LeNet-5 [22] on each dataset. For

the details of network architectures please refer to the demo

code. Specifically for all the solvers, we train the networks

for 50 and 100 epochs on MNIST and CIFAR10, respec-

tively, with a mini-batch size 100, weight decay 0.0005, and

momentum 0.9. In addition, we fix the initial weights for

two networks and the feeding order of mini-batches for fair

comparison. The global learning rate is set to 0.001 on

MNIST for Adagrad, RMSProp and Adam. On CIFAR10,

the global learning rate is set to 0.001 for RMSProp, but to

0.01 for Adagrad, Adam and Eve [19], and it is reduced to

0.005 and 0.001 at the 31-st and 61-st epoch. Adadelta does

not require the global learning rate.

For our solver, the parameters n and N typically depend

on the numbers of mini-batches and epochs, respectively.

Empirically we find that N = 1 seems to work well, and

thus we use it by default for all the experiments. Accordingly

by default n will be set to the product of the numbers of mini-

batches and epochs.

3306

1 2 3 4

Epochs

0

0.02

0.04

0.06

0.08

0.1

0.12

T
ra

in
in

g
 o

b
je

c
ti

v
e

mnist, =0.9

L=10
L=15
L=20
L=50
L=100
L=500
L=1000

1 2 3 4

Epochs

0.2

0.4

0.6

0.8

1

T
ra

in
in

g
 o

b
je

c
ti

v
e

cifar10, =0.9

L=10
L=20
L=50
L=100
L=200
L=500
L=1000

Figure 6. Illustration of robustness of Lipschitz constant L in our solver.

0 10 20 30 40 50

Epochs

10 -3

10 -2

10 -1

10 0

T
ra

in
in

g
 o

b
je

c
ti

v
e
 (

lo
g

 s
c
a
le

)

0 10 20 30 40 50

Epochs

10 -3

10 -2

10 -1

T
e
st

 t
o
p
1
 e

rr
o
r

(l
o
g
 s

c
a
le

)

0 20 40 60 80 100

Epochs

0

0.5

1

1.5

2

T
ra

in
in

g
 o

b
je

c
ti

v
e

0 20 40 60 80 100

Epochs

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T
e
st

 t
o

p
1

 e
rr

o
r

Figure 7. Comparison on (left) training objectives and (right) test top-1

errors for object recognition using (top) MNIST and (bottom) CIFAR10.

Also we find that the parameter L as Lipschitz constant

is quite robust w.r.t. performance, indicating that heavily

tuning this parameter is unnecessary in practice. To demon-

strate this, we compare the training objectives of our solver

by varying L in Fig. 6. To highlight the differences, here

we crop and show the results in the first four epochs, but

note that the remaining results have similar behavior. As

we can see on MNIST when L varies from 10 to 100, the

corresponding curves are clustered, similarly on CIFAR10

for L from 50 to 1000. We decide to set L = 15 for MNIST

and L = 50 for CIFAR10, respectively, in our solver.

Next we show the solver comparison results in Fig. 7. To

illustrate the effect of momentum in our solver in terms of

performance, here we plot two variants of our solver with

µ = 0 and µ = 0.9, respectively. As we see our solver with

µ = 0.9 works much better than the counterpart, achieving

lower training objectives as well as lower top-1 error at test

time. This again provides evidence to support the importance

of satisfying Eq. 4 in our solver to search for good solutions

toward global optimality.

Overall, our solver performs best on MNIST and slightly

inferior on CIFAR10 at test time, although in terms of train-

ing objective it achieves competitive performance on MNIST

and the best on CIFAR10. We hypothesize that this behavior

comes from the effect of regularization on Lipschitz con-

0 5 10 15 20

Epochs

1

2

3

4

5

6

T
ra

in
in

g
 o

b
je

ct
iv

e

0 5 10 15 20

Epochs

0.4

0.5

0.6

0.7

0.8

0.9

V
a
li

d
a
ti

o
n

 t
o

p
1

 e
rr

o
r

Figure 8. Comparison on (left) training objectives and (right) validation

top-1 errors for object recognition using ImageNet ILSVRC2012.

Adagrad Adadelta RMSProp Adam BPGrad

training 49.0 71.6 46.0 70.0 33.0

validation 54.8 76.7 47.2 72.8 44.0

Table 1. Top-1 recognition error (%) on ImageNet ILSVRC2012 dataset.

tinuity. However, our solver can decrease the objectives

much faster than all the competitors in the first few epochs.

This observation reflects the superior ability of our solver

in determining adaptive learning rates for gradients. Espe-

cially on CIFAR10 we also compare an extra solver Eve

based on our implementation. Eve was proposed in recent

related work [19] that improves Adam with the feedbacks

from the objective function, and tested on CIFAR10 as well.

As we can see, our solver is much more reliable, performing

consistently over epochs.

4.1.2 ImageNet ILSVRC2012 [20]

This dataset contains about 1.28M training images and 50K
validation images among 1000 object classes. Following

the demo code, we train the same AlexNet [20] on it from

the scratch using different solvers. We perform training

for 20 epochs, with a mini-batch size 256, weight decay

0.0005, momentum 0.9, and default learning rates for the

competitors. For our solver we set L = 100 and N = 12.

We show the comparison results in Fig. 8. It is evident

that our solver works the best at both training and test time.

Namely, it converges faster to achieve lower objective as

well as lower top-1 error on validation dataset. In terms of

numbers, ours is 3.2% lower than the second best, RMSProp,

at the 20-th epoch as listed in Table 1.

Based on all the experiments above we conclude that our

solver is suitable to train deep models for object recognition.

4.2. Object Detection

Following Fast RCNN [11] in the demo code, we conduct

the solver comparison on the PASCAL VOC2007 dataset [9]

with 20 object classes using selective search [34] as default

object proposal approach. For all solvers, we train the net-

work for 12 epochs using the 5K images in VOC2007 train-

val set and test it using 4.9K images in VOC2007 test set.

We set the weight decay and momentum to 0.0005 and 0.9,

3307

aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mAP

Adagrad 67.5 71.5 60.7 47.1 28.3 72.7 76.7 77.0 34.3 70.2 64.0 72.0 74.2 69.5 64.9 28.8 57.4 60.5 73.1 61.1 61.7

RMSProp 69.1 75.8 61.5 47.9 30.2 74.7 77.1 79.4 33.2 71.1 66.3 74.4 76.3 69.9 65.1 28.9 62.9 62.5 73.2 60.8 63.0

Adam 68.9 79.9 64.1 56.6 37.0 77.4 77.7 82.5 38.2 71.5 64.7 77.6 77.7 75.0 66.8 30.6 65.9 65.1 74.4 67.9 66.0

BPGrad 69.4 77.7 66.4 55.1 37.2 76.1 77.7 83.6 38.6 73.8 67.4 76.0 81.9 72.7 66.3 31.0 64.2 66.2 73.8 64.9 66.0

Table 2. Average precision (AP, %) of object detection on VOC2007 test dataset.

0 2 4 6 8 10 12

Epochs

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

T
ra

in
in

g
 l

o
ss

b
b

o
x

0 2 4 6 8 10 12

Epochs

0

0.2

0.4

0.6

0.8

1

T
ra

in
in

g
 l

o
ss

c
ls

Figure 9. Loss comparison on VOC2007 trainval dataset, including (left)

the regression loss using bounding boxes and (right) the classification loss.

respectively, and use default learning rates for the competi-

tors. We do not compare with Adadelta because we cannot

obtain reasonable performance after heavy parameter tuning.

For our solver we set L = 100.

We show the training comparison in Fig. 9, and test results

in Table 2. Though our training losses are inferior to those of

Adam in this case, our solver works as well as Adam at test

time on average, achieving best AP on 11 out of 20 classes.

This demonstrates the suitability of our solver in training

deep models for object detection.

4.3. Object Segmentation

Following the work [24] for semantic segmentation based

on fully convolutional networks (FCN), we train FCN-32s

with per-pixel multinomial logistic loss and validate it with

the standard metric of mean pixel intersection over union

(IU), pixel accuracy, and mean accuracy. For all the solvers,

we conduct training for 50 epochs with momentum 0 and

weight decay 0.0005 on PASCAL VOC2011 [10] segmenta-

tion set. For Adagrad, RMSProp and Adam, we find that the

default parameters are able to achieve the best performance.

For Adadelta, we tune its parameters with ǫ = 10−9. The

global learning rate for RMSProp is set to 10−5 and 10−4

for both Adagrad and Adam. Adadelta does not require the

global learning rate. For our solver, we set L = 500.

We show the learning curves on training and validation

datasets in Fig. 10, and list the test-time comparison results

in Table 3. In this case our solver has very similar learning

behavior as Adagrad, but achieves the best performance at

test time. The smaller fluctuation over epochs on the valida-

tion dataset demonstrates again the superior reliability of our

solver, compared with the competitors. Taking these observa-

tions into account, we believe that our solver has the ability

of learning robust deep models for object segmentation.

0 10 20 30 40 50

Epochs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
ra

in
in

g
 o

b
je

c
ti

v
e

0 10 20 30 40 50

Epochs

0.7

0.75

0.8

0.85

0.9

0.95

V
a
li

d
a
ti

o
n

 a
c
c
u

ra
c
y

Figure 10. Segmentation performance comparison using FCN-32s model

on VOC2011 training and validation datasets.

mean IU pixel accuracy mean accuracy average

Adagrad 60.8 89.5 77.4 75.9

Adadelta 46.6 86.0 54.4 62.3

RMSProp 60.5 90.2 71.0 73.9

Adam 50.9 87.2 66.4 68.2

BPGrad 62.4 89.8 79.6 77.3

Table 3. Numerical comparison on semantic segmentation performance

(%) using VOC2011 test dataset at the 50-th epoch.

5. Conclusion

In this paper we propose a novel approximation algorithm,

namely BPGrad, towards searching for global optimality in

DL via branch and pruning based on Lipschitz continuity as-

sumption. Our basic idea is to keep generating new samples

from the parameter space (i.e. branch) outside the removable

parameter space (i.e. pruning). Lipschitz continuity not only

provides us a way to estimate the lower and upper bounds

of global optimality, but also serves as regularization to fur-

ther smooth the objective functions in DL. Theoretically we

prove that under some conditions our BPGrad algorithm can

converge to global optimality within finite iterations. Empir-

ically in order to avoid the high demand of computation as

well as storage for BPGrad in DL, we propose a new efficient

solver. Theoretical and empirical justification on preserving

the properties of BPGrad is provided. We demonstrate the

superiority of our solver to several conventional DL solvers

in object recognition, detection, and segmentation.

Acknowledgement

Dr. Zhang was supported by MERL. Mr. Wu and Prof.

Wang were supported in part by the Kansas NASA EP-

SCoR Program under Grant KNEP-PDG-10-2017-KU, the

United States Department of Agriculture (USDA) under

Grant USDA 2017-67007-26153, and Nvidia GPU grant.

3308

References

[1] A. Blum and R. L. Rivest. Training a 3-node neural network is

np-complete. In NIPS, pages 494–501, 1989. 2

[2] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for

large-scale machine learning. arXiv preprint arXiv:1606.04838, 2016.

1, 2

[3] A. Brutzkus and A. Globerson. Globally optimal gradient descent

for a convnet with gaussian inputs. arXiv preprint arXiv:1702.07966,

2017. 2

[4] P. Chaudhari, A. Choromanska, S. Soatto, and Y. LeCun. Entropy-

sgd: Biasing gradient descent into wide valleys. arXiv preprint

arXiv:1611.01838, 2016. 1, 2

[5] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun.

The loss surfaces of multilayer networks. In AISTATS, pages 192–204,

2015. 2

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet:

A Large-Scale Hierarchical Image Database. In CVPR, 2009. 1

[7] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods

for online learning and stochastic optimization. JMLR, 12(Jul):2121–

2159, 2011. 1, 2

[8] K. Eriksson, D. Estep, and C. Johnson. Applied Mathematics Body

and Soul: Vol I-III. Springer-Verlag Publishing, 2003. 1, 3

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2007 (VOC2007) Results. http://www.pascal-

network.org/challenges/VOC/voc2007/workshop/index.html.

7

[10] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,

and A. Zisserman. The PASCAL Visual Object Classes

Challenge 2011 (VOC2011) Results. http://www.pascal-

network.org/challenges/VOC/voc2011/workshop/index.html.

8

[11] R. Girshick. Fast r-cnn. In CVPR, pages 1440–1448, 2015. 7

[12] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis, L. Wesolowski, A. Ky-

rola, A. Tulloch, Y. Jia, and K. He. Accurate, large minibatch sgd:

Training imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

1

[13] B. D. Haeffele and R. Vidal. Global optimality in neural network

training. In CVPR, pages 7331–7339, 2017. 1, 2

[14] P. Hand and V. Voroninski. Global guarantees for enforcing deep

generative priors by empirical risk. arXiv preprint arXiv:1705.07576,

2017. 1, 2

[15] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image

recognition. In CVPR, pages 770–778, 2016. 1

[16] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,

A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. Deep neural

networks for acoustic modeling in speech recognition: The shared

views of four research groups. IEEE Signal Processing Magazine,

29(6):82–97, 2012. 1

[17] K. Kawaguchi. Deep learning without poor local minima. In NIPS,

pages 586–594, 2016. 2

[18] D. Kingma and J. Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014. 1, 2

[19] J. Koushik and H. Hayashi. Improving stochastic gradient descent

with feedback. arXiv preprint arXiv:1611.01505, 2016. 3, 6, 7

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification

with deep convolutional neural networks. In NIPS, pages 1097–1105,

2012. 1, 6, 7

[21] Y. LeCun. The mnist database of handwritten digits. http://yann.

lecun.com/exdb/mnist/, 1998. 6

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE,

86(11):2278–2324, 1998. 6

[23] J. D. Lee, M. Simchowitz, M. I. Jordan, and B. Recht. Gradient

descent only converges to minimizers. In COLT, pages 1246–1257,

2016. 4

[24] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks

for semantic segmentation. In CVPR, pages 3431–3440, 2015. 8

[25] C. Malherbe and N. Vayatis. Global optimization of lipschitz func-

tions. In ICML, 2017. 3

[26] M. C. Mukkamala and M. Hein. Variants of rmsprop and adagrad

with logarithmic regret bounds. arXiv preprint arXiv:1706.05507,

2017. 2

[27] Q. Nguyen and M. Hein. The loss surface of deep and wide neural

networks. arXiv preprint arXiv:1704.08045, 2017. 2

[28] I. Panageas and G. Piliouras. Gradient descent only converges to

minimizers: Non-isolated critical points and invariant regions. arXiv

preprint arXiv:1605.00405, 2016. 4

[29] D. G. Sotiropoulos and T. N. Grapsa. A branch-and-prune method

for global optimization. In Scientific Computing, Validated Numerics,

Interval Methods, pages 215–226. Springer, 2001. 1

[30] D. Soudry and Y. Carmon. No bad local minima: Data indepen-

dent training error guarantees for multilayer neural networks. arXiv

preprint arXiv:1605.08361, 2016. 2

[31] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance

of initialization and momentum in deep learning. In ICML, pages

1139–1147, 2013. 5

[32] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning

with neural networks. In NIPS, pages 3104–3112, 2014. 1

[33] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the

gradient by a running average of its recent magnitude. COURSERA:

Neural Networks for Machine Learning, 2012. 1, 2

[34] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders.

Selective search for object recognition. IJCV, 104(2):154–171, 2013.

7

[35] A. Vedaldi and K. Lenc. Matconvnet: Convolutional neural networks

for matlab. In ACM Multimedia, pages 689–692, 2015. 6

[36] C. Yun, S. Sra, and A. Jadbabaie. Global optimality conditions for

deep neural networks. arXiv preprint arXiv:1707.02444, 2017. 1, 2

[37] M. D. Zeiler. Adadelta: an adaptive learning rate method. arXiv

preprint arXiv:1212.5701, 2012. 1, 2

[38] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understand-

ing deep learning requires rethinking generalization. arXiv preprint

arXiv:1611.03530, 2016. 2

[39] S. Zhang, A. E. Choromanska, and Y. LeCun. Deep learning with

elastic averaging sgd. In NIPS, pages 685–693, 2015. 1

[40] Z. Zhang and M. Brand. Convergent block coordinate descent for

training tikhonov regularized deep neural networks. In NIPS, 2017. 1

3309

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

