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Abstract

In this paper, we propose a new unsupervised domain

adaptation approach called Collaborative and Adversarial

Network (CAN) through domain-collaborative and domain-

adversarial training of neural networks. We add several do-

main classifiers on multiple CNN feature extraction blocks1,

in which each domain classifier is connected to the hidden

representations from one block and one loss function is de-

fined based on the hidden presentation and the domain la-

bels (e.g., source and target). We design a new loss function

by integrating the losses from all blocks in order to learn do-

main informative representations from lower blocks through

collaborative learning and learn domain uninformative rep-

resentations from higher blocks through adversarial learn-

ing. We further extend our CAN method as Incremental

CAN (iCAN), in which we iteratively select a set of pseudo-

labelled target samples based on the image classifier and

the last domain classifier from the previous training epoch

and re-train our CAN model by using the enlarged train-

ing set. Comprehensive experiments on two benchmark

datasets Office and ImageCLEF-DA clearly demonstrate

the effectiveness of our newly proposed approaches CAN

and iCAN for unsupervised domain adaptation.

1. Introduction

In many visual recognition tasks, the training data used

to learn a model and the testing data on which the model is

applied often have different distributions. In order to en-

hance the generalization capability of learned models on

the testing data, several domain adaptation technologies

[1, 9, 5, 22, 11] were proposed to explicitly reduce the data

distribution mismatch between the training samples in the

source domain and the testing samples in the target domain.

Since deep learning methods have achieved excellent

performance for many computer vision tasks including

object recognition, a few deep transfer learning methods

1In this work, each block consists of several CNN layers.

Figure 1. Illustration of two contributions in this work. Firstly, it

is beneficial to learn domain informative features through collab-

orative learning at lower blocks and learn domain uninformative

features through adversarial learning at higher blocks. Informative

features such as corners and edges are useful for distignuishing not

only images from different domains but also images from different

classes, while uninformative features are useful for domain adap-

tation. Secondly, we iteratively select more pseudo-labelled target

samples that have high prediction confidence from the image clas-

sifier, and are also considered as domain uninformative based on

the last domain classifier from the previous training epoch.

[21, 30, 25] were recently proposed to learn domain in-

variant features for visual recognition. These deep transfer

learning methods can be roughly categorized as statistics

approaches [19, 20, 24, 27], which exploit regularizer based
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on Maximum Mean Discrepancy (MMD), and adversarial

learning based approaches [2, 3, 12, 13, 18, 26], which

learn new representations through adversarial learning pro-

cesses. To learn domain-uninformative representations, the

recent work Domain Adversarial Training of Neural Net-

work (DANN) [13] added one domain classifier at the last

block and learn domain invariant features by minimizing the

loss of this classifier and utilizing reversed gradient during

the backpropagation process. Please refer to Section 2 for a

brief review of existing domain adaptation methods.

In Section 3, we propose a new deep transfer learn-

ing method called Collaborative and Adversarial Network

(CAN) by introducing a set of domain classifiers (also

called as domain discriminators) into multiple blocks, in

which each domain classifier is connected to the hidden rep-

resentation from one block. Our work is based on the moti-

vation that some characteristic information from target do-

main data may be lost after learning domain-invariant fea-

tures with the recent method DANN [13]. Meanwhile, the

representations at lower blocks are often low-level features

such as corners and edges, which are expected to be infor-

mative for distinguishing images from different domains.

To this end, we propose to learn one domain classifier at

each block in order to learn domain-informative represen-

tations at lower blocks and domain-uninformative repre-

sentations at higher blocks. After defining one loss func-

tion based on each hidden representation and domain la-

bels (e.g., source and target) at one block, we integrate the

losses from all blocks as a new loss function, in which the

optimal combination weights are to be learnt. For the last

block, the combination weight is set as a negative number

as in DANN [13] in order to learn domain uninformative

representation through adversarial learning. However, the

learnt combination weights for lower blocks are often posi-

tive through collaborative learning, which indicates that the

lower-block representations are domain informative. As a

result, our Collaborative and Adversarial Network (CAN)

can learn new representations which are not only domain-

invariant for domain adaptation but also discriminant for

image classification.

In Section 4, we further extend our CAN method as

Incremental CAN (iCAN), which utilize domain discrim-

inator to enlarge the training set by iteratively selecting

pseudo-labelled target samples with different weights and

re-training our CAN model with the enlarged training set.

In order to select target samples that share similar data dis-

tributions as source samples, at each iteration, we select

pseudo-labelled target samples that not only have high pre-

diction confidence from the image classifier and but also

are considered as domain uninformative based on the last

domain classifier from the previous training epoch. By it-

eratively adding these samples to the training set, the over-

all data distribution of the enlarged training set is expected

to gradually move from the source distribution to the target

distribution. As a result, our work iCAN can gradually learn

better representations and thus improves visual recognition

performance in the target domain.

In Section 5, we perform comprehensive experiments

on two benchmark datasets Office-31 and ImageCLEF-DA,

and the results clearly demonstrate the effectiveness of our

newly proposed approaches CAN and iCAN for unsuper-

vised domain adaptation.

2. Related Works

Existing domain adaptation methods can be roughly cat-

egorized as feature (transform) based approaches [1, 11,

17], which aims to seek new domain-invariant features or

learn new feature transforms for domain adaptation, and

classifier based approaches [8, 9, 4, 7, 5, 29, 10], which di-

rectly learn the target classifiers (e.g., the SVM based clas-

sifiers) for domain adaptation.

Recently, several deep transfer learning methods were

proposed to directly learn domain invariant features, which

can be roughly categorized as statistic-based approaches

[19, 20, 24, 27] and adversarial learning based approaches

[2, 3, 12, 13, 18, 26]. In Deep Adaptation Network [19], the

MMD-based regularizer was introduced between two hid-

den representations from both source and target domains at

each higher layer in order to explicitly reduce the data distri-

bution mismatch at multiple layers. This work is further ex-

tended by jointly learning transferable features and adaptive

classifiers [20] and aligning the joint distributions of multi-

ple hidden representations from several higher layers [21].

In contrast to these works, our method directly learn new

representations through domain-collaborative and domain-

adversarial training of neural networks without using any

statistic-based regularizer.

Among adversarial learning based approaches, most

works [2, 18] are based on Generative Adversarial Net-

works [15] by using generators to synthesize images or rep-

resentations in different domains to learn domain invari-

ant features. In [14], Grifary et al. proposed the Deep

Reconstruction Classification Network (DRCN) method to

learn a shared representation for classifying labelled source

data and reconstructing unlabelled target data. In contrast

to these approaches, our work does not use generators to

synthesize new images or reconstruct target images. Our

work is more related to DANN [13], which learns domain-

uninformative features by inversely back-propagating the

gradients from the loss related to the domain classifier. In

addition to learn domain uninformative representations at

the last layer as in [13], we additionally learn domain in-

formative representations in lower layers through domain

collaborative learning, to further improve visual recognition

performance.

In our method iCAN, we progressively select pseudo-
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Figure 2. The whole architecture of the CAN model. Each feature extraction block consist of a group of CNN layers. Domain Classifier(also

called Domain Discriminator) is composed of several FC layers, which distinguish which domain each sample belongs to. Each block Fk,

k = 1, . . . ,m, is followed with a domain classifier Dk in order to learn domain informative and domain uninformative features. The

pseudo-labelled target samples are selected by the image classifier and the last domain classifier, and then used as training data in iCAN.

labelled target samples in each iteration. Chen et al.[6] pro-

posed a domain adaptation method based on co-training, in

which the target samples with high prediction scores are se-

lected for retraining in the next iteration. In [4], Bruzzone

et al. proposed the Domain Adaptation Support Vector Ma-

chine (DASVM) method to iteratively select the unlabelled

target domain data while simultaneously remove some la-

belled source samples. In contrast to these methods[4, 6],

our work is a deep learning based approach that specifically

learns new representations instead of the classifiers. More-

over, the domain classifiers are also used to help select and

reweigh more reliable target samples.

3. CAN: Collaborative and Adversarial Net-

work

In unsupervised domain adaptation, we are given a set

labeled data from the source domain and a set of unlabeled

data from the target domain, where the data distributions of

two domains are different. The goal is to learn a target clas-

sifier which performs well on test data in the target domain.

Formally, we denote the source domain data as Ds =
{(xs

i , y
s
i )|

Ns

i=1}, where x
s
i is the i-th source domain image,

ysi is its category label, and Ns is the number of images

in the source domain. Similarly, the target domain data is

represented as Dt = {xt
i|
Nt

i=1}, where x
t
i is the i-th target

domain image, and Nt is the number of images in the target

domain. For convenience, we also use D = Ds ∪ Dt =
{(xi, di)|

N
i=1} to denote the training images from both do-

mains, where N is the total number of images, di ∈ {0, 1}
is the domain label for the i-th image with di = 0 as the

source domain, and di = 1 as the target domain.

Many deep transfer learning approaches were proposed

to learn domain-invariant representations for unsupervised

domain adaptation [27, 19, 13]. Usually, a multi-task

scheme is employed, where they aim to minimize the clas-

sification loss on the labeled source data, and also align the

source and target domain distributions with a MMD-based

regularizer.

However, the network aims to minimize the source do-

main classification loss, the learned representation may be

less discriminative for classifying images in the target do-

main. To this end, we propose a new Collaborative and

Adversarial Network (CAN) model, which simultaneously

learn both domain-informative and domain uninformative

features through domain collaborative and domain adver-

sarial learning, such that the final representation is discrim-

inant and also domain invariant for image classification. We

introduce our new CAN model below.

3.1. Domain Informative Feature Learning

Domain informative feature such as corners and edges

from lower layers are often useful for distinguishing which

domain each sample belongs to. To keep the informative

features when training the network, we propose to incorpo-

rate a domain classifier on each of the low-level blocks.

In particular, given an image x, let us denote its feature

representation extracted from a certain block as f . We also
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denote the feature extraction network before this block (in-

clusive) as F , then f can be deemed as the output of F , i.e.,

f = F (x;θ) where θ is the parameters for F .

To let f encode as much target information as possible,

we propose to learn a domain classifier D : f → {0, 1},

which is used to predict whether the input image x belongs

to the source domain or the target domain. Intuitively, if

the feature representation f can be used to well distinguish

which domain x comes from, sufficient target information

should be encoded within f . Then the objective for learning

D can be written as,

min
θ,w

1

N

N
∑

i=1

LD (D(F (xi;θ);w), di) (1)

where w is the parameters for the domain discriminator D,

di is the domain label, and LD is the classification loss

which is the cross entropy loss in this paper.

3.2. Domain Uninformative Feature Learning

On the other hand, domain uninformative features cannot

clearly distinguish whether the sample is from the source

domain or the target domain. By learning the domain dis-

criminator and reversely back-propagating the domain gra-

dient through the Gradient Reversal Layer [12, 13], the do-

main uninformative features can be learned. Specifically,

they proposed to learn domain-uninformative features by

confusing a domain discriminator through the domain ad-

versarial training strategy. Following the terminology in the

last subsection, the objective of DANN can be written as

follows,

max
θ

min
w

1

N

N
∑

i=1

LD (D(F (xi;θ);w), di) (2)

where the difference between the above equation and Eqn.

(1) is that the network is trained to minimize the domain

classification loss LD in Eqn. (1) for learning domain in-

formative features, while the network is trained to maximize

LD in Eqn. (2) for learning domain uninformative features.

As shown in DANN [12, 13], the maxmin problem in

(2) can be implemented by using a gradient reversal layer,

where the sign of gradient is reversed before passing into

the network in the back-prorogation procedure. Thus, one

can easily train the network by minimizing the loss with

the conventional optimization techniques like the stochastic

gradient descent method.

Intuitively, optimizing Eqn. (1) is to distinguish the sam-

ples from both domains, such that the feature representation

is domain informative (or domain specific). On the other

hand, optimizing Eqn. (2) tends to remove domain specific

information, such that the samples from the two domains

are similar to each other using the learned feature represen-

tations. Thus, optimizing Eqn. (2) is inevitably to make tar-

get informative information get lost, since such information

does not help to confuse the domain discriminator. To learn

domain informative representation at lower layers and do-

main uninformative representation at higher layers, we pro-

pose a collaborative and adversarial learning scheme below,

which accommodates those opposite tasks into one frame-

work, such that the learned feature is domain-invariant and

also discriminant for image classification.

3.3. A Collaborative and adversarial Learning
Scheme

To accommodate the two opposite tasks, domain infor-

mative and domain uninformative feature learning should

be performed together. We propose a collaborative and ad-

versarial learning scheme, in which we encourage the fea-

ture representation to keep as much domain informative fea-

ture as possible in lower layers/blocks, while the feature

representation is enforced to be domain uninformative in

higher layers/blocks. The two tasks are applied to multiple

layers/blocks with different weights, such that feature rep-

resentation goes smoothly from domain informative to un-

informative when the samples are forwarded in the network

from lower layers/blocks to higher layers/blocks.

In particular, suppose in total m blocks are used, where

each block consist of a group of CNN layers, we build a do-

main discriminator after each block, leading to m domain

discriminators. We assign a weight λk (k = 1, . . . ,m) for

each domain discriminator, and automatically optimize the

weights when we back-propagate the losses. Intuitively, a

higher λk indicates the network tends to learn domain in-

formative features at the k-th block. When λk < 0, the

network tends to learn domain uninformative features at the

k-th block.

Formally, let us denote θk (k = 1, . . . ,m) as the

network parameters before the k-th block (inclusive),

and wk is the parameters of the domain discriminator

at the k-th block. For m blocks, we denote W =
{w1, . . . ,wm}, ΘF = {θ1, . . . ,θm}. We also denote the

loss term from a domain discriminator as LD(θ,w) =
1

N

∑N
i=1

LD(D(F (xi;θ);w), di). The collaborative and

adversarial learning scheme can be written as follows:

min
ΘF ,λ

LCAN =

m−1
∑

k=1

λk min
wk

LD(θk,wk)

+ λm min
wm

LD(θm,wm), (3)

s.t.

m−1
∑

k=1

λk = λ0, |λk| ≤ λ0,

where λ = {λ1, . . . , λm−1}. λk is the weight for each

block with k = 1, . . . ,m − 1, which is automatically opti-

mized during back-propogation. λ0 and λm are the trade-off

parameters, which will be discussed in Section 5.4. Auto-

matically optimizing the loss weights λk’s reduces the num-
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ber of hyper-parameters, and more importantly, also allows

multiple informative feature learning tasks to well collab-

orate with each other. When λk ≥ 0, the corresponding

subproblem is similar to the optimization problem in Eqn.

(1), so we disable the gradient reverse layer, and encourage

the corresponding discriminator to learn domain informa-

tive features. On the other hand, when λk < 0, the cor-

responding subproblem is similar to the max-min problem

in Eqn. (2), so we enable the gradient reverse layer, and

encourage the discriminator to learn domain uninformative

features.

We can incorporate the loss LCAN in (3) into any pop-

ular deep convolutional neural networks (CNNs) architec-

ture (e.g., AlexNet, VGG, ResNet, DenseNet, etc.) to learn

robust features for unsupervised domain adaptation. There-

fore, we jointly optimize the above loss with the conven-

tional classification loss. Let an image classifier C : f →
ỹi. The image classification loss can be denoted as,

Lsrc =
1

Ns

Ns
∑

i=1

LC(C(F (xs
i ; ΘF ); c), y

s
i ), (4)

where c is the parameters for the classifier C and LC is

the cross entropy loss for the classification task. Then, the

final objective for our collaborative and adversarial network

(CAN) can be written as,

min
ΘF ,c,λk∈Λ

L = Lsrc + LCAN , (5)

where Λ = {λk|
∑m−1

k=1
λk = λ0, |λk| ≤ λ0, k =

1, . . . ,m− 1} is the feasible set of λk’s.

4. iCAN: Incremental CAN Model

In unsupervised domain adaptation, we have only unla-

beled training samples in the target domain. To effectively

use the unlabeled target samples for learning better repre-

sentation, we further propose an incremental CAN model,

in which we progressively select a set of pseudo-labeled

target samples, and reweigh their classification losses for

training the classifier in our CAN model. Those samples

are selected and reweighted according to their prediction

confidence scores by the image classifier and the domain

discriminator, respectively, which are introduced in details

as below.

4.1. Sample Selection with Classification Confi­
dence Scores

We select the target samples according to their clas-

sification confidence scores. Specifically, let us denote

{pc(x
t
i)|

Nc

c=1) as the output from the softmax layer of the

classifier in CNN, in which each pc(x
t
i) is the probability

that xt
i belongs to the c-th category, and Nc is the total num-

ber of categories. Then, the pseudo-label of xt
i can be ob-

tained by choosing the category with the highest probabil-

ity, i.e., ỹti = argmaxc pc(x
t
i). We refer to the probability

p
ỹt
i

(xt
i) as the classification confidence score.

Intuitively, the higher the classification confidence score

is, the more likely the target sample is correctly predicted.

A common strategy for sample selection is to select target

samples with their classification confidence scores above a

certain threshold T . However, when training CNN, the clas-

sifier tends to always output low classification confidence

scores at the initial stage, while gives high classification

confidence scores at the later stage. Thus we propose to

use the logistic function to adaptively adjust the threshold

as follows,

TC =
1

1 + e−ρ∗A
, (6)

where ρ is a constant set as 3 in our experiments, A is the

classification accuracy of the current image classifier mea-

sured by using the labeled source data as follows,

A =
1

Ns

Ns
∑

i=1

I(ysi , argmax
c

pc(x
s
i )),

I(a, b) =

{

1, if a = b.

0, otherwise.

(7)

With the above adaptive threshold scheme, we then de-

fine our sample selection function as follows,

s(xt
i) = σ(p

ỹt
i

(xt
i), TC),

σ(a, b) =

{

1, if a > b.

0, otherwise.

(8)

4.2. Sample Selection and Weighting with Discrim­
inator Prediction Scores

Moreover, considering there is a distribution difference

between the target domain and the source domain, the clas-

sification prediction score is usually biased. As a result, the

selected samples based on Eqn. (8) are likely to be biased

to the the source distribution. To alleviate such bias, we

further propose a sample reweighing strategy, such that a

selected sample is assigned a higher weight when it is not

close to the source samples, and vice versa. In particular, we

use the prediction scores from the domain classifier trained

in our CAN model. Recall that a domain classifier aims to

predict an input sample as 0 if it is from the source domain,

and 1 if it is from the target domain. So, if the probabil-

ity output by the domain classifier is close to 0.5, the do-

main classifier is difficult to determine which domain the
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sample belongs to. In other words, the sample in this case

is domain-indistinguishable, which should be selected and

reweighed with higher weights when learning our model.

To this end, we design a weighting function to assign

higher weights to samples having a domain probability

close to 0.5, and to assign lower weights to other samples.

Let us denote the output from a domain classifier as d(xt
i).

Inspired by [28], we employ the sample weights function as

follows,

h(xt
i; z) = −|z ∗ (d(xt

i)− 0.5)|α + 1 (9)

where | · | is the absolute value function, α is a constant

that controls the curvature, z is a learnable parameter that

controls the range of the threshold function. Based on the

above function, we design our target sample selection and

weighting function as follows,

w(xt
i; z) = βσ(h(xt

i; z), 0) + max(h(xt
i; z), 0) (10)

where σ(·) is a gating function as in Eqn. (8), β is constant

that controls the minimum weight.

Basically, the target sample selection and the weighting

function in (9) gives a smooth response for the input scores

from the domain classifier which is centered at 0.5, and

weighting function in (10) further constrains the range of

weights as [β, 1+β] when h(xt
i; z) > 0. Note that the sam-

ple is unselected when h(xt
i; z) ≤ 0. The constants α and

β controls the shape of the function. We use α = 4 and

β = 0.3 in our experiments.

4.3. Overview

After performing pseudo-labeled target sample selection

and reweighing, then the classification loss using pseudo-

labeled target samples can be written as,

Ltar =
1

Nt

Nt
∑

i=1

s(xt
i)w(x

t
i; z)LC(C(F (xt

i; ΘF ); c), ỹti) (11)

where LC is the cross entropy loss in Eqn. (4), and s(xt
i)

and w(xt
i; z) are respectively the selection indicator and

weight obtained using (8) and (10). Ltar is defined at the

same location as LC in the network.

The entire procedure of training our incremental CAN

(iCAN) model is depicted in Algorithm 1. In the first stage,

we train our CAN model by optimizing the problem in Eqn.

(5). In the second stage, we fine-tune the pretraind CAN

model by adding our newly selected pseudo-labeled target

samples. At each iteration, we first respectively calculate

the sample selection indicator s(xt
i) and the sample weight

w(xt
i; z) in the forward process. Then, we perform back-

propagation to jointly optimize the CAN loss in (5), and the

target sample classification loss in (11) by optimizing the

total objective function

min
ΘF ,c,z,λk∈Λ

Ltotal = Lsrc + Ltar + LCAN (12)

The learnable weight z in the weight function is also op-

timized. We repeat this process until the model converges.

Algorithm 1 Incremental Collaborative and Adversarial

Network (iCAN).

1: Input: source domain labeled samples {(xs
i , y

s
i )|

Ns

i=1},

target domain unlabeled samples {(xt
i)|

Nt

i=1}.

Stage-1:

2: Train an initial CAN model by optimizing Eqn. (5).

Stage-2:

3: loop until max iter is reached:

4: Calculate the average accuracy from the current

model on the source samples in the mini-batch by using

Eqn. (7).

5: Perform sample selection on pseudo-labelled target

samples in the mini-batch by using Eqn. (8).

6: Calculate sample weights on the selected pseudo-

labelled target samples in the mini-batch by using Eqn.

(10).

7: Train the model by optimizing Eqn. (12) with all

samples.

5. Experiments

We evaluate the proposed unsupervised domain adap-

tation method on two datasets Office-31 [23] and

ImageCLEF-DA [21], and investigate the components of

our models in details.

5.1. Implementation Details

Our implementation is based on the PyTorch frame-

work2. We utilize the pre-trained ResNet50 model as the

CNN feature extractor and learn the parameters of the fea-

ture extraction layers with 0.1 times learning rate of the do-

main discriminators and the image classifier. In the net-

work, the feature extractor layers are grouped into four

blocks. We add four domain discriminators after the 10th,

22th, 40th and 49th layer. We use stochastic gradient de-

scent(SGD) for optimization.

The learning rate η0 decreases gradually after each iter-

ation from η0 = 0.0015, and we use the same INV learning

rate decrease strategy as in DANN [13]. We also progres-

sively change the learning rate after each iteration from 0

to η0 instead of setting the learning rate to be η0 for the

first iteration. Following the setting in DANN [12, 13], an

adaptation factor is used for controlling the learning rate of

the domain discriminator. In our experiment, we set the

batch size, momentum, and weight decay as 16, 0.9 and

3 × 10−4, respectively. In each domain adaptation task,

we utilize all samples from both source and target domains.

2https://github.com/pytorch/pytorch
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Due to different dataset size in different tasks, we utilize

different total training epoch length and different number of

pseudo-labelled target samples in one batch. For training

epoch length, we decide it based on the fixed total iteration

for different tasks, similar to other settings in [13, 20, 21].

As in DANN, we keep the same number of labelled and

unlabelled samples in one batch. Suppose the number of

samples in one batch is 16, the number of labelled source

data and the unlabelled target data in one batch are both 8

in DANN. In our iCAN model, let us denote Ns and Np as

the number of source samples and the number of selected

pseudo-labelled target samples in one training epoch, re-

spectively. In one mini-batch, we use 8(1 −
Np

Ns+Np
) la-

belled source samples, 8
Np

Ns+Np
pseudo-labelled target sam-

ples, 8(1−
Np

Ns+Np
) unlabelled target samples and 8

Np

Ns+Np

source samples without using their category label. In this

way, the number of labelled/pseudo-labelled samples from

both domains is equal to the number of unlabelled data from

both domains, and the number of samples from each domain

is also equal, which is helpful for model convergence. We

use the domain labels of all the source and target samples.

5.2. Datasets and State­of­the­art Approaches

Office-31 [23]. Office-31 dataset is a benchmark dataset

for evaluating different domain adaptation methods for ob-

ject recognition, which contains 4,110 real images from 31

classes. It contains three domains Amazon (A), Webcam

(W) and Dslr (D) subset. We utilize the common evaluation

protocol on all six settings as in [19].

ImageCLEF-DA [21]. This dataset is built for Image-

CLEF 2014 domain adaptation challenge3. It contains

4 subsets, including Caltech-256 (C), ImageNet ILSVRC

2012 (I), Bing (B) and Pascal VOC 2012 (P). Each of the

subset contains 12 classes and each class has 50 images,

which results in total 600 images for one subset. Similarly,

we follow [21] to report the results for six settings.

We compare our method with the basic deep learning

methods(ResNet50) and the existing deep domain adapta-

tion learning methods based on ResNet50. For the basic

deep learning methods, we use only source samples to fine-

tune the ResNet50 [16] model that is pretrained based on

ImageNet. For deep transfer learning methods, we report

the results of Deep Domain Confusion (DDC) [27], Deep

Adaptation Network (DAN) [19], Residual Transfer Net-

work (RTN) [20] and Joint Adaptation Network (JAN) [21].

In addition, we also report the results of DANN [13] using

our own implementation.

5.3. Experimental Results

The results on the Office-31 and ImageCLEF-DA

datasets are reported in Table 1 and Table 2, respectively. In

3http://imageclef.org/2014/adaptation

Model A→W W→A A→D D→A W→D D→W Avg.

ResNet50[16] 73.5 59.8 76.5 56.7 99.0 93.6 76.5

DDC[27] 76.0 63.7 77.5 67.0 98.2 94.8 79.5

DAN[19] 80.5 62.8 78.6 63.6 99.6 97.1 80.4

RTN[20] 84.5 64.8 77.5 66.2 99.4 96.8 81.6

DANN[13] 79.3 63.2 80.7 65.3 99.6 97.3 80.9

JAN[21] 86.0 70.7 85.1 69.2 99.7 96.7 84.6

CAN(ours) 81.5 63.4 85.5 65.9 99.7 98.2 82.4

iCAN(ours) 92.5 69.9 90.1 72.1 100.0 98.8 87.2

Table 1. Comparison of different methods for unsupervised do-

main adaptation on the Office-31 dataset.

Model I→P P→I I→C C→I C→P P→C Avg.

ResNet50[16] 74.6 82.9 91.2 79.8 66.8 86.9 80.4

DAN[19] 74.5 82.2 92.8 86.3 69.2 89.8 82.5

RTN[20] 74.6 85.8 94.3 85.9 71.7 91.2 83.9

DANN[13] 75.6 84.0 93.0 86.0 71.7 87.5 83.0

JAN[21] 76.8 88.0 94.7 89.7 74.2 91.7 85.8

CAN(ours) 78.2 87.5 94.2 89.5 75.8 89.2 85.7

iCAN(ours) 79.5 89.7 94.7 89.9 78.5 92.0 87.4

Table 2. Comparison of different methods for unsupervised do-

main adaptation on the ImageCLEF-DA dataset.

λm

-0.1 -0.2 -0.4 -0.5 -0.6 -0.8

λ0

0.1 88.0 88.1 88.7 89.1 91.3 90.6

0.2 87.0 89.8 91.4 90.9 90.6 90.5

0.3 84.9 88.5 92.1 91.5 91.3 90.8

0.4 85.2 89.1 91.3 92.5 92.5 92.4

0.5 85.1 89.9 90.4 91.8 91.9 90.3

0.6 84.3 87.8 88.2 90.8 91.2 88.2

Table 3. Performance of our iCAN on the Office-31 dataset

(A→W) by using different parameters λ0 and λm.

terms of the average accuracy, our newly proposed method

CAN outperforms several baseline methods, including the

ResNet50 [16], DDC [27], DAN [19], RTN [20] and DANN

[21] on both datasets, and our CAN is also comparable with

the recent work JAN [21] on the ImageCLEF-DA dataset.

The results demonstrate the effectiveness of our method

CAN by simultaneously learning domain informative and

domain uninformative representations through collabora-

tive and adversarial training of neural networks. Moreover,

our work iCAN achieves the best average accuracies on

both datasets, which indicates that it is beneficial to itera-

tively select pseudo-labelled target samples with the guid-

ance of image classifier and domain classifiers and re-train

the CAN model by using the enlarged training dataset.

5.4. Analysis of our method

In this subsection, we take the Office-31 dataset (A→W)

as an example to analyse our method. In our method
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Model A→W W→A A→D D→A W→D D→W Avg.

DANN 79.3 63.2 80.7 65.3 99.6 97.3 80.9

CAN 81.5 63.4 85.5 65.9 99.7 98.2 82.4

DANN+TSS(I) 80.0 65.9 81.9 66.5 99.7 97.8 82.0

CAN+TSS(I) 86.6 67.7 86.8 69.9 99.8 98.3 84.9

DANN+TSS(I+D) 85.3 69.6 86.1 70.7 99.8 98.3 85.0

iCAN 92.5 69.9 90.1 72.1 100.0 98.8 87.2

Table 4. Evaluation of different methods for selecting pseudo-

labelled target samples on the Office-31 dataset (A→W).

CAN, we use two parameters λ0 and λm to control λk

(k = 1, . . . ,m − 1) and balance the losses from domain

classifiers at different blocks. In this section, we take the

Office-31 dataset (A→W) as an example to evaluate our

iCAN when using different parameters λ0 and λm. Specif-

ically, we set λ0 in the range of {0.1, 0.2, 0.3, 0.4, 0.5,

0.6} and λm in the range of {-0.1, -0.2, -0.4, -0.5, -0.6, -

0.8}. For fair comparison, we still employ ResNet50 as the

CNN feature extractor and use the same parameter settings

for other parameters. From the results shown in Table 3,

we observe that the results are relatively stable when setting

λ0 between 0.2 and 0.5 and λm between -0.4 and -0.6. We

also observe that the learned λk’s at lower blocks are of-

ten larger than those at higher blocks, This shows that the

learned representations can be gradually changed from in-

formative representations at lower blocks to uninformative

representations at higher blocks.

We also compare our new method based on both im-

age classifier and domain classifiers for selecting pseudo-

labelled target samples with a simple target sample selection

method using only image classifier as in Eqn. (8). Such a

simple target sample selection (TSS) method can be used

together with DANN and our CAN, leading to two baseline

methods DANN+TSS(I) and CAN+TSS(I), respectively.

Similarly, our new target sample selection method can also

be used together with DANN and our CAN, which result

in DANN+TSS(I+D) and iCAN, respectively. The results

are reported in Table 4. From the results, we observe that

DANN+TSS(I) outperforms DANN and CAN+TSS(I) is

better than CAN, which indicates that it is useful to select

pseudo-labelled target samples to improve the classification

performance. Moreover, DANN+TSS(I+D) is better than

DANN+TSS(I) and iCAN achieves the best results, which

shows the effectiveness of our newly proposed method for

selecting pseudo-labelled target samples.

In Table 5, we also evaluate our iCAN by using our new

target sample selection method with different parameters α

and β, in which we set α in the range of {1, 2, 3, 4} and

β in the range of {0.1, 0.2, 0.3, 0.5}. Using different val-

ues of α and β, different weights will be assigned to the

selected pseudo-labelled target samples. We observe that

our method iCAN using different values of α and β outper-

form the baseline algorithms CAN and CAN+TSS(I) (note

β

0.1 0.2 0.3 0.5

α

1 86.9 87.6 87.9 88.6

2 90.4 90.0 87.6 89.9

3 88.1 91.8 90.2 90.9

4 89.3 90.6 92.5 89.6

Table 5. Performance of our method iCAN on the Office-31 dataset

(A→W) by using different parameters α and β. By using different

values of α and β, different weights will be assigned to the selected

pseudo-labelled target samples.

their results are 81.5% and 86.6%, receptively, as reported

in Table 4). Our iCAN with the best setting of α and β has

accuracy 92.5%. This again shows the effectiveness of our

new target sample selection criterion. In addition, we also

observe that the results of our method iCAN are relatively

stable when setting α in [3, 4] and β in [0.2, 0.3].

6. Conclusion

In this paper, we have proposed a new deep learn-

ing method called Collaborative and Adversarial Network

(CAN) for unsupervised domain adaptation. Different from

the existing works that learn only domain uninformative

representations through domain adversarial learning, our

method CAN additionally learns domain informative repre-

sentations through domain collaborative learning. We have

also proposed a new criterion to select pseudo-labelled tar-

get samples and developed an iterative approach called in-

cremental CAN (iCAN), in which we iteratively perform

sample selection and re-train our network by using the en-

larged training set. Our newly proposed approaches have

achieved better performance than several state-of-the-art

methods on two benchmark datasets, which clearly demon-

strates the effectiveness of our newly proposed approaches

for unsupervised domain adaptation.
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