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Abstract

Automatic intensity estimation of facial action units

(AUs) is challenging in two aspects. First, capturing sub-

tle changes of facial appearance is quite difficult. Second,

the annotation of AU intensity is scarce and expensive. In-

tensity annotation requires strong domain knowledge thus

only experts are qualified. The majority of methods directly

apply supervised learning techniques to AU intensity esti-

mation while few methods exploit unlabeled samples to im-

prove the performance. In this paper, we propose a novel

weakly supervised regression model-Bilateral Ordinal Rel-

evance Multi-instance Regression (BORMIR), which learns

a frame-level intensity estimator with weakly labeled se-

quences. From a new perspective, we introduce relevance to

model sequential data and consider two bag labels for each

bag. The AU intensity estimation is formulated as a joint re-

gressor and relevance learning problem. Temporal dynam-

ics of both relevance and AU intensity are leveraged to build

connections among labeled and unlabeled image frames to

provide weak supervision. We also develop an efficient al-

gorithm for optimization based on the alternating minimiza-

tion framework. Evaluations on three expression databases

demonstrate the effectiveness of the proposed method.

1. Introduction

Human facial expressions are efficient means of human

communication, conveying rich information for expressing

our intention and emotion. They can be described by a

specific combination of facial muscle movements. Facial

Action Coding System (FACS) was developed by Ekman

and Friesen [8] to describe such movements. FACS defines

each observable component of facial movement as an AU.

It quantifies AU intensity into 6 discrete levels and provides
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Figure 1. The pipeline of the proposed method. BORMIR com-

bines the weakly annotated sequences and the domain knowledge

to jointly learn the frame-level relevance and intensity regressor.

rules for annotation. However, automatic AU intensity esti-

mation is a challenging task. First of all, AUs depict the sub-

tle local facial appearance changes which vary by subjects,

head poses, and illuminations. Second, AU intensity anno-

tation requires domain expertise and it is time-consuming.

Only databases annotated by certificated AU coders are re-

liable. Thus it is expensive to annotate a large database.

Although techniques like deep learning has increased mod-

eling capacity for appearance variations, they also require a

large set of labeled samples, which may not be available.

The majority of existing methods directly apply super-

vised learning techniques for AU intensity estimation, such

as relevance vector regression [12] and convolutional neu-

ral networks [9]. These approaches do not consider the case

when intensity annotations are limited. Few works focus on

exploiting unlabeled instances to improve the performance

except for [30] and [50]. They exploit unlabeled instances

by considering the temporal relationships among AU inten-

sity labels of frames in sequences.

As illustrated in Figure 2, AU intensity changes

smoothly as facial appearance evolves smoothly. Instead of

annotating the AU intensity for every frame in sequences,

identifying the locations of the peak and valley frames (key

frames) is relatively easier to perform for a large database

since annotating the trend requires less effort than annotat-

ing the exact intensity. One valuable property is that the AU
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intensity between a peak and a valley frame evolves non-

strictly monotonically and smoothly.

Considering such property, we propose a novel weakly

supervised regression model, BORMIR, which learns a

frame-level intensity regressor by using weakly labeled se-

quences. The weak annotation only requires identifying and

annotating the peak and valley frames within a sequence.

They are defined in [20]. According to the key frames, se-

quences can be split into segments which retain the prop-

erty. For the remaining of the paper, we use bag to refer

a segment and use instance to refer a frame. Unlike [30]

and [50], we study AU intensity estimation from a new per-

spective. The annotations of the peak and valley frame in

a segment are treated as bag labels. Different from conven-

tional multi-instance learning (MIL) methods, we consider

simultaneously two bag labels for each bag to include more

information, i.e., peak bag label (the intensity of the peak)

and valley bag label (the intensity of the valley). More im-

portantly, we introduce the concept of ‘relevance’ to model

sequential data. Each instance has a relevance value to one

bag label. Each bag label is contributed by all instances.

Both the relevance and parameters of the regressor are the

variables to be optimized during learning. To exploit unla-

beled frames, we leverage domain knowledge on relevance

and AU intensity. Firstly, in each segment, the closer the

frame is to the peak (or valley), the larger relevance value

it has to the peak (or valley) label, i.e., ordinal relevance.

Secondly, the difference between the relevance of neigh-

boring frames should be small due to the smoothness of the

evolution of facial appearance, i.e., relevance smoothness.

Thirdly, the difference between the intensities of neighbor-

ing frames should be small, i.e., intensity smoothness. The

pipeline of the proposed method is shown in Figure 1.

Our contributions are as follows:

• We propose a novel approach to learn frame-level in-

tensity regressor with limited annotations. We formu-

late the intensity estimation as a multi-instance regres-

sion problem. In particular, we introduce the concept

of ‘relevance’ to model sequential data and simultane-

ously consider two bag labels for one bag to include

more information.

• We leverage domain knowledge as weak supervision to

make the learned regressor applicable for frame-level

intensity estimation, including ordinal relevance, rele-

vance smoothness, and intensity smoothness.

• We develop an efficient algorithm to solve the problem

and evaluate the proposed method on three benchmark

expression databases.

2. Related Work

Supervised methods. The majority of methods for AU

intensity estimation are supervised methods. Many methods

consider the intensity estimation of individual AUs such

Peak

Valley

Intensity of AU12

Figure 2. Illustration of AU in a sequence.

as [19, 33, 11, 10, 44, 23, 22] . Kaltwang et al. [12] applied

Relevance Vector Regression (RVR) to estimate AU inten-

sity. Then, they proposed the doubly sparse Relevance Vec-

tor Machine (DSRVM) [14] for intensity estimation of AU

and pain expression by selecting relevance samples and im-

portant kernels. To consider the joint estimation of multiple

AUs, several methods leverage static dependencies among

AUs to improve the model learning such as [32, 43, 13].

Walecki et al. [43] proposed Copula Ordinal Regression

(COR) model by using copula functions to define the pair-

wise potential of the conditional random field. Kaltwang

et al. [13] proposed a generative latent tree model (LT) by

learning the dependencies among both features and inten-

sities of multiples AUs. Dynamic dependencies are com-

monly used to model sequential data such as action recogni-

tion [38, 24, 25] and tracking [47, 2, 49, 48]. They can also

be used for AU intensity estimation. Several methods ap-

ply dynamic graphical models to perform joint AU intensity

estimation, such as Dynamic Bayesian Network [16], Hid-

den Conditional Ordinal Random Fields (HCORF) [27, 28],

context-sensitive CORF [29], and Continuous Conditional

Neural Fields [1]. Deep learning has also been applied to

AU intensity estimation [9, 42, 17, 7]. Gudi et al. [9] used

convolutional neural network (CNN) for AU detection and

intensity estimation in FERA 2015 [39]. Walecki et al. [42]

combined CRF and copula functions (CCNN-IT) to jointly

learn deep representation and AU relationships. Tran et

al. [17] proposed semi-parametric variational autoencoders

(2DC) for the intensity estimation of multiple AUs. Super-

vised methods tend to overfit the training set when intensity

annotations are not sufficient, especially for deep models.

Weakly supervised methods. Multi-instance learning

(MIL) provides a way to leverage weakly labeled data for

model learning. It has been applied to key frame detec-

tion [37], pain localization [35] and facial event detec-

tion [31, 36]. LOMo [36] is a variant of multi-instance

classification (MIC) which incorporates the ordering of in-

dices of frames. Zhu et al. [52] used Bootstrapping to se-

lect positive and negative samples among frames between

onset and offset to improve the performance of AU detec-

tion. Fernando et al. [6] leveraged unlabeled frames by di-

rectly using features to compute the similarity between one

frame and the peak. No model and relevance learning are

involved. However, these methods can not generalize to
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AU intensity estimation since event detection is a binary

classification problem while AU intensity label has 6 dis-

crete ordinal levels. To the best of our knowledge, only two

methods [30, 50] applied weakly supervised learning meth-

ods to estimate AU intensity. Zhao et al. [50] combined or-

dinal regression and SVR (OSVR) to leverage both labeled

and unlabeled frames. They need to identify and annotate

the intensities of the onset, apex, and offset frames. Ruiz et

al. [30] proposed Multi-instance Dynamic Ordinal Random

Fields (MI-DORF) with the idea of multi-instance learning.

The maximum intensity of each sequence is annotated as

the bag label. [50] and [30] leverage unlabeled samples by

using the relationships among intensity labels of neighbor-

ing frames. Differently, we introduce ‘relevance’ to model

sequential data and emphasize domain knowledge on both

relevance and AU intensity to exploit unlabeled samples in-

cluding ordinal relevance and relevance smoothness. And

we consider two labels for one bag by treating the intensi-

ties of the peak and valley frames as bag labels.

Multi-instance regression. Few works focus on Multi-

Instance Regression (MIR). Ray et al. [26] pioneered MIR

research under the prime instance assumption that each bag

has a prime instance responsible for the bag label. But it is

inapplicable to unseen bag since the primary instance of an

unseen bag is unknown. Wagstaff and Lane [40] proposed a

new assumption that each instance has a weight for the bag

label and the bag label is the weighted summation of pre-

dictions of all instances. However, the work aims to learn

the salience of instances and it does not discuss how to pre-

dict the weight or bag label of an unseen instance or bag.

Different assumptions vary from tasks [3, 45, 41]. But their

goal is to predict the label for an unseen bag rather than each

instance. Our method makes the same assumption as [40].

Unlike [40], our method considers simultaneously two bag

labels for one bag and our goal is to learn an instance-level

regressor while [40] aims to estimate the weight only and it

performs poorly for instance-level prediction. Besides, we

exploit relationships among instances and incorporate dif-

ferent types of domain knowledge to make the learning of

instance-level regressor feasible.

3. The Proposed Method

Notation Given the locations and intensity annotations of

peak and valley frames, training sequences can be split into

segments according to [20]. Each segment has the property

that the intensity increases or decreases monotonically and

smoothly. The intensity of the peak frame is treated as the

peak bag label since it is more informative. The intensity

of the valley frame is treated as the valley bag label. Each

frame has two relevance values corresponding to the peak

and valley labels respectively, i.e., peak relevance and valley

relevance. Instead of introducing a variable to specify the

trend of segments (increase or decrease), we rearrange the

frame order for segments which start from a peak and end

with a valley. After the rearrangement, the intensity in each

training segment monotonically increases.

The training set D = {(Bi, y
0
i , yi)}Ni=1 contains of N

segments. Let Bi = [B1
i ,B

2
i , ...,B

ni

i ] ∈ R
d×ni denote the

image features of the i-th segment, where ni is the number

of frames and d is the feature dimension. The peak bag la-

bel yi ∈ R is the intensity of the peak frame. The valley

bag label y0i ∈ R is the intensity of the valley frame. Let

α
j
i and β

j
i denote the peak and valley relevance of the j-

th frame, then we have Hi =
∑ni

j=1
α

j
iB

j
i = Biαi as the

combination of instances in a bag. To force the combina-

tion locate in the convex hull of these instances, αi should

satisfy
∑ni

j=1
α

j
i = 1 and αi ≥ 0.

Given the training set D, the goal is to learn a frame-

level intensity estimator f to predict the intensity y for an

unlabeled frame x ∈ R
d, i.e. y = f(x;w), where w ∈ R

d

are the parameters of the estimator. We use a linear model

for intensity estimation, i.e., f(x;w) = w
T
x. During

testing, we perform frame-level intensity prediction through

y = w
T
x for an unseen frame.

3.1. Peak and Valley Bag Labels

Conventional MIR methods consider only one bag label

for each bag. When applying MIR for AU intensity esti-

mation, only the intensity of the peak frame is exploited

as the bag label. The drawback is that it ignores the in-

formation of frames around the valley frame which are far

away from the peak. In our proposal, the intensities of both

the peak and valley frames are considered, to ensure the

regressor fit all frames. In particular, the valley bag label

provides information around the valley frame. Similar to

peak relevance αi, the valley relevance βi should satisfy
∑ni

j=1
β
j
i = 1 and βi ≥ 0. For each frame, the peak

and valley relevance are not independent. The two rele-

vance values have such association that when α
j
i is small,

β
j
i should be relatively large. To represent the correlation,

the summation of two relevance values of each frame is the

same, i.e., α
j
i + β

j
i = αk

i + βk
i for the j and k-th frames.

The equivalent representation is

Vi(αi + βi) = 0, (1)

where Vi ∈ R
ni×ni with V

j,j
i = 1, V

j,j+1

i = −1, and

other elements being 0. The loss for the peak bag label is

L(w, {αi}Ni=1,D) =
1

2

N
∑

i=1

(yi −w
T
Biαi)

2. (2)

It can be interpreted as the square loss between the ground

truth bag label and the predicted bag label of the average

instance. Similarly, the loss for the valley bag label is

L0(w, {βi}Ni=1,D) =
1

2

N
∑

i=1

(y0i −w
T
Biβi)

2. (3)
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3.2. Incorporating Knowledge

Ordinal relevance Since the intensity evolves smoothly

and increases monotonically in segments, the relevance

value depends on the difference between the current frame

and the peak or valley frame. The closer the frame is to the

peak frame, the larger the peak relevance is for the peak bag

label. Similarly, the closer the frame is to the valley frame,

the larger the valley relevance is for the valley bag label. In

a training segment, the peak relevance increases monoton-

ically, while the valley relevance decreases monotonically.

Such knowledge can be leveraged to constrain the relevance

values of frames in each segment. For Bi, the feasible do-

main of the peak relevance αi is

Sα(αi) ={αi ∈ R
ni |eTi αi = 1,

0 ≤ α1
i ≤ α2

i ≤ ... ≤ αni

i }, (4)

where ei is an ni dimensional vector with all elements equal

to 1. The feasible domain for the valley relevance βi has the

similar constraints except for the ordering,

Sβ(βi) ={βi ∈ R
ni |eTi βi = 1,

β1

i ≥ β2

i ≥ ... ≥ βni

i ≥ 0}. (5)

Intensity smoothness The changes of facial appearance

are caused by the movements of muscles. The contraction

and relaxation of muscles are smooth movements, which

lead to the smooth changes of facial appearance. Since

the AU intensity is defined according to the local facial ap-

pearance, the intensity changes smoothly in expression se-

quences. The difference between the intensities of neigh-

boring frames should be small. Intensity smoothness can be

exploited to provide weak supervision for the joint learning

of the relevance and the regressor by encouraging the in-

tensity predictions of neighboring frames to be close. The

smoothness can be encoded as a regularization term, i.e.,

R1(w,D) =

N
∑

i=1

ni
∑

j,k=1

C
j,k
i (wT

B
j
i −w

T
B

k
i )

2 (6)

=
1

2
w

T
[

N
∑

i=1

Bi(Di −Ci)B
T
i

]

w =
1

2
w

T
Lw,

where L =
∑N

i=1
Bi(Di −Ci)B

T
i . Ci is the adjacent ma-

trix, where C
j,k
i = 1 if |j − k| = 1. Otherwise, C

j,k
i = 0.

D
j,j
i =

∑

k C
j,k
i and D

j,k
i = 0 if j 6= k.

Relevance smoothness Similar to intensity smoothness,

the relevance changes smoothly. The difference between

the relevance of neighboring frames should be small. We

exploit the relevance smoothness for the peak bag label by

using the regularization term, i.e.,

R2({αi}Ni=1,D) =

N
∑

i=1

ni
∑

j,k=1

C
j,k
i (αj

i −αk
i )

2

=
1

2

N
∑

i=1

αT
i (Di −Ci)αi. (7)

The regularization term for the valley bag label is

R2({βi}Ni=1,D) =
1

2

N
∑

i=1

βT
i (Di −Ci)βi. (8)

3.3. Complete Formulation

By incorporating the knowledge with weak annotation

as described in previous sections, we can jointly learn the

relevance and regressor by solving the following problem

min
w,{αi,βi

}N

i=1

L(w, {αi}Ni=1,D) + λ0L0(w, {βi}Ni=1,D)

+ λ1R1(w,D) + λ2R2({αi}Ni=1,D)

+ λ3R2({βi}Ni=1,D) +
λ4

2
‖w‖2

s.t. αi ∈ Sα(αi),βi ∈ Sβ(βi),

Vi(αi + βi) = 0, i = 1, 2, ..., N, (9)

where λk ≥ 0, k = 0, 1, 2, 3, 4, are the penalty parame-

ters. The first term is the loss for the peak bag label. The

second term is the loss for the valley bag label. The third

term represents the intensity smoothness. The fourth and

the fifth represent relevance smoothness. The last term is

the regularization on the parameters of the estimator. The

constraints represent ordinal relevance.

To convert the ordinal constraints to a compact form for

optimization, let ηi = {η1
i ,η

2
i , ...,η

ni

i } ∈ R
ni be the rel-

evance increments in a segment and ηi ≥ 0. The peak

relevance can be represented by αi = Aiηi. Ai is square

matrix with A
j,k
i = 1 when j ≥ k, and A

j,k
i = 0 when

j < k. Similarly, let µi = {µ1
i ,µ

2
i , ...,µ

ni

i } ∈ R
ni be the

relevance increments for the valley bag label and µi ≥ 0.

The valley relevance can be represented by βi = A
T
i µi.

Then, the equivalent problem is

min
w,{η

i
,µ

i
}N

i=1

L(w, {αi}Ni=1,D) + λ0L0(w, {βi}Ni=1,D)

+ λ1R1(w,D) + λ2R2({αi}Ni=1,D)

+ λ3R2({βi}Ni=1,D) +
λ4

2
‖w‖2

s.t. ηi ≥ 0,µi ≥ 0

e
T
i (Aiηi) = 1, eTi (A

T
i µi) = 1,

Vi(Aiηi +A
T
i µi) = 0

i = 1, 2, ..., N, (10)
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where αi = Aiηi and βi = A
T
i µi.

After model learning, we obtain the parameters of the

frame-level regressor, i.e., w. We use y = f(x;w) to pre-

dict the intensity for an unlabeled frame.

3.4. Optimization

Let θi = [ηi;µi] ∈ R
2ni by concatenating ηi and µi.

The problem (10) is a biconvex problem in w and θi, since

L(w, {αi}Ni=1,D) and L0(w, {βi}Ni=1,D) are biconvex in

w and θi, R2({αi}Ni=1,D) and R2({βi}Ni=1,D) are convex

in θi, and ‖w‖2 is convex in w. To solve problem (10), we

develop an iterative optimization algorithm (see Algo. 1)

under the alternating minimization framework [5]. Details

of derivation are presented in the supplementary material.

Optimize w, given {θi}Ni=1 Given {θi}Ni=1, the subprob-

lem with respect to w becomes

min
w

L(w, {αi}Ni=1,D) + λ0L0(w, {βi}Ni=1,D)

+ λ1R1(w,D) +
λ4

2
‖w‖2, (11)

where {αi}Ni=1 and {β}Ni=1 are known by αi = Aiηi and

βi = A
T
i µi. The subproblem is an unconstrained quadratic

programming problem with respect to w. The solution is

w
∗ = [XX

T +λ0X̃X̃
T +λ1L+λ4I]

−1(XY+λ0X̃Y0),

where X = [B1α1, ...,BNαN ], X̃ = [B1β1, ...,BNβN ].
Y = [y1, ..., yN ]T and Y0 = [y01 , ..., y

0
N ]T are the peak and

valley bag label vectors of the N training segments.

Optimize {θi}Ni=1, given w Given w, the subproblem

with respect to θi becomes

min
θi

L(w,αi,D) + λ0L0(w,βi,D)

+ λ2R2(αi,D) + λ3R2(βi,D)

s.t. θi ∈ Sθ(θi), (12)

where Sθ(θi) is the set of constraints on ηi,µi. The prob-

lem is a quadratic programming problem with respect to θi.

Problem (12) can be solved efficiently using quadratic pro-

gramming algorithm such as [46].

The original problem (10) is decomposed into two sub-

problems. Both of them are standard quadratic program-

ming which can be solved efficiently. The proposed al-

ternating optimization algorithm is guaranteed to converge

since the objective function is minimized at each step and

the objective is non-increasing. When optimizing {θi}Ni=1,

the optimization can be perform parallelly for each segment

since θi is independent of others given w. The complexity

is O(nd2 + d3 +
√
d log(d/ǫ)). n, d and ǫ are the number

of samples, the feature dimension, and the optimality toler-

ance. Figure 4 shows the convergence of our method and

the learned relevance for two training segments.

Algorithm 1: BORMIR

Input : Training data D = {(Bi, y
0
i , yi)}Ni=1,

{λi}4i=0.

Output: The regressor w, relevance {αi}Ni=1,

{βi}Ni=1.

1 // Assign equal relevance to each frame;

2 Initialize w = 0, η1
i = 1

ni

,ηj
i = 0, j > 1;

µni

i = 1

ni

,µk
i = 0, k < ni ;

3 while not converged do

4 Fix {θi}Ni=1, update w by solving (11) ;

5 Fix w, update {θi}Ni=1 by solving (12) for each

training segment;

6 end

7 αi = Aiηi, βi = A
T
i µi, i = 1, ..., N ;

8 Return w, {αi}Ni=1, {βi}Ni=1
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Figure 3. Intensity distribution. Left: FERA 2015. Right: DISFA

4. Experiments

4.1. Settings

Datasets. The proposed method is evaluated on three

benchmark databases, i.e., the subset of the Binghamton-

Pittsburgh 4D (FERA 2015) [39] and DISFA [21]. FERA

2015 contains 328 videos from 41 subjects when the sub-

jects are performing 8 tasks. DISFA contains 27 videos

from 27 subjects when they are watching YouTube videos.

AU intensity is quantified into 6 discrete levels. In FERA

2015, we use the official Training/Development splits for

evaluation. In DISFA, we perform 5-fold subject indepen-

dent cross-validation. To compare with MI-DORF [30],

we also perform an experiment on the UNBC-MacMaster

Shoulder Pain Expression Archive (PAIN) [18] for pain in-

tensity estimation. The PAIN database contains videos of

25 patients when they move their shoulders. Pain intensity

is quantified into 16 levels, but only few frames have the

highest intensity levels. We follow the strategy in [28] to

group intensity levels, i.e., 0 (0), 1 (1), 2 (2), 3 (3), 4 (4∼
5), 5 (6 ∼ 15). In PAIN, we perform leave-one-subject-out

cross validation as in [30].

The weak annotation contains the locations and inten-

sity annotations of the peak and valley frames. Obtaining

the weak annotation requires much less effort than anno-
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Figure 4. Left: the convergence of BORMIR. Right: the learned relevance of each frame in two segments.

Table 1. Comparison to the baseline methods.
Database FERA 2015 DISFA

AU 6 10 12 14 17 Avg 1 2 4 5 6 9 12 15 17 20 25 26 Avg

PCC

BORMIR-DS .652 .617 .808 .300 .470 .569 .208 .154 .369 .216 .284 .061 .394 .118 .070 .077 .552 .097 .217

BORMIR-DO .718 .674 .853 .377 .494 .623 .246 .351 .323 .220 .430 .255 .633 .289 .314 .172 .708 .129 .339

BORMIR-DB .699 .681 .854 .371 .485 .618 .242 .345 .330 .220 .448 .277 .642 .283 .324 .187 .727 .143 .347

BORMIR .729 .689 .865 .400 .493 .635 .259 .333 .360 .251 .447 .244 .629 .287 .316 .207 .733 .168 .353

ICC

BORMIR-DS .635 .616 .801 .299 .469 .564 .176 .092 .296 .150 .249 .038 .359 .083 .063 .054 .498 .086 .179

BORMIR-DO .718 .666 .852 .358 .476 .614 .165 .245 .266 .152 .355 .168 .551 .158 .216 .074 .667 .110 .261

BORMIR-DB .696 .681 .852 .366 .483 .616 .156 .232 .268 .142 .365 .164 .571 .146 .219 .074 .690 .122 .262

BORMIR .725 .675 .861 .368 .469 .620 .198 .248 .302 .173 .385 .181 .583 .157 .225 .088 .707 .148 .283

MAE

BORMIR-DS 1.085 1.082 .951 1.342 .935 1.079 1.703 2.374 2.659 1.564 1.484 2.512 1.610 1.609 1.510 1.460 1.784 1.576 1.820

BORMIR-DO .876 .919 .756 1.076 .809 .887 1.016 .966 1.275 .820 .795 1.029 .785 .699 .791 .831 .877 .925 .901

BORMIR-DB 1.198 1.075 .776 1.212 .967 1.046 1.084 1.016 1.347 .850 .816 1.032 .825 .735 .830 .849 .845 .958 .932

BORMIR .848 .895 .678 1.046 .791 .852 .875 .783 1.240 .589 .769 .777 .757 .564 .716 .628 .898 .875 .789

tating every frame in sequences. The locations are identi-

fied manually according to the definitions of peak and val-

ley frames in [20]. Since sequences are captured at a high

frame rate, faces in the consecutive frames do not have dis-

tinct changes. The sequences are downsampled. The distri-

butions of AU intensity levels are shown in Figure 3. PAIN

has 6497 frames and the distribution of pain intensity is 0

(68.5%), 1 (10%), 2 (8.9%), 3 (5.6%), 4 (4.1%), 5 (2.2%).

The average numbers of annotated frames are around 850
for FERA 2015, 900 for DISFA, and 350 for PAIN.

Image features. Both databases provide 66 facial land-

marks. [39] provides a way to extract geometric features

from 49 inner facial landmarks. Facial shapes are firstly

aligned by using several stable points, i.e., points of eye

corners and nose. By subtracting the mean shape from the

aligned faces, we can get 98D features. By computing dis-

tance between two consecutive points and angles among

three consecutive points, we can get another 71D features.

By computing the distance between a point to the median of

the stable points, we can get another 49D features. We then

concatenate these features to be 218D features and apply

Gaussian normalization to each dimension.

Evaluation metrics and hyperparameters. We use

three metrics for evaluation, i.e., Pearson correlation coef-

ficient (PCC), intra-class correlation (ICC(3,1) [34]), and

mean absolute error (MAE). PCC is used to measure the lin-

ear association between the ground truth and the predicted

intensity. ICC is commonly used to measure the agreement

between annotators. MAE is commonly used for ordinal

prediction tasks [15, 43]. Our model has five hyperparam-

eters {λi}4i=0, which are selected through validation. The

training set is split into two parts, i.e., one with 60% se-

quences as the training set and the other with 40% as the

validation set. We use grid search strategy for parameter

selection. The ranges are λ0 ∈ {0.2, 0.4, 0.6, 0.8, 1} and

{λi}4i=1 ∈ {10−2, 10−1, 100, 101}. We use MAE as the

measure to evaluate the performance on the labeled frames

in the validation set for parameter selection.

Comparative methods. We first compare the perfor-

mance of our method (BORMIR) with its variants which

drop one type of knowledge. BORMIR exploits all types

of knowledge. BORMIR-DS drops the smoothness of rel-

evance and intensity. BORMIR-DO drops the ordinal rele-

vance. BORMIR-DB drops the valley bag label. Then, we

compare our method to the state-of-the-art methods, includ-

ing supervised methods and weakly supervised methods.

SOVR [4], RVR [12], LT [13], and DSRVM [14] are super-

vised methods. SOVR is used for ordinal regression while

others are the state-of-the-art AU intensity estimation meth-

ods. These supervised methods use only the annotations

of peak and valley frames since they can handle unlabeled

frames. MIR [40], OSVR [50], and MI-DORF [30] are

weakly supervised methods, which use the annotations of

peak and valley frames and also unlabeled frames. Further-

more, we also compare our method to the state-of-the-art

supervised deep models such as CNN [9], CCNN-IT [42],

and 2DC [17]. For deep models, every frame in sequences

is annotated with AU intensity.

4.2. Results

Comparison with the baseline methods. The results

are shown in Table 1. Our method achieves better aver-

age performance than its three variants under all evaluation

metrics on both FERA 2015 and DISFA. Our method in-

corporates all types of knowledge while each variant drops

one type of knowledge. The results show that each type of
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Table 2. Comparison to the state-of-the-art methods. The scenario is that the training set is partially annotated. Numbers in bracket and

bold represent the best performance; numbers in bold only represent the second best.

Database FERA 2015 DISFA

AU 6 10 12 14 17 Avg 1 2 4 5 6 9 12 15 17 20 25 26 Avg

PCC

SOVR [4] .613 .550 .781 .293 .443 .536 .211 .090 [.368] .213 .329 .078 .391 .141 .084 .141 .702 .221 .247

RVR [12] .676 .614 .815 .311 .485 .580 .277 .131 .364 .313 .315 .109 .450 .078 .114 [.231] .716 .201 .275

LT [13] .578 .622 .710 .334 .116 .472 [.280] .017 .078 .113 .313 .069 .524 .100 .038 -.034 .342 [.238] .173

DSRVM [14] .604 .585 .778 .343 .341 .530 .131 -.016 .083 .067 .391 .115 .607 -.013 -.084 .024 .646 .059 .168

MIR [40] .567 .466 .656 .299 .314 .460 .196 .114 .312 [.318] .258 .188 .426 .078 .100 .085 .622 .072 .231

OSVR [50] .647 .577 .783 .271 .449 .545 .238 .074 .332 .215 .264 .199 .342 .130 .079 .114 .664 .117 .231

BORMIR [.729] [.689] [.865] [.400] [.493] [.635] .259 [.333] .360 .251 [.447] [.244] [.629] [.287] [.316] .207 [.733] .168 [.353]

ICC

SOVR [4] .610 .549 .775 .293 .441 .534 .195 .048 .293 .131 .297 .039 .363 .123 .077 .114 .660 [.197] .211

RVR [12] .675 .609 .814 .311 [.481] .578 [.244] .089 .288 [.203] .286 .067 .432 .076 .109 [.216] .679 .180 .239

LT [13] .558 .587 .695 .292 .094 .445 .216 .017 .035 .102 .230 .043 .434 .043 .021 -.025 .289 .140 .129

DSRVM [14] .600 .569 .772 .290 .299 .506 .043 -.012 .026 .039 .295 .063 .553 .000 -.022 .002 .632 .056 .140

MIR [40] .438 .394 .600 .229 .230 .378 .117 .062 .199 .186 .200 .124 .328 .051 .063 .049 .477 .046 .159

OSVR [50] .646 .577 .780 .269 .449 .544 .208 .038 .248 .151 .229 .152 .313 .115 .066 .094 .618 .093 .194

BORMIR [.725] [.675] [.861] [.368] .469 [.620] .198 [.248] [.302] .173 [.385] [.181] [.583] [.157] [.225] .088 [.707] .148 [.283]

MAE

SOVR [4] 1.080 1.176 .967 1.314 .902 1.088 1.612 2.153 2.661 1.768 1.311 2.024 1.481 1.442 1.430 1.512 1.182 1.455 1.669

RVR [12] .959 1.030 .838 1.218 .837 .976 1.633 1.781 2.574 1.534 1.357 2.077 1.285 1.237 1.343 .967 1.234 1.426 1.537

LT [13] .948 .978 .911 1.116 .958 .982 1.067 .958 1.370 .544 .806 .902 .882 .606 .771 .668 1.241 [.802] .885

DSRVM [14] .944 1.017 .838 1.086 .856 .948 [.821] [.619] 1.453 [.332] .891 [.553] .905 [.441] [.690] [.371] 1.071 .943 [.757]

MIR [40] 1.992 2.072 1.502 2.315 1.957 1.968 2.682 2.668 3.905 1.888 1.957 2.173 2.062 1.965 2.488 1.964 2.191 2.135 2.340

OSVR [50] 1.024 1.126 .953 1.354 .928 1.077 1.648 1.873 2.943 1.378 1.556 1.690 1.636 1.101 1.614 1.371 1.329 1.789 1.661

BORMIR [.848] [.895] [.678] [1.046] [.791] [.852] .875 .783 [1.240] .589 [.769] .777 [.757] .564 .716 .628 [.898] .875 .789

knowledge can help improve the performance. Compared

to BORMIR-DS, when dropping the smoothness, the per-

formance decreases significantly. It shows that the tempo-

ral smoothness is relatively more important than other two

types of knowledge when the annotations are limited.

Comparison with the-state-of-the-art methods. The

results are shown in Table 2. Our method outperforms other

competing methods on both databases under all evaluation

metrics except MAE on DISFA, where ours is the second

best. The comparisons are analyzed as follows. Firstly,

our method achieves much better performance than MIR.

MIR uses only the peak bag label and does not exploit any

knowledge. It performs poorly for frame-level prediction.

The result further demonstrates the effectiveness of the in-

troduced valley bag label and the domain knowledge. Sec-

ondly, among the supervised methods, RVR achieves bet-

ter results than others. Compared to RVR, our method

achieves the improvement of over 5% under PCC and 4%
under ICC and also better MAE, especially on DISFA. LT

and DSRVM do not perform well on DISFA which has an

imbalanced distribution of intensity levels. Our method can

exploit both labeled and unlabeled frames through domain

knowledge while supervised methods can only use labeled

frames. Thirdly, our method also outperforms the weakly

supervised methods such as OSVR, especially on DISFA.

Compared to OSVR, we formulate AU intensity estima-

tion from a new perspective by introducing the relevance to

model sequential data. Besides, we incorporate more types

of knowledge to exploit unlabeled frames.

Table 3 shows the results of pain intensity estimation on

PAIN. It also contains the reported performance of several

deep models and state-of-the-art methods which use the an-

notations of all frames for training. (*) indicates that the re-

sults are adapted from the corresponding paper. Compared

Table 3. Performance of different methods for pain intensity esti-

mation on the PAIN database.

Method PCC ICC MAE

Fully annotated

RCNN [51]* .650 - -

FCNN [7]* .673 - -

KCORFh [28]* - .703 .800

csCORFwh [29]* - .640 .820

Partially annotated

MI-DORF [30]* .460 .460 .510

BORMIR .605 .531 .821

Table 4. Comparison to fully supervised deep models.

Data FERA 2015 DISFA

Method PCC ICC MAE PCC ICC MAE

Fully annotated

CCNN-IT [42]* – .630 1.260 – .380 .660

2DC [17]* – .660 – – .500 –

CNN [9] .638 .632 .783 .324 .305 .496

Partially annotated

BORMIR .635 .620 .852 .353 .283 .789

to MI-DORF, it outputs discrete intensity values while ours

is continuous. Although MAE of MI-DORF is smaller than

ours, we can better capture the trend with higher PCC and

ICC. Compared to the methods that using the fully anno-

tated database, our method achieves promising results in

PCC and MAE when less than 10% of frames are annotated.

Results of comparison with the state-of-the-art deep

models are shown in Table 4. The average performance is

reported. Though our method use substantially less amount

of annotations, it achieves comparable performance to the

deep models on FERA 2015. It also achieves promising

performance on DISFA. Deep models require plenty of an-

notations for training to avoid overfitting while our method

needs only the annotations of key frames which occupy a

small portion of frames in databases.

Performance of using partial training segments. To

further evaluate the effectiveness of the proposed method,
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Figure 5. Using partial training segments. Left: FERA 2015. Right: DISFA. The results are the average performance of all the AUs.

we reduce the number of training segments to evaluate the

performance of different methods. We consider the scenar-

ios that 30%, 50%, 70%, 90%, and 100% of training seg-

ments are used for training. Note that only the peak and val-

ley frames in each segment are annotated. The results are

shown in Figure 5. On both FERA 2015 and DISFA, our

method outperforms competing methods in PCC and ICC

under all the scenarios. On FERA 2015, our method also

outperforms other methods in MAE under the scenarios ex-

pect 30% case. On DISFA, the MAE of our method is better

than other methods expect for DSRVM. However, DSRVM

has poor performance in PCC and ICC. As shown in Fig-

ure 5, when reducing the number of training segments, the

performances of competing methods decrease substantially

while our method can still perform well.

Robustness to noisy annotations. Our method does not

explicitly consider spurious peaks and valleys. To evaluate

its robustness, we add noise to the annotations of locations

of peaks and valleys by shifting their original location an-

notations. We perform an experiment on FERA 2015. The

experiment setting is the same as AU intensity estimation

except for shifted original location annotations. When the

shift is 10 frames, the average performance is (PCC: 0.629,

ICC: 0.605, MAE: 0.873). When the shift is 30 frames, it

becomes (PCC: 0.539, ICC: 0.510, MAE: 0.937). When the

shift is large, the weak supervision will provide incorrect

information. The results show that our method can tolerant

noisy annotations to some extent.

5. Conclusion

We propose a novel weakly supervised learning ap-

proach, BORMIR, which can learn frame-level intensity re-

gressor with weakly labeled sequences. The weak annota-

tion is much easier to obtain than annotating the intensity

of every frame. We study AU intensity estimation from a

new perspective by introducing the concept of ‘relevance’

to model sequential data. Besides, we simultaneously con-

sider two bag labels for one bag and each frame has two

relevance values associated with the two bag labels. The

AU intensity is formulated as a joint learning problem of the

relevance and intensity regressor. To make the learning of

frame-level intensity regressor feasible, we incorporate do-

main knowledge on the relevance and AU intensity to pro-

vide weak supervision and exploit unlabeled samples. We

also propose an efficient algorithm for optimization. Evalu-

ations on three benchmark databases demonstrate the effec-

tiveness of the proposed method.
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