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Abstract

Recent work has made significant progress in improving

spatial resolution for pixelwise labeling with Fully Con-

volutional Network (FCN) framework by employing Di-

lated/Atrous convolution, utilizing multi-scale features and

refining boundaries. In this paper, we explore the impact

of global contextual information in semantic segmentation

by introducing the Context Encoding Module, which cap-

tures the semantic context of scenes and selectively high-

lights class-dependent featuremaps. The proposed Context

Encoding Module significantly improves semantic segmen-

tation results with only marginal extra computation cost

over FCN. Our approach has achieved new state-of-the-

art results 51.7% mIoU on PASCAL-Context, 85.9% mIoU

on PASCAL VOC 2012. Our single model achieves a fi-

nal score of 0.5567 on ADE20K test set, which surpasses

the winning entry of COCO-Place Challenge 2017. In ad-

dition, we also explore how the Context Encoding Module

can improve the feature representation of relatively shallow

networks for the image classification on CIFAR-10 dataset.

Our 14 layer network has achieved an error rate of 3.45%,

which is comparable with state-of-the-art approaches with

over 10× more layers. The source code for the complete

system are publicly available1.

1. Introduction

Semantic segmentation assigns per-pixel predictions of

object categories for the given image, which provides a

comprehensive scene description including the information

of object category, location and shape. State-of-the-art

semantic segmentation approaches are typically based on

the Fully Convolutional Network (FCN) framework [36].

The adaption of Deep Convolutional Neural Networks

1Links can be found at http://hangzh.com/

Figure 1: Labeling a scene with accurate per-pixel la-

bels is a challenge for semantic segmentation algorithms.

Even humans find the task challenging. However, narrow-

ing the list of probable categories based on scene context

makes labeling much easier. Motivated by this, we intro-

duce the Context Encoding Module which selectively high-

lights the class-dependent featuremaps and makes the se-

mantic segmentation easier for the network. (Examples

from ADE20K [59].)

(CNNs) [29] benefits from the rich information of object

categories and scene semantics learned from diverse set of

images [10]. CNNs are able to capture the informative rep-

resentations with global receptive fields by stacking convo-

lutional layers with non-linearities and downsampling. For

conquering the problem of spatial resolution loss associ-

ated with downsampling, recent work uses Dilated/Atrous

convolution strategy to produce dense predictions from pre-

trained networks [4,52]. However, this strategy also isolates

the pixels from the global scene context, leading to misclas-

sified pixels. For example in the 3rd row of Figure 4, the
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baseline approach classifies some pixels in the windowpane

as door.

Recent methods have achieved state-of-the-art per-

formance by enlarging the receptive field using multi-

resolution pyramid-based representations. For example,

PSPNet adopts Spatial Pyramid Pooling that pools the fea-

turemaps into different sizes and concatenates them the af-

ter upsampling [57] and Deeplab proposes an Atrous Spa-

tial Pyramid Pooling that employs large rate dilated/atrous

convolutions [5]. While these approaches do improve per-

formance, the context representations are not explicit, lead-

ing to the question: Is capturing contextual information the

same as increasing the receptive field size? Consider label-

ing a new image for a large dataset (such as ADE20K [59]

containing 150 categories) as shown in Figure 1. Suppose

we have a tool allowing the annotator to first select the se-

mantic context of the image, (e.g. a bedroom). Then, the

tool could provide a much smaller sublist of relevant cate-

gories (e.g. bed, chair, etc.), which would dramatically re-

duce the search space of possible categories. Similarly, if

we can design an approach to fully utilize the strong cor-

relation between scene context and the probabilities of cat-

egories, the semantic segmentation becomes easier for the

network.

Classic computer vision approaches have the advantage

of capturing semantic context of the scene. For a given in-

put image, hand-engineered features are densely extracted

using SIFT [37] or filter bank responses [30,46]. Then a vi-

sual vocabulary (dictionary) is often learned and the global

feature statistics are described by classic encoders such as

Bag-of-Words (BoW) [8, 13, 26, 44], VLAD [25] or Fisher

Vector [42]. The classic representations encode global con-

textual information by capturing feature statistics. While

the hand-crafted feature were improved greatly by CNN

methods, the overall encoding process of traditional meth-

ods was convenient and powerful. Can we leverage the con-

text encoding of classic approaches with the power of deep

learning? Recent work has made great progress in gener-

alizing traditional encoders in a CNN framework [1, 56].

Zhang et al. introduces an Encoding Layer that integrates

the entire dictionary learning and residual encoding pipeline

into a single CNN layer to capture orderless representations.

This method has achieved state-of-the-art results on texture

classification [56]. In this work, we extend the Encoding

Layer to capture global feature statistics for understanding

semantic context.

As the first contribution of this paper, we introduce a

Context Encoding Module incorporating Semantic Encod-

ing Loss (SE-loss), a simple unit to leverage the global scene

context information. The Context Encoding Module inte-

grates an Encoding Layer to capture global context and se-

lectively highlight the class-dependent featuremaps. For in-

tuition, consider that we would want to de-emphasize the

probability of a vehicle to appear in an indoor scene. Stan-

dard training process only employs per-pixel segmentation

loss, which does not strongly utilize global context of the

scene. We introduce Semantic Encoding Loss (SE-loss) to

regularize the training, which lets the network predict the

presence of the object categories in the scene to enforce net-

work learning of semantic context. Unlike per-pixel loss,

SE-loss gives an equal contributions for both big and small

objects and we find the performance of small objects are

often improved in practice. The proposed Context Encod-

ing Module and Semantic Encoding Loss are conceptually

straight-forward and compatible with existing FCN based

approaches.

The second contribution of this paper is the design and

implementation of a new semantic segmentation framework

Context Encoding Network (EncNet). EncNet augments a

pre-trained Deep Residual Network (ResNet) [17] by in-

cluding a Context Encoding Module as shown in Figure 2.

We use dilation strategy [4,52] of pre-trained networks. The

proposed Context Encoding Network achieves state-of-the-

art results 85.9% mIoU on PASCAL VOC 2012 and 51.7%

on PASCAL in Context. Our single model of EncNet-101

has achieved a score of 0.5567 which surpass the winning

entry of COCO-Place Challenge 2017 [59]. In addition to

semantic segmentation, we also study the power of our Con-

text Encoding Module for visual recognition on CIFAR-10

dataset [28] and the performance of shallow network is sig-

nificantly improved using the proposed Context Encoding

Module. Our network has achieved an error rate of 3.96%
using only 3.5M parameters. We release the complete sys-

tem including state-of-the-art approaches together with our

implementation of synchronized multi-GPU Batch Normal-

ization [23] and memory-efficient Encoding Layer [56].

2. Context Encoding Module

We refer to the new CNN module as Context Encoding

Module and the components of the module are illustrated in

Figure 2.

Context Encoding Understanding and utilizing con-

textual information is very important for semantic seg-

mentation. For a network pre-trained on a diverse set

of images [10], the featuremaps encode rich information

what objects are in the scene. We employ the Encoding

Layer [56] to capture the feature statistics as a global se-

mantic context. We refer to the output of Encoding Layer

as encoded semantics. For utilizing the context, a set of

scaling factors are predicted to selectively highlight the

class-dependent featuremaps. The Encoding Layer learns

an inherent dictionary carrying the semantic context of the

dataset and outputs the residual encoders with rich contex-

tual information. We briefly describe the prior work of En-

coding Layer for completeness.
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Figure 2: Overview of the proposed EncNet. Given an input image, we first use a pre-trained CNN to extract dense con-

volutional featuremaps. We build a Context Encoding Module on top, including an Encoding Layer to capture the encoded

semantics and predict scaling factors that are conditional on these encoded semantics. These learned factors selectively high-

light class-dependent featuremaps (visualized in colors). In another branch, we employ Semantic Encoding Loss (SE-loss) to

regularize the training which lets the Context Encoding Module predict the presence of the categories in the scene. Finally, the

representation of Context Encoding Module is fed into the last convolutional layer to make per-pixel prediction. (Notation:

FC fully connected layer, Conv convolutional layer, Encode Encoding Layer [56],
⊗

channel-wise multiplication.)

Figure 3: Dilation strategy and losses. Each cube denotes

different network stages. We apply dilation strategy to the

stage 3 and 4. The Semantic Encoding Losses (SE-loss)

are added to both stage 3 and 4 of the base network. (D

denotes the dilation rate, Seg-loss represents the per-pixel

segmentation loss.)

Encoding Layer considers an input featuremap with the

shape of C ×H ×W as a set of C-dimensional input fea-

tures X = {x1, ...xN}, where N is total number of fea-

tures given by H ×W , which learns an inherent codebook

D = {d1, ...dK} containing K number of codewords (vi-

sual centers) and a set of smoothing factor of the visual cen-

ters S = {s1, ...sK}. Encoding Layer outputs the residual

encoder by aggregating the residuals with soft-assignment

weights ek =
∑N

i=1
eik, where

eik =
exp(−sk‖rik‖

2)
∑K

j=1
exp(−sj‖rij‖2)

rik, (1)

and the residuals are given by rik = xi − dk. We apply

aggregation to the encoders instead of concatenation. That

is, e =
∑K

k=1
φ(ek), where φ denotes Batch Normaliza-

tion with ReLU activation, avoid making K independent

encoders to be ordered and also reduce the dimensionality

of the feature representations.

Featuremap Attention To make use of the encoded se-

mantics captured by Encoding Layer, we predict scaling

factors of featuremaps as a feedback loop to emphasize or

de-emphasize class-dependent featuremaps. We use a fully

connected layer on top of the Encoding Layer and a sig-

moid as the activation function, which outputs predicted

featuremap scaling factors γ = δ(We), where W denotes

the layer weights and δ is the sigmoid function. Then the

module output is given by Y = X⊗γ a channel wise multi-

plication ⊗ between input featuremaps X and scaling factor

γ. This feedback strategy is inspired by prior work in style

transfer [22, 55] and a recent work SE-Net [20] that tune

featuremap scale or statistics. As an intuitive example of

the utility of the approach, consider emphasizing the proba-

bility of an airplane in a sky scene, but de-emphasizing that

of a vehicle.

Semantic Encoding Loss In standard training process of

semantic segmentation, the network is learned from isolated

pixels (per-pixel cross-entropy loss for given input image

and ground truth labels). The network may have difficulty

understanding context without global information. To reg-

ularize the training of Context Encoding Module, we in-

troduce Semantic Encoding Loss (SE-loss) which forces the

network to understand the global semantic information with

very small extra computation cost. We build an additional

fully connected layer with a sigmoid activation function on

top of the Encoding Layer to make individual predictions

for the presences of object categories in the scene and learn

with binary cross entropy loss. Unlike per-pixel loss, SE-

loss considers big and small objects equally. In practice, we

find the segmentation of small objects are often improved.

In summary, the Context Encoding Module shown in Fig-
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ure 2 captures the semantic context to predict a set of scal-

ing factors that selectively highlights the class-dependent

featuremap for semantic segmentation.

2.1. Context Encoding Network (EncNet)

With the proposed Context Encoding Module, we build

a Context Encoding Network (EncNet) with pre-trained

ResNet [17]. We follow the prior work using dilated net-

work strategy on pre-trained network [6, 53, 57] at stage 3

and 42, as shown in Figure 3. We build our proposed Con-

text Encoding Module on top of convolutional layers right

before the final prediction, as shown in Figure 2. For further

improving the performance and regularizing the training of

Context Encoding Module, we make a separate branch to

minimize the SE-loss that takes the encoded semantics as

input and predicts the presence of the object classes. As

the Context Encoding Module and SE-loss are very light

weight, we build another Context Encoding Module on top

of stage 3 to minimize the SE-loss as an additional regular-

ization, similar to but much cheaper than the auxiliary loss

of PSPNet [57]. The ground truths of SE-loss are directly

generated from the ground-truth segmentation mask with-

out any additional annotations.

Our Context Encoding Module is differentiable and in-

serted in the existing FCN pipeline without any extra train-

ing supervision or modification of the framework. In

terms of computation, the proposed EncNet only introduces

marginal extra computation to the original dilated FCN net-

work.

2.2. Relation to Other Approaches

Segmentation Approaches CNN has become de facto

standard in computer vision tasks including semantic seg-

mentation. The early approaches generate segmentation

masks by classifying region proposals [14, 15]. Fully Con-

volutional Neural Network (FCN) pioneered the era of end-

to-end segmentation [36]. However, recovering detailed in-

formation from downsampled featuremaps is difficult due to

the use of pre-trained networks that are originally designed

for image classification. To address this difficulty, one way

is to learn the upsampling filters, i.e. fractionally-strided

convolution or decoders [3,40]. The other path is to employ

Atrous/Dilated convolution strategy to the network [4, 52]

which preserves the large receptive field and produces dense

predictions. Prior work adopts dense CRF taking FCN out-

puts to refine the segmentation boundaries [5, 7], and CRF-

RNN achieves end-to-end learning of CRF with FCN [58].

Recent FCN-based work dramatically boosts performance

by increasing the receptive field with larger rate atrous

convolution or global/pyramid pooling [6, 34, 57]. How-

ever, these strategies have to sacrifice the efficiency of the

2We refer to the stage with original featuremap size 1/16 as stage 3 and

size 1/32 as stage 4.

Method BaseNet Encoding SE-loss MS pixAcc% mIoU%

FCN Res50 73.4 41.0

EncNet Res50 X 78.1 47.6

EncNet Res50 X X 79.4 49.2

EncNet Res101 X X 80.4 51.7

EncNet Res101 X X X 81.2 52.6

Table 1: Ablation study on PASCAL-Context dataset. En-

coding represents Context Encoding Module, SE-loss is the

proposed Semantic Segmentation loss, MS means multi-

size evaluation. Notably, applying Context Encoding Mod-

ule only introduce marginal extra computation, but the per-

formance is significantly improved. (PixAcc and mIoU cal-

culated on 59 classes w/o background.)

model, for example PSPNet [57] applies convolutions on

flat featuremaps after Pyramid Pooling and upsampling and

DeepLab [5] employs large rate atrous convolution that will

degenerate to 1 × 1 convolution in extreme cases. We pro-

pose the Context Encoding Module to efficiently leverage

global context for semantic segmentation, which only re-

quires marginal extra computation costs. In addition, the

proposed Context Encoding Module as a simple CNN unit

is compatible with all existing FCN-based approaches.

Featuremap Attention and Scaling The strategy of

channel-wise featuremap attention is inspired by some pi-

oneering work. Spatial Transformer Network [24] learns an

in-network transformation conditional on the input which

provides a spatial attention to the featuremaps without extra

supervision. Batch Normalization [23] makes the normal-

ization of the data mean and variance over the mini-batch as

part of the network, which successfully allows larger learn-

ing rate and makes the network less sensitive to the initial-

ization method. Recent work in style transfer manipulates

the featuremap mean and variance [11, 22] or second order

statistics to enable in-network style switch [55]. A very re-

cent work SE-Net explores the cross channel information

to learn a channel-wise attention and has achieved state-of-

the-art performance in image classification [20]. Inspired

by these methods, we use encoded semantics to predict scal-

ing factors of featuremap channels, which provides a mech-

anism to assign saliency by emphasizing or de-emphasizing

individual featuremaps conditioned on scene context.

3. Experimental Results

In this section, we first provide implementation de-

tails for EncNet and baseline approach, then we conduct

a complete ablation study on Pascal-Context dataset [39],

and finally we report the performances on PASCAL VOC

2012 [12] and ADE20K [59] datasets. In addition to se-

mantic segmentation, we also explore how the Context En-

coding Module can improve the image classification perfor-

mance of shallow network on CIFAR-10 dataset in Sec 3.5.
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(a) Image (b) Ground Truth (c) FCN (baseline) (d) EncNet (ours) (e) Legend

Figure 4: Understanding contextual information of the scene is important for semantic segmentation. For example, baseline

FCN classifies sand as earth without knowing the context as in 1st example. building, house and skyscraper are hard to

distinguish without the semantics as in 2nd and 4th rows. In the 3rd example, FCN identify windowpane as door due to

classifying isolated pixels without a global sense/view. (Visual examples from ADE20K dataset.)

3.1. Implementation Details

Our experiment system including pre-trained models are

based on open source toolbox PyTorch [41]. We apply di-

lation strategy to stage 3 and 42 of the pre-trained networks

with the output size of 1/8 [4, 52]. The output predictions

are upsampled 8 times using bilinear interpolation for cal-

culating the loss [6]. We follow prior work [5,57] to use the

learning rate scheduling lr = baselr ∗ (1− iter
total iter

)power.

The base learning rate is set to 0.01 for ADE20K dataset

and 0.001 for others and the power is set to 0.9. The mo-

mentum is set to 0.9 and weight decay is set to 0.0001.

The networks are training for 50 epochs on PASCAL-

Context [39] and PASCAL VOC 2012 [12], and 120 epochs

on ADE20K [59]. We randomly shuffle the training sam-

ples and discard the last mini-batch. For data augmentation,

we randomly flip and scale the image between 0.5 to 2 and

then randomly rotate the image between -10 to 10 degree

and finally crop the image into fix size using zero padding

if needed. For evaluation, we average the network predic-

tion in multiple scales following [34, 43, 57].

In practice, larger crop size typically yields better per-

formance for semantic segmentation, but also consumes

larger GPU memory which leads to much smaller work-

ing batchsize for Batch Normalization [23] and degrades

the training. To address this difficulty, we implement Syn-

chronized Cross-GPU Batch Normalization in PyTorch us-

ing NVIDIA CUDA & NCCL toolkit, which increases the

working batchsize to be global mini-batch size. We use

the mini-batch size of 16 during the training. For compar-

ison with our work, we use dilated ResNet FCN as base-

line approaches. For training EncNet, we use the number of

codewords 32 in Encoding Layers. The ground truth labels

for SE-loss are generated by “unique” operation finding the
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Figure 5: Ablation study of SE-loss and number of code-

words. Left: mIoU and pixAcc as a function of SE-loss

weight α. Empirically, the SE-loss works best with α =
0.2. Right: mIoU and pixAcc as a function of number of

codewords K in Encoding Layer, K = 0 denotes using

global average pooling. The results are tested using single

scale evaluation. (Note: the axes are different on left and

right sides. )

Method BaseNet mIoU%

FCN-8s [36] 37.8

CRF-RNN [58] 39.3

ParseNet [34] 40.4

BoxSup [9] 40.5

HO CRF [2] 41.3

Piecewise [32] 43.3

VeryDeep [49] 44.5

DeepLab-v2 [5] Res101-COCO 45.7

RefineNet [31] Res152 47.3

EncNet (ours) Res101 51.7

Table 2: Segmentation results on PASCAL-Context dataset.

(Note: mIoU on 60 classes w/ background.)

categories presented in the given ground-truth segmentation

mask. The final loss is given by a weighted sum of per-pixel

segmentation loss and SE-Loss.

Evaluation Metrics We use standard evaluation met-

rics of pixel accuracy (pixAcc) and mean Intersection of

Union (mIoU). For object segmentation in PASCAL VOC

2012 dataset, we use the official evaluation server that cal-

culates mIoU considering the background as one of the cate-

gories. For whole scene parsing datasets PASCAL-Context

and ADE20K, we follow the standard competition bench-

mark [59] to calculate mIoU by ignoring background pix-

els.

3.2. Results on PASCAL­Context

PASCAL-Context dataset [39] provides dense semantic

labels for the whole scene, which has 4,998 images for

training and 5105 for test. We follow the prior work [5,

31, 39] to use the semantic labels of the most frequent 59

object categories plus background (60 classes in total). We

use the pixAcc and mIoU for 59 classes as evaluation met-

rics in the ablation study of EncNet. For comparing to prior

work, we also report the mIoU using 60 classes in Table 2

(a) Image (b) Ground Truth (c) FCN (d) EncNet (ours)

Figure 6: Visual examples in PASCAL-Context dataset.

EncNet produce more accurate predictions.

(considering the background as one of the classes).

Ablation Study. To evaluate the performance of EncNet,

we conduct experiments with different settings as shown

in Table 1. Comparing to baseline FCN, simply adding a

Context Encoding Module on top yields results of 78.1/47.6

(pixAcc and mIoU), which only introduces around 3%-5%

extra computation but dramatically outperforms the base-

line results of 73.4/41.0. To study the effect of SE-loss,

we test different weights of SE-loss α ={0.0, 0.1, 0.2,

0.4, 0.8}, and we find α = 0.2 yields the best perfor-

mance as shown in Figure 5 (left). We also study effect

of the number of codewords K in Encoding Layer in Fig-

ure 5 (right), we use K = 32 because the improvement

gets saturated (K = 0 means using global average pool-

ing instead). Deeper pre-trained network provides better

feature representations, EncNet gets additional 2.5% im-

provement in mIoU employing ResNet101. Finally, multi-

size evaluation yields our final scores of 81.2% pixAcc and

52.6% mIoU, which is 51.7% including background. Our

proposed EncNet outperform previous state-of-the-art ap-

proaches [5,31] without using COCO pre-training or deeper

model (ResNet152) (see results in Table 2 and Figure 6).

3.3. Results on PASCAL VOC 2012

We also evaluate the performance of proposed Enc-

Net on PASCAL VOC 2012 dataset [12], one of gold

standard benchmarks for semantic segmentation. Follow-

ing [6, 9, 36], We use the augmented annotation set [16],

consisting of 10,582, 1,449 and 1,456 images in training,

validation and test set. The models are trained on train+val
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mIoU

FCN [36] 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2

DeepLabv2 [4] 84.4 54.5 81.5 63.6 65.9 85.1 79.1 83.4 30.7 74.1 59.8 79.0 76.1 83.2 80.8 59.7 82.2 50.4 73.1 63.7 71.6

CRF-RNN [58] 87.5 39.0 79.7 64.2 68.3 87.6 80.8 84.4 30.4 78.2 60.4 80.5 77.8 83.1 80.6 59.5 82.8 47.8 78.3 67.1 72.0

DeconvNet [40] 89.9 39.3 79.7 63.9 68.2 87.4 81.2 86.1 28.5 77.0 62.0 79.0 80.3 83.6 80.2 58.8 83.4 54.3 80.7 65.0 72.5

GCRF [47] 85.2 43.9 83.3 65.2 68.3 89.0 82.7 85.3 31.1 79.5 63.3 80.5 79.3 85.5 81.0 60.5 85.5 52.0 77.3 65.1 73.2

DPN [35] 87.7 59.4 78.4 64.9 70.3 89.3 83.5 86.1 31.7 79.9 62.6 81.9 80.0 83.5 82.3 60.5 83.2 53.4 77.9 65.0 74.1

Piecewise [32] 90.6 37.6 80.0 67.8 74.4 92.0 85.2 86.2 39.1 81.2 58.9 83.8 83.9 84.3 84.8 62.1 83.2 58.2 80.8 72.3 75.3

ResNet38 [50] 94.4 72.9 94.9 68.8 78.4 90.6 90.0 92.1 40.1 90.4 71.7 89.9 93.7 91.0 89.1 71.3 90.7 61.3 87.7 78.1 82.5

PSPNet [57] 91.8 71.9 94.7 71.2 75.8 95.2 89.9 95.9 39.3 90.7 71.7 90.5 94.5 88.8 89.6 72.8 89.6 64.0 85.1 76.3 82.6

EncNet (ours)3 94.1 69.2 96.3 76.7 86.2 96.3 90.7 94.2 38.8 90.7 73.3 90.0 92.5 88.8 87.9 68.7 92.6 59.0 86.4 73.4 82.9

With COCO Pre-training

CRF-RNN [58] 90.4 55.3 88.7 68.4 69.8 88.3 82.4 85.1 32.6 78.5 64.4 79.6 81.9 86.4 81.8 58.6 82.4 53.5 77.4 70.1 74.7

Dilation8 [52] 91.7 39.6 87.8 63.1 71.8 89.7 82.9 89.8 37.2 84.0 63.0 83.3 89.0 83.8 85.1 56.8 87.6 56.0 80.2 64.7 75.3

DPN [35] 89.0 61.6 87.7 66.8 74.7 91.2 84.3 87.6 36.5 86.3 66.1 84.4 87.8 85.6 85.4 63.6 87.3 61.3 79.4 66.4 77.5

Piecewise [32] 94.1 40.7 84.1 67.8 75.9 93.4 84.3 88.4 42.5 86.4 64.7 85.4 89.0 85.8 86.0 67.5 90.2 63.8 80.9 73.0 78.0

DeepLabv2 [5] 92.6 60.4 91.6 63.4 76.3 95.0 88.4 92.6 32.7 88.5 67.6 89.6 92.1 87.0 87.4 63.3 88.3 60.0 86.8 74.5 79.7

RefineNet [31] 95.0 73.2 93.5 78.1 84.8 95.6 89.8 94.1 43.7 92.0 77.2 90.8 93.4 88.6 88.1 70.1 92.9 64.3 87.7 78.8 84.2

ResNet38 [50] 96.2 75.2 95.4 74.4 81.7 93.7 89.9 92.5 48.2 92.0 79.9 90.1 95.5 91.8 91.2 73.0 90.5 65.4 88.7 80.6 84.9

PSPNet [57] 95.8 72.7 95.0 78.9 84.4 94.7 92.0 95.7 43.1 91.0 80.3 91.3 96.3 92.3 90.1 71.5 94.4 66.9 88.8 82.0 85.4

DeepLabv3 [6] 96.4 76.6 92.7 77.8 87.6 96.7 90.2 95.4 47.5 93.4 76.3 91.4 97.2 91.0 92.1 71.3 90.9 68.9 90.8 79.3 85.7

EncNet (ours)4 95.3 76.9 94.2 80.2 85.2 96.5 90.8 96.3 47.9 93.9 80.0 92.4 96.6 90.5 91.5 70.8 93.6 66.5 87.7 80.8 85.9

Table 3: Per-class results on PASCAL VOC 2012 testing set. EncNet outperforms existing approaches and achieves 82.9%

and 85.9% mIoU w/o and w/ pre-training on COCO dataset. (The best two entries in each columns are marked in gray color.

Note: the entries using extra than COCO data are not included [6, 38, 48].)

set and then finetuned on the original PASCAL training set.

EncNet has achieved 82.9% mIoU3 outperforming all pre-

vious work without COCO data and achieve superior per-

formance in many categories, as shown in Table 3. For

comparison with state-of-the-art approaches, we follow the

procedure of pre-training on MS-COCO dataset [33]. From

the training set of MS-COCO dataset, we select with im-

ages containing the 20 classes shared with PASCAL dataset

with more than 1,000 labeled pixels, resulting in 6.5K im-

ages. All the other classes are marked as background. Our

model is pre-trained using a base learning rate of 0.01 and

then fine-tuned on PASCAL dataset using aforementioned

setting. EncNet achieves the best result of 85.9% mIoU4 as

shown in Table 3. Comparing to state-of-the-art approaches

of PSPNet [57] and DeepLabv3 [6], the EncNet has less

computation complexity.

3.4. Results on ADE20K

ADE20K dataset [59] is a recent scene parsing bench-

mark containing dense labels of 150 stuff/object category

labels. The dataset includes 20K/2K/3K images for train-

ing, validation and set. We train our EncNet on the train-

ing set and evaluate it on the validation set using Pix-

Acc and mIoU. Visual examples are shown in Figure 4.

The proposed EncNet significantly outperforms the baseline

FCN. EncNet-101 achieves comparable results with state-

of-the-art PSPNet-269 using much shallower base network

as shown in Table 4. We fine-tune the EncNet-101 for ad-

ditional 20 epochs on train-val set and submit the results

3
http://host.robots.ox.ac.uk:8080/anonymous/PCWIBH.html

4
http://host.robots.ox.ac.uk:8080/anonymous/RCC1CZ.html

Method BaseNet pixAcc% mIoU%

FCN [36] 71.32 29.39

SegNet [3] 71.00 21.64

DilatedNet [52] 73.55 32.31

CascadeNet [59] 74.52 34.90

RefineNet [31] Res152 - 40.7

PSPNet [57] Res101 81.39 43.29

PSPNet [57] Res269 81.69 44.94

FCN (baseline) Res50 74.57 34.38

EncNet (ours) Res50 79.73 41.11

EncNet (ours) Res101 81.69 44.65

Table 4: Segmentation results on ADE20K validation set.

rank Team Final Score

- (EncNet-101, single model ours) 0.55675

1 CASIA IVA JD 0.5547

2 WinterIsComing 0.5544

- (PSPNet-269, single model) [57] 0.5538

Table 5: Result on ADE20K test set, ranks in COCO-Place

challenge 2017. Our single model surpass PSP-Net-269 (1st

place in 2016) and the winning entry of COCO-Place chal-

lenge 2017 [59].

on test set. The EncNet achieves a final score of 0.55675,

which surpass PSP-Net-269 (1st place in 2016) and all en-

tries in COCO Place Challenge 2017 (shown in Table 5).

5Evaluation provided by the ADE20K organizers.
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3.5. Image Classification Results on CIFAR­10

In addition to semantic segmentation, we also conduct

studies of Context Encoding Module for image recogni-

tion on CIFAR-10 dataset [28] consisting of 50K training

images and 10K test images in 10 classes. State-of-the-

art methods typically rely on very deep and large mod-

els [17, 19, 21, 51]. In this section, we explore how much

Context Encoding Module will improve the performance of

a relatively shallow network, a 14-layer ResNet [17].

Implementation Details. For comparison with our

work, we first implement a wider version of pre-activation

ResNet [19] and a recent work Squeeze-and-Excitation Net-

works (SE-Net) [20] as our baseline approaches. ResNet

consists a 3×3 convolutional layer with 64 channels, fol-

lowed by 3 stages with 2 basicblocks in each stage and

ends up with a global average pooling and a 10-way fully-

connected layer. The basicblock consists two 3×3 convo-

lutional layers with an identity shortcut. We downsample

twice at stage 2 and 3, the featuremap channels are doubled

when downsampling happens. We implement SE-Net [20]

by adding a Squeeze-and-Excitation unit on top of each ba-

sicblocks of ResNet (to form a SE-Block), which uses the

cross channel information as a feedback loop. We follow

the original paper using a reduction factor of 16 in SE-

Block. For EncNet, we build Context Encoding Module

on top of each basicblocks in ResNet, which uses the global

context to predict the scaling factors of residuals to preserve

the identity mapping along the network. For Context En-

coding Module, we first use a 1×1 convolutional layer to

reduce the channels by 4 times, then apply Encoding Layer

with concatenation of encoders and followed by a L2 nor-

malization.

For training, we adopt the MSRA weight initializa-

tion [18] and use Batch Normalization [23] with weighted

layers. We use a weight decay of 0.0005 and momentum of

0.9. The models are trained with a mini-batch size of 128

on two GPUs using a cosine learning rate scheduling [21]

for 600 epochs. We follow the standard data augmenta-

tion [17] for training, which pads the image by 4 pixels

along each border and random crops into the size of 32×32.

During the training of EncNet, we collect the statistics of

the scaling factor of Encoding Layers sk and find it tends

to be 0.5 with small variance. In practice, when applying

a dropout [45]/shakeout [27] like regularization to sk can

improve the training to reach better optimum, by randomly

assigning the scaling factors sk in Encoding Layer during

the forward and backward passes of the training, drawing a

uniform distribution between 0 and 1, and setting sk = 0.5
for evaluation.

We find our training process (larger training epochs with

cosine lr schedule) is likely to improve the performance

of all approaches. EncNet outperforms the baseline ap-

Method Depth Params Error

ResNet (pre-act) [19] 1001 10.2M 4.62

Wide ResNet 28×10 [54] 28 36.5M 3.89

ResNeXt-29 16×64d [51] 29 68.1M 3.58

DenseNet-BC (k=40) [21] 190 25.6M 3.46

ResNet 64d (baseline) 14 2.7M 4.93

Se-ResNet 64d (baseline) 14 2.8M 4.65

EncNet 16k64d (ours) 14 3.5M 3.96

EncNet 32k128d (ours) 14 16.8M 3.45

Table 6: Comparison of model depth, number of parameters

(M), test errors (%) on CIFAR-10. d denotes the dimen-

sions/channels at network stage-1, and k denotes number of

codewords in Encoding Net.

proaches with similar model complexity. The experimen-

tal results demonstrate that Context Encoding Module im-

proves the feature representations of the network at an early

stage using global context, which is hard to learn for a

standard network architecture only consisting convolutional

layers, non-linearities and downsamplings. Our experi-

ments shows that a shallow network of 14 layers with Con-

text Encoding Module has achieved 3.45% error rate on CI-

FAR10 dataset as shown in Table 6, which is comparable

performance with state-of-the art approaches [21, 51].

4. Conclusion

To capture and utilize the contextual information for

semantic segmentation, we introduce a Context Encoding

Module, which selectively highlights the class-dependent

featuremap and “simplifies” the problem for the network.

The proposed Context Encoding Module is conceptually

straightforward, light-weight and compatible with existing

FCN base approaches. The experimental results has demon-

strated superior performance of the proposed EncNet. We

expect the strategy of Context Encoding and our state-of-

the-art implementation (including baselines, Synchronized

Cross-GPU Batch Normalization and Encoding Layer) can

be beneficial to scene parsing and semantic segmentation

work in the community.
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