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Abstract

The goal of our work is to complete the depth channel of

an RGB-D image. Commodity-grade depth cameras often

fail to sense depth for shiny, bright, transparent, and distant

surfaces. To address this problem, we train a deep network

that takes an RGB image as input and predicts dense sur-

face normals and occlusion boundaries. Those predictions

are then combined with raw depth observations provided by

the RGB-D camera to solve for depths for all pixels, includ-

ing those missing in the original observation. This method

was chosen over others (e.g., inpainting depths directly) as

the result of extensive experiments with a new depth com-

pletion benchmark dataset, where holes are filled in training

data through the rendering of surface reconstructions cre-

ated from multiview RGB-D scans. Experiments with dif-

ferent network inputs, depth representations, loss functions,

optimization methods, inpainting methods, and deep depth

estimation networks show that our proposed approach pro-

vides better depth completions than these alternatives.

1. Introduction

Depth sensing has become pervasive in applications

as diverse as autonomous driving, augmented reality, and

scene reconstruction. Despite recent advances in depth

sensing technology, commodity-level RGB-D cameras like

Microsoft Kinect, Intel RealSense, and Google Tango still

produce depth images with missing data when surfaces are

too glossy, bright, thin, close, or far from the camera. These

problems appear when rooms are large, surfaces are shiny,

and strong lighting is abundant – e.g., in museums, hospi-

tals, classrooms, stores, etc. Even in homes, depth images

often are missing more than 50% of the pixels (Figure 1).

The goal of our work is to complete the depth channel of

an RGB-D image captured with a commodity camera (i.e.,

fill all the holes). Though depth inpainting has received a

lot of attention over the past two decades [64], it has gener-

ally been addressed with hand-tuned methods that fill holes

by extrapolating boundary surfaces [46] or with Markovian

image synthesis [13]. Newer methods have been proposed

to estimate depth de novo from color using deep networks
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Figure 1. Depth Completion. We fill in large missing areas in

the depth channel of an RGB-D image by predicting normals from

color and then solving for completed depths.

[16]. However, they have not been used for depth comple-

tion, which has its own unique challenges:

Training data: Large-scale training sets are not readily

available for captured RGB-D images paired with ”com-

pleted” depth images (e.g., where ground-truth depth is pro-

vided for holes). As a result, most methods for depth es-

timation are trained and evaluated only for pixels that are

captured by commodity RGB-D cameras [59]. From this

data, they can at-best learn to reproduce observed depths,

but not complete depths that are unobserved, which have

significantly different characteristics. To address this issue,

we introduce a new dataset with 105,432 RGB-D images

aligned with completed depth images computed from large-

scale surface reconstructions in 72 real-world environments.

Depth representation: The obvious approach to address

our problem is to use the new dataset as supervision to train

a fully convolutional network to regress depth directly from

RGB-D. However, that approach does not work very well,

especially for large holes like the one shown in the bottom

row of Figure 1. Estimating absolute depths from a monoc-

ular color image is difficult even for people [48]. Rather,

we train the network to predict only local differential prop-

erties of depth (surface normals and occlusion boundaries),

which are much easier to estimate [31]. We then solve for

the absolute depths with a global optimization.

Deep network design: There is no previous work on study-

ing how best to design and train an end-to-end deep network

for completing depth images from RGB-D inputs. At first

glance, it seems straight-forward to extend previous net-
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Figure 2. System pipeline. Given an input RGB-D image, we predict surface normals and occlusion boundaries from color, and then solve

for the output depths with a global linear optimization regularized by the input depth.

works trained for color-to-depth (e.g., by providing them

an extra depth channel as input). However, we found it dif-

ficult to train the networks to fill large holes from depth in-

puts – they generally learn only to copy and interpolate the

input depth. It is also challenging for the network to learn

how to adapt for misalignments of color and depth. Our so-

lution is to provide the network with only color images as

input (Figure 2). We train it to predict local surface nor-

mals and occlusion boundaries with supervision. We later

combine those predictions with the input depths in a global

optimization to solve back to the completed depth. In this

way, the network predicts only local features from color, a

task where it excels. The coarse-scale structure of the scene

is reconstructed through global optimization with regular-

ization from the input depth.

Overall, our main algorithmic insight is that it is best

to decompose RGB-D depth completion into two stages:

1) prediction of surface normals and occlusion boundaries

only from color, and 2) optimization of global surface struc-

ture from those predictions with soft constraints provided

by observed depths. During experiments we find with this

proposed approach has significantly smaller relative error

than alternative approaches. It has the extra benefit that the

trained network is independent of the observed depths and

so does not need to be retrained for new depth sensors.

2. Related Work

There has been a large amount of prior work on depth

estimation, inpainting, and processing.

Depth estimation. Depth estimation from a monocular

color image is a long-standing problem in computer vi-

sion. Classic methods include shape-from-shading [73] and

shape-from-defocus [61]. Other early methods were based

on hand-tuned models and/or assumptions about surface

orientations [27, 55, 56]. Newer methods treat depth esti-

mation as a machine learning problem, most recently using

deep networks [16, 68]. For example, Eigen et al. first used

a multiscale convolutional network to regress from color

images to depths [16, 15]. Laina et al. used a fully convolu-

tional network architecture based on ResNet [33]. Liu et al.

proposed a deep convolutional neural field model combin-

ing deep networks with Markov random fields [36]. Roy et

al. combined shallow convolutional networks with regres-

sion forests to reduce the need for large training sets [54].

All of these methods are trained only to reproduce the raw

depth acquired with commodity RGB-D cameras. In con-

trast, we focus on depth completion, where the explicit goal

is to make novel predictions for pixels where the depth sen-

sor has no return. Since these pixels are often missing in

the raw depth, methods trained only on raw depth as super-

vision do not predict them well.

Depth inpainting. Many methods have been proposed for

filling holes in depth channels of RGB-D images, includ-

ing ones that employ smoothness priors [26], fast march-

ing methods [21, 38], Navier-Stokes [4], anisotropic diffu-

sion [37], background surface extrapolation [46, 49, 62],

color-depth edge alignment [8, 72, 76], low-rank matrix

completion [70], tensor voting [32], Mumford-Shah func-

tional optimization [40], joint optimization with other prop-

erties of intrinsic images [2], and patch-based image syn-

thesis [9, 13, 20]. Recently, methods have been proposed

for inpainting color images with auto-encoders [65] and

GAN architectures [53]. However, prior work has not in-

vestigated how to use those methods for inpainting of depth

images. This problem is more difficult due to the absence of

strong features in depth images and the lack of large training

datasets, an issue addressed in this paper.

Depth super-resolution. Several methods have been pro-

posed to improve the spatial resolution of depth images us-

ing high-resolution color. They have exploited a variety of

approaches, including Markov random fields [44, 12, 42,

51, 58], shape-from-shading [23, 71], segmentation [41],

and dictionary methods [18, 30, 45, 63]. Although some

of these techniques may be used for depth completion, the

challenges of super-resolution are quite different – there
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the focus is on improving spatial resolution, where low-

resolution measurements are assumed to be complete and

regularly sampled. In contrast, our focus is on filling holes,

which can be quite large and complex and thus require syn-

thesis of large-scale content.

Depth reconstruction from sparse samples. Other work

has investigated depth reconstruction from color images

augmented with sparse sets of depth measurements. Hawe

et al. investigated using a Wavelet basis for reconstruction

[25]. Liu et al. combined wavelet and contourlet dictionar-

ies [39]. Ma et al. showed that providing ∼100 well-spaced

depth samples improves depth estimation over color-only

methods by two-fold for NYUv2 [43], yet still with rela-

tively low-quality results. These methods share some ideas

with our work. However, their motivation is to reduce the

cost of sensing in specialized settings (e.g., to save power

on a robot), not to complete data typically missed in readily

available depth cameras.

3. Method

In this paper, we investigate how to use a deep network to

complete the depth channel of a single RGB-D image. Our

investigation focuses on the following questions: “how can

we get training data for depth completion?,” “what depth

representation should we use?,” and “how should cues from

color and depth be combined?.”

3.1. Dataset

The first issue we address is to create a dataset of RGB-D

images paired with completed depth images.

A straight-forward approach to this task would be to cap-

ture images with a low-cost RGB-D camera and align them

to images captured simultaneously with a higher cost depth

sensor. This approach is costly and time-consuming – the

largest public datasets of this type cover a handful of indoor

scenes (e.g., [52, 57, 70]).

Instead, to create our dataset, we utilize existing sur-

face meshes reconstructed from multi-view RGB-D scans

of large environments. There are several datasets of this

type, including Matterport3D [6], ScanNet [10], SceneNN

[28], and SUN3D [22, 67], to name a few. We use Matter-

port3D. For each scene, we extract a triangle mesh M with

∼1-6 million triangles per room from a global surface re-

construction using screened Poisson surface reconstruction

[29]. Then, for a sampling of RGB-D images in the scene,

we render the reconstructed mesh M from the camera pose

of the image viewpoint to acquire a completed depth image

D*. This process provides us with a set of RGB-D → D*

image pairs without having to collect new data.

Figure 3 shows some examples of depth image comple-

tions from our dataset. Though the completions are not

always perfect, they have several favorable properties for

Color Raw depth Rendered depth

Figure 3. Depth Completion Dataset. Depth completions are

computed from multi-view surface reconstructions of large indoor

environments. In this example, the bottom shows the raw color and

depth channels with the rendered depth for the viewpoint marked

as the red dot. The rendered mesh (colored by vertex in large im-

age) is created by combining RGB-D images from a variety of

other views spread throughout the scene (yellow dots), which col-

laborate to fill holes when rendered to the red dot view.

training a deep network for our problem [47]. First, the

completed depth images generally have fewer holes. That’s

because it is not limited by the observation of one cam-

era viewpoint (e.g., the red dot in Figure 3), but instead by

the union of all observations of all cameras viewpoints con-

tributing to the surface reconstruction (yellow dots in Fig-

ure 3). As a result, surfaces distant to one view, but within

range of another, will be included in the completed depth

image. Similarly, glossy surfaces that provide no depth data

when viewed at a grazing angle usually can be filled in with

data from other cameras viewing the surface more directly

(note the completion of the shiny floor in rendered depth).

On average, 64.6% of the pixels missing from the raw depth

images are filled in by our reconstruction process.

Second, the completed depth images generally replicate

the resolution of the originals for close-up surfaces, but pro-

vide far better resolution for distant surfaces. Since the sur-

face reconstructions are constructed at a 3D grid size com-

parable to the resolution of a depth camera, there is usually

no loss of resolution in completed depth images. However,

that same 3D resolution provides an effectively higher pixel

resolution for surfaces further from the camera when pro-

jected onto the view plane. As a result, completed depth

images can leverage subpixel antialiasing when rendering

high resolution meshes to get finer resolution than the orig-

inals (note the detail in the furniture in Figure 3).

Finally, the completed depth images generally have far

less noise than the originals. Since the surface reconstruc-

tion algorithm combines noisy depth samples from many
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camera views by filtering and averaging, it essentially de-

noises the surfaces. This is especially important for distant

observations (e.g., >4 meters), where raw depth measure-

ments are quantized and noisy.

In all, our dataset contains 117,516 RGB-D images with

rendered completions, which we split into a training set with

105,432 images and a test set with 12,084 images.

3.2. Depth Representation

A second interesting question is “what geometric repre-

sentation is best for deep depth completion?”

A straight-forward approach is to design a network that

regresses completed depth from raw depth and color. How-

ever, absolute depth can be difficult to predict from monoc-

ular images, as it may require knowledge of object sizes,

scene categories, etc. Instead, we train the network to pre-

dict local properties of the visible surface at each pixel and

then solve back for the depth from those predictions.

Previous work has considered a number of indirect rep-

resentations of depth. For example, Chen et al. investi-

gated relative depths [7]. Charkrabarti et al. proposed depth

derivatives [5]. Li et al. used depth derivatives in conjunc-

tion with depths [35]. We have experimented with methods

based on predicted derivatives. However, we find that they

do not perform the best in our experiments (see Section 4).

Instead, we focus on predicting surface normals and

occlusion boundaries. Since normals are differential sur-

face properties, they depend only on local neighborhoods

of pixels. Moreover, they relate strongly to local light-

ing variations directly observable in a color image. For

these reasons, previous works on dense prediction of sur-

face normals from color images produce excellent results

[1, 15, 34, 66, 75]. Similarly, occlusion boundaries produce

local patterns in pixels (e.g., edges), and so they usually can

be robustly detected with a deep network [14, 75].

A critical question, though, is how we can use pre-

dicted surface normals and occlusion boundaries to com-

plete depth images. Several researchers have used pre-

dicted normals to refine details on observed 3D surfaces

[24, 50, 69], and Galliani et al. [19] used surface normals to

recover missing geometry in multi-view reconstruction for

table-top objects. However, nobody has ever used surface

normals before for depth estimation or completion from

monocular RGB-D images in complex environments.

Unfortunately, it is theoretically not possible to solve for

depths from only surface normals and occlusion boundaries.

There can be pathological situations where the depth rela-

tionships between different parts of the image cannot be in-

ferred only from normals. For example, in Figure 4(a), it

is impossible to infer the depth of the wall seen through the

window based on only the given surface normals. In this

case, the visible region of the wall is enclosed completely

by occlusion boundaries (contours) from the perspective of

(a) Ambiguity (b) Dense connected path in real scene

Figure 4. Using surface normals to solve for depth completion.

(a) An example of where depth cannot be solved from surface nor-

mal. (b) The area missing depth is marked in red. The red arrow

shows paths on which depth cannot be integrated from surface nor-

mals. However in real-world images, there are usually many paths

through connected neighboring pixels (along floors, ceilings, etc.)

over which depths can be integrated (green arrows).

the camera, leaving its depth indeterminate with respect to

the rest of the image.

In practice, however, for real-world scenes it is very un-

likely that a region of an image will both be surrounded

by occlusion boundaries AND contain no raw depth ob-

servations at all (Figure 4(b)). Therefore, we find it prac-

tical to complete even large holes in depth images using

predicted surface normals with coherence weighted by pre-

dicted occlusion boundaries and regularization constrained

by observed raw depths. During experiments, we find that

solving depth from predicted surface normals and occlusion

boundaries results in better depth completions than predict-

ing absolute depths directory, or even solving from depth

derivatives (see Section 4).

3.3. Network Architecture and Training

A third interesting question is “what is the best way to

train a deep network to predict surface normals and occlu-

sion boundaries for depth completion?”

For our study, we pick the deep network architecture pro-

posed in Zhang et.al because it has shown competitive per-

formance on both normal estimation and boundary detec-

tion [75]. The model is a fully convolutional neural network

built on the back-bone of VGG-16 with symmetry encoder

and decoder. It is also equipped with short-cut connections

and shared pooling masks for corresponding max pooling

and unpooling layers, which are critical for learning local

image features. We train the network with “ground truth”

surface normals and silhouette boundaries computed from

the reconstructed mesh.

After choosing this network, there are still several inter-

esting questions regarding how to training it for depth com-

pletion. The following paragraphs consider these questions

with a focus on normal estimation, but the issues and con-

clusions apply similarly for occlusion boundary detection.

What loss should be used to train the network? Unlike

past work on surface normal estimation, our primary goal is

to train a network to predict normals only for pixels inside
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holes of raw observed depth images. Since the color ap-

pearance characteristics of those pixels are likely different

than the others (shiny, far from the camera, etc.), one might

think that the network should be supervised to regress nor-

mals only for these pixels. Yet, there are fewer pixels in

holes than not, and so training data of that type is limited. It

was not obvious whether it is best to train only on holes vs.

all pixels. So, we tested both and compared.

We define the observed pixels as the ones with depth data

from both the raw sensor and the rendered mesh, and the

unobserved pixels as the ones with depth from the rendered

mesh but not the raw sensor. For any given set of pixels

(observed, unobserved, or both), we train models with a loss

for only those pixels by masking out the gradients on other

pixels during the back-propagation.

Qualitative and quantitative results comparing the results

for different trained models are shown in supplemental ma-

terial. The results suggest that the models trained with all

pixels perform better than the ones using only observed or

only unobserved pixels, and ones trained with rendered nor-

mals perform better than with raw normals.

What image channels should be input to the network?

One might think that the best way to train the network to

predict surface normals from a raw RGB-D image is to pro-

vide all four channels (RGBD) and train it to regress the

three normal channels. However, surprisingly, we find that

our networks performed poorly at predicting normals for

pixels without observed depth when trained that way. They

are excellent at predicting normals for pixels with observed

depth, but not for the ones in holes – i.e., the ones required

for depth completion. This result holds regardless of what

pixels are included in the loss.

We conjecture that the network trained with raw depth

mainly learns to compute normals from depth directly – it

fails to learn how to predict normals from color when depth

is not present, which is the key skill for depth completion.

In general, we find that the network learns to predict nor-

mals better from color than depth, even if the network is

given an extra channel containing a binary mask indicating

which pixels have observed depth [74]. For example, in Fig-

ure 5, we see that the normals predicted in large holes from

color alone are better than from depth, and just as good as

from both color and depth. Quantitative experiments sup-

port this finding in Table 1.

This result is very interesting because it suggests that we

can train a network to predict surface normals from color

alone and use the observed depth only as regularization

when solving back for depth from normals (next section).

This strategy of separating “prediction without depth” from

“optimization with depth” is compelling for two reasons.

First, the prediction network does not have to be retrained

for different depth sensors. Second, the optimization can be

generalized to take a variety of depth observations as reg-

Color ImageSensor Depth

Using ColorUsing Depth Using Color + Depth

Ground Truth

Figure 5. Surface normal estimation for different inputs. The

top row shows an input color image, raw depth, and the rendered

normal. The bottom row shows surface normal predictions when

the inputs are depth only, color only, and both. The middle one per-

forms the best for the missing area, while comparable elsewhere

with the other two models even without depth as input.

ularization, including perhaps sparse depth samples [43].

This is investigated experimentally in Section 4.

3.4. Optimization

After predicting the surface normal image N and occlu-
sion boundary image B, we solve a system of equations to
complete the depth image D. The objective function is de-
fined as the weighted sum of squared errors with four terms:

E = λDED + λSES + λNENB

ED =
∑

p∈Tobs

||D(p)−D0(p)||
2

EN =
∑

p,q∈N

|| < v(p, q), N(p) > ||2

ES =
∑

p,q∈N

||D(p)−D(q))|2

(1)

where ED measures the distance between the estimated

depth D(p) and the observed raw depth D0(p) at pixel p,

EN measures the consistency between the estimated depth

and the predicted surface normal N(p), ES encourages ad-

jacent pixels to have the same depths. B ∈ [0, 1] down-

weights the normal terms based on the predicted probability

a pixel is on an occlusion boundary (B(p)).

In its simplest form, this objective function is non-linear,

due to the normalization of the tangent vector v(p, q) re-

quired for the dot product with the surface normal in EN .

However, we can approximate this error term with a linear

formation by foregoing the vector normalization, as sug-

gested in [50]. In other settings, this approximation would

add sensitivity to scaling errors, since smaller depths result

in shorter tangents and potentially smaller EN terms. How-

ever, in a depth completion setting, the data term ED forces

the global solution to maintain the correct scale by enforc-
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Depth Completion Surface Normal Estimation

Input Rel↓ RMSE↓ 1.05↑ 1.10↑ 1.25↑ 1.252↑ 1.253↑ Mean↓ Median↓ 11.25↑ 22.5↑ 30↑
Depth 0.107 0.165 38.89 48.54 61.12 73.57 80.98 35.08 23.07 27.6 49.1 58.6

Both 0.090 0.124 40.13 51.26 64.84 76.46 83.05 35.30 23.59 26.7 48.5 58.1

Color 0.089 0.116 40.63 51.21 65.35 76.64 82.98 31.13 17.28 37.7 58.3 67.1

Table 1. Effect of different inputs to our deep network. We train models taking depth, color, and both respectively for surface normal

estimation and depth completion. Using only color as input achieves similar performance as the case with both.

ing consistency with the observed raw depth, and thus this

is not a significant problem.

Since the matrix form of the system of equations is

sparse and symmetric positive definite, we can solve it ef-

ficiently with a sparse Cholesky factorization (as imple-

mented in cs cholsol in CSparse [11]). The final solution is

a global minimum to the approximated objective function.

This linearization approach is critical to the success

of the proposed method. Surface normals and occlusion

boundaries (and optionally depth derivatives) capture only

local properties of the surface geometry, which makes them

relatively easy to estimate. Only through global optimiza-

tion can we combine them to complete the depths for all

pixels in a consistent solution.

4. Experimental Results

We ran a series of experiments to test the proposed meth-

ods. Unless otherwise specified, networks were pretrained

on the SUNCG dataset [60, 75] and fine-tuned on the train-

ing split of the our new dataset using only color as input and

a loss computed for all rendered pixels. Optimizations were

performed with λD = 103, λN = 1, and λS = 10−3. Eval-

uations were performed on the test split of our new dataset.

We find that predicting surface normals and occlusion

boundaries from color at 320x256 takes ∼0.3 seconds on a

NVIDIA TITAN X GPU. Solving the linear equations for

depths takes ∼1.5 seconds on a Intel Xeon 2.4GHz CPU.

4.1. Ablation Studies

The first set of experiments investigates how different

test inputs, training data, loss functions, depth representa-

tions, and optimization methods affect the depth prediction

results (further results can be found in the supplemental ma-

terial).

Since the focus of our work is predicting depth where it

is unobserved by a depth sensor, our evaluations measure

errors in depth predictions only for pixels of test images un-

observed in the test depth image (but present in the rendered

image). This is the opposite of most previous work on depth

estimation, where error is measured only for pixels that are

observed by a depth camera.

When evaluating depth predictions, we report the me-

dian error relative to the rendered depth (Rel), the root mean

squared error in meters (RMSE), and percentages of pix-

els with predicted depths falling within an interval ([δ =

|predicted − true|/true]), where δ is 1.05, 1.10, 1.25,

1.252, or 1.253. These metrics are standard among previous

work on depth prediction, except that we add thresholds of

1.05 and 1.10 to enable finer-grained evaluation.

When evaluating surface normal predictions, we report

the mean and median errors (in degrees), plus the percent-

ages of pixels with predicted normals less than thresholds

of 11.25, 22.5, and 30 degrees.

What data should be input to the network? Table 1

shows results of an experiment to test what type of inputs

are best for our normal prediction network: color only, raw

depth only, or both. Intuitively, it would seem that inputting

both would be best. However, we find that the network

learns to predict surface normals better when given only

color (median error = 17.28◦ for color vs. 23.07◦ for both),

which results in depth estimates that are also slightly better

(Rel = 0.089 vs. 0.090). This difference persists whether

we train with depths for all pixels, only observed pixels, or

only unobserved pixels (results in supplemental material).

We expect the reason is that the network quickly learns to

interpolate from observed depth if it is available, which hin-

ders it from learning to synthesize new depth in large holes.

The impact of this result is quite significant, as it mo-

tivates our two-stage system design that separates nor-

mal/boundary prediction only from color and optimization

with raw depth.

What depth representation is best? Table 2 shows re-

sults of an experiment to test which depth representations

are best for our network to predict. We train networks sep-

arately to predict absolute depths (D), surface normals (N),

and depth derivatives in 8 directions (DD), and then use

different combinations to complete the depth by optimiz-

ing Equation 1. The results indicate that solving for depths

from predicted normals (N) provides the best results (Rel =

0.089 for normals (N) as compared to 0.167 for depth (D),

0.100 for derivatives (DD), 0.092 for normals and deriva-

tives (N+DD). We expect that this is because normals rep-

resent only the orientation of surfaces, which is relatively

easy to predict [31]. Moreover, normals do not scale with

depth, unlike depths or depth derivatives, and thus are more

consistent across a range of views.

Does prediction of occlusion boundaries help? The last

six rows of Table 2 show results of an experiment to test

whether down-weighting the effect of surface normals near
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B Rep Rel↓ RMSE↓ 1.05↑ 1.10↑ 1.25↑ 1.252↑ 1.253↑
- D 0.167 0.241 16.43 31.13 57.62 75.63 84.01

No

DD 0.123 0.176 35.39 45.88 60.41 73.26 80.73

N+DD 0.112 0.163 37.85 47.22 61.27 73.70 80.83

N 0.110 0.161 38.12 47.96 61.42 73.77 80.85

Yes

DD 0.100 0.131 37.95 49.14 64.26 76.14 82.63

N+DD 0.092 0.122 39.93 50.73 65.33 77.04 83.25

N 0.089 0.116 40.63 51.21 65.35 76.74 82.98

Table 2. Effect of predicted representation on depth accuracy.

“DD” represents depth derivative, and “N” represents surface nor-

mal. We also evaluate the effect of using boundary weight. The

first row shows the performance of directly estimating depth.

Overall, solving back depth with surface normal and occlusion

boundary gives the best performance.

Input RGB-D Estimations W/ occlusion W/o occlusion

Figure 6. Effect of occlusion boundary prediction on normals.

The 2nd column shows the estimated surface normal and occlusion

boundary. The 3rd and 4th column shows the output of the opti-

mization with/without occlusion boundary weight. To help un-

derstand the 3D geometry and local detail, we also visualize the

surface normal computed from the output depth. The occlusion

boundary provides information for depth discontinuity, which help

to maintain boundary sharpness.

predicted occlusion boundaries helps the optimizer solve for

better depths. Rows 2-4 are without boundary prediction

(“No” in the first column), and Rows 5-7 are with (“Yes”).

The results indicate that boundary predictions improve the

results by ∼19% (Rel = 0.089 vs. 0.110). This suggests that

the network is on average correctly predicting pixels where

surface normals are noisy or incorrect, as shown qualita-

tively in Figure 6.

How much observed depth is necessary? Figure 7 shows

results of an experiment to test how much our depth com-

pletion method depends on the quantity of input depth. To

investigate this question, we degraded the input depth im-

ages by randomly masking different numbers of pixels be-

fore giving them to the optimizer to solve for completed

depths from predicted normals and boundaries. The two

plots shows curves indicating depth accuracy solved for pix-

els that are observed (left) and unobserved (right) in the

original raw depth images. From these results, we see that

the optimizer is able to solve for depth almost as accurately

when given only a small fraction of the pixels in the raw

depth image. As expected, the performance is much worse

on pixels unobserved by the raw depth (they are harder).

However, the depth estimations are still quite good when

only a small fraction of the raw pixels are provided (the
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Figure 7. Effect of sparse raw depth inputs on depth accuracy.

The depth completion performance of our method w.r.t number of

input pixels with depth. The plot shows that depth estimation on

unobserved pixels is harder than the observed. It also shows that

our method works well with only a small number of sparse pixels,

which is desirable to many applications.

rightmost point on the curve at 2000 pixels represents only

2.5% of all pixels). This results suggests that our method

could be useful for other depth sensor designs with sparse

measurements. In this setting, our deep network would not

have to be retrained for each new dense sensor (since it de-

pends only on color), a benefit of our two-stage approach.

4.2. Comparison to Baseline Methods

The second set of experiments investigates how the pro-

posed approach compares to baseline depth inpainting and

depth estimation methods.

Comparison to Inpainting Methods Table 3 shows re-

sults of a study comparing our proposed method to typi-

cal non-data-driven alternatives for depth inpainting. The

focus of this study is to establish how well-known meth-

ods perform to provide a baseline on how hard the prob-

lem is for this new dataset. As such, the methods we con-

sider include: a) joint bilinear filtering [59] (Bilateral), b)

fast bilateral solver [3] (Fast), and c) global edge-aware en-

ergy optimization [17] (TGV). The results in Table 3 show

that our method significantly outperforms these methods

(Rel=0.089 vs. 0.103-0.151 for the others). By training

to predict surface normals with a deep network, our method

learns to complete depth with data-driven priors, which are

stronger than simple geometric heuristics. The difference to

the best of the tested hand-tuned approaches (Bilateral) can

be seen in Figure 8.

Method Rel↓ RMSE↓ 1.05↑ 1.10↑ 1.25↑ 1.252↑ 1.253↑
Smooth 0.151 0.187 32.80 42.71 57.61 72.29 80.15

Bilateral [59] 0.118 0.152 34.39 46.50 61.92 75.26 81.84

Fast [3] 0.127 0.154 33.65 45.08 60.36 74.52 81.79

TGV [17] 0.103 0.146 37.40 48.75 62.97 75.00 81.71

Ours 0.089 0.116 40.63 51.21 65.35 76.74 82.98

Table 3. Comparison to baseline inpainting methods. Our

method significantly outperforms baseline inpainting methods.

Comparison to Depth Estimation Methods Table 4 shows

results for a study comparing our proposed method to pre-

vious methods that estimate depth only from color. We con-
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RGBD Input Ground Truth Our Bilateral

Figure 8. Comparison to inpainting with a joint bilateral filter.

Our method learns better guidance from color and produce com-

paratively sharper and more accurate results.

Input & GT Ours Laina et al. Chakrabarti et al.

Figure 9. Comparison to deep depth estimation methods. We

compare with the state of the art methods under the depth estima-

tion setting. Our method produces not only accurate depth value

but also large scale geometry as reflected in the surface normal.

sider comparisons to Chakrabarti et al. [5], whose approach

is most similar to ours (it uses predicted derivatives), and to

Obs Meth Rel↓ RMSE↓ 1.05↑ 1.10↑ 1.25↑ 1.252↑ 1.253↑

Y

[33] 0.190 0.374 17.90 31.03 54.80 75.97 85.69

[5] 0.161 0.320 21.52 35.5 58.75 77.48 85.65

Ours 0.130 0.274 30.60 43.65 61.14 75.69 82.65

N

[33] 0.384 0.572 8.86 16.67 34.64 55.60 69.21

[5] 0.352 0.610 11.16 20.50 37.73 57.77 70.10

Ours 0.283 0.537 17.27 27.42 44.19 61.80 70.90

Table 4. Comparison to deep depth estimation methods. We

compare with Laina et al. [33] and Chakrabarti et al.[5]. All the

methods perform worse on unobserved pixels than the observed

pixels, which indicates unobserved pixels are harder. Our method

significantly outperform other methods.

Laina et al. [33], who recently reported state-of-the-art re-

sults in experiments with NYUv2 [59]. We finetune [5] on

our dataset, but use pretrained model on NYUv2 for [33] as

their training code is not provided.

Of course, these depth estimation methods solve a dif-

ferent problem than ours (no input depth), and alternative

methods have different sensitivities to the scale of depth val-

ues, and so we make our best attempt to adapt both their and

our methods to the same setting for fair comparison. To do

that, we run all methods with only color images as input

and then uniformly scale their depth image outputs to align

perfectly with the true depth at one random pixel (selected

the same for all methods). In our case, since Equation 1

is under-constrained without any depth data, we arbitrarily

set the middle pixel to a depth of 3 meters during our opti-

mization and then later apply the same scaling as the other

methods. This method focuses the comparison on predict-

ing the “shape” of the computed depth image rather than its

global scale.

Results of the comparison are shown in Figure 9 and Ta-

ble 4. From the qualitative results in Figure 9, we see that

our method reproduces both the structure of the scene and

the fine details best – even when given only one pixel of raw

depth. According to the quantitative results shown in Table

4, our method is 23-40% better than the others, regardless

of whether evaluation pixels have observed depth (Y) or not

(N). These results suggest that predicting surface normals is

a promising approach to depth estimation as well.

5. Conclusion

This paper describes a deep learning framework for com-

pleting the depth channel of an RGB-D image acquired with

a commodity RGB-D camera. It provides two main re-

search contributions. First, it proposes to complete depth

with a two stage process where surface normals and occlu-

sion boundaries are predicted from color, and then com-

pleted depths are solved from those predictions. Second,

it learns to complete depth images by supervised train-

ing on data rendered from large-scale surface reconstruc-

tions. During tests with a new benchmark, we find the pro-

posed approach outperforms previous baseline approaches

for depth inpainting and estimation.
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