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Abstract

Model distillation is an effective and widely used tech-

nique to transfer knowledge from a teacher to a student net-

work. The typical application is to transfer from a power-

ful large network or ensemble to a small network, in order

to meet the low-memory or fast execution requirements. In

this paper, we present a deep mutual learning (DML) strat-

egy. Different from the one-way transfer between a static

pre-defined teacher and a student in model distillation, with

DML, an ensemble of students learn collaboratively and

teach each other throughout the training process. Our ex-

periments show that a variety of network architectures ben-

efit from mutual learning and achieve compelling results

on both category and instance recognition tasks. Surpris-

ingly, it is revealed that no prior powerful teacher network

is necessary – mutual learning of a collection of simple stu-

dent networks works, and moreover outperforms distillation

from a more powerful yet static teacher.

1. Introduction

Deep neural networks achieve state of the art perfor-

mance on many problems, but are often very large in depth

and/or width, and contain large numbers of parameters

[7, 28]. This has the drawback that they may be slow to ex-

ecute or large to store, limiting their use in applications or

platforms with low memory or fast execution requirements,

e.g., mobile phones. This has led to a rapid growth of re-

search in developing smaller and faster models. Achieving

compact yet accurate models has been approached in a vari-

ety of ways including explicit frugal architecture design [9],

model compression [22], pruning [14], binarisation [18] and

most interestingly model distillation [8].

Distillation-based model compression relates to the ob-

servation [3, 1] that small networks often have the same

representation capacity as large networks; but compared

to large networks they are simply harder to train and find

the right parameters that realise the desired function. That

is, the limitation seems to lie in the difficulty of optimisa-

tion rather than in the network size [1]. To better learn a

small network, the distillation approach starts with a power-

ful (deep and/or wide) teacher network (or network ensem-

ble), and then trains a smaller student network to mimic the

teacher [8, 1, 16, 3]. Mimicking the teacher’s class prob-

abilities [8] and/or feature representation [1, 19] conveys

additional information beyond the conventional supervised

learning target. The optimisation problem of learning to

mimic the teacher turns out to be easier than learning the

target function directly, and the student can match or even

outperform [19] the much larger teacher.

In this paper we aim to solve the same problem of learn-

ing small but powerful deep neural networks. However,

we explore a different but related idea to model distilla-

tion – that of mutual learning. Distillation starts with a

powerful large and pre-trained teacher network and per-

forms one-way knowledge transfer to a small untrained stu-

dent. In contrast, in mutual learning we start with a pool

of untrained students who simultaneously learn to solve

the task together. Specifically, each student is trained with

two losses: a conventional supervised learning loss, and a

mimicry loss that aligns each student’s class posterior with

the class probabilities of other students. Trained in this

way, it turns out that each student in such a peer-teaching

based scenario learns significantly better than when learn-

ing alone in a conventional supervised learning scenario.

Moreover mutually learned student networks achieve bet-

ter results than students trained by conventional distillation

from a larger pre-trained teacher. Furthermore, while the

conventional understanding of distillation requires a teacher

larger and more powerful than the intended student, it turns

out that in many cases mutual learning of several large net-

works also improves performance compared to independent

learning. This makes the deep mutual learning strategy gen-

erally applicable, e.g., it can also be used in application sce-

narios where there is no constraint on the model size and

the recognition accuracy is the only concern.

It is perhaps not obvious why the proposed learning strat-

egy should work at all. Where does the additional knowl-

edge come from, when the learning process starts out with
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all small and untrained student networks? Why does it

converge to a good solution rather than being hamstrung

by groupthink as ‘the blind lead the blind’. Some intu-

ition about these questions can be gained by considering

the following: Each student is primarily directed by a con-

ventional supervised learning loss, which means that their

performance generally increases and they cannot drift arbi-

trarily into groupthink as a cohort. With supervised learn-

ing, all networks soon predict the same (true) labels for

each training instance; but since each network starts from

a different initial condition, they learn different representa-

tions, and consequently their estimates of the probabilities

of the next most likely classes vary. It is these secondary

quantities that provide the extra information in distillation

[8] as well as mutual learning. In mutual learning the stu-

dent cohort effectively pools their collective estimate of the

next most likely classes. Finding out – and matching – the

other most likely classes for each training instance accord-

ing to their peers increases each student’s posterior entropy

[4, 17], which helps them to converge to a more robust

(flatter) minima with better generalisation to testing data.

This is related to very recent work on the robustness of high

posterior entropy solutions (network parameter settings) in

deep learning [4, 17], but with a more informed choice of

alternatives than blind entropy regularisation.

Overall, mutual learning provides a simple but effective

way to improve the generalisation ability of a network by

training collaboratively with a cohort of other networks.

Extensive experiments are carried out on both object cat-

egory recognition (image classification on CIFAR100 [12])

and instance recognition problems (person re-identiciation

on Market1501 [33]). The results show that, compared with

distillation by a pre-trained static large network, collabora-

tive learning by small peers achieves better performance. In

particular, on the person re-identification task, state-of-the-

art results can be obtained using a much smaller network

trained with mutual learning, compared to the latest com-

petitors. Furthermore we observe that: (i) it applies to a va-

riety of network architectures, and to heterogeneous cohorts

consisting of mixed big and small networks; (ii) The effi-

cacy increases with the number of networks in the cohort – a

nice property to have because by training on small networks

only, more of them can fit on given GPU resources for

more effective mutual learning; (iii) it also benefits semi-

supervised learning with the mimicry loss activated both on

labelled and unlabelled data. Finally, we note that while

our focus is on obtaining a single effective network, the en-

tire cohort can also be used as a highly effective ensemble

model.

2. Related Work

Model Distillation The distillation-based approach to

model compression has been proposed over a decade ago

[3] but was recently re-popularised by [8], where some ad-

ditional intuition about why it works – due to the addi-

tional supervision and regularisation of the higher entropy

soft-targets – was presented. Initially, a common applica-

tion was to distill the function approximated by a power-

ful model/ensemble teacher into a single neural network

student [3, 8]. But later, the idea has been applied to dis-

till powerful and easy-to-train large networks into small but

harder-to-train networks [19] that can even outperform their

teacher. Recently, distillation has been connected more sys-

tematically to information learning theory [15] and SVM+
[25] – an intelligent teacher provides privileged informa-

tion to the student. This idea of using model distillation for

learning with privileged information has been exploited by

Zhang et al. [29] for action recognision: the more expen-

sive optical flow field is treated as privileged information

and an optical flow CNN is used to teach a motion vec-

tor CNN. In terms of representation of the knowledge to

be distilled from the teacher, existing models typically use

teacher’s class probabilities [8] and/or feature representa-

tion [1, 19]. Recently, Yim et al. [27] exploited flow be-

tween layers computed as the inner product of feature maps

between layers. In contrast to model distillation, we address

dispensing with the teacher altogether, and allowing an en-

semble of students to teach each other in mutual distillation.

Collaborative Learning Other related ideas on collabo-

rative learning include Dual Learning [6] where two cross-

lingual translation models teach each other interactively.

But this only applies in this special translation problem

where an unconditional within-language model is available

to be used to evaluate the quality of the predictions, and

ultimately provides the supervision that drives the learn-

ing process. Furthermore, in dual learning different models

have different learning tasks whilst in mutual learning the

tasks are identical. Recently, Cooperative Learning [2] has

been proposed to learn multiple models jointly for the same

task but in different domains. E.g. recognising the same

set of object categories but with one model inputting RGB

images and the other inputting depth images. The models

communicate via object attributes which are domain invari-

ant. Again this is different from mutual learning where all

models address the same task and domain.

3. Deep Mutual Learning

3.1. Formulation

We formulate the proposed deep mutual learning (DML)

approach with a cohort of two networks (see Fig. 1). Ex-

tension to more networks is straightforward (see Sec. 3.3).

Given N samples X = {xi}
N
i=1

from M classes, we de-

note the corresponding label set as Y = {yi}
N
i=1

with

yi ∈ {1, 2, ...,M}. The probability of class m for sample
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Figure 1. Deep Mutual Learning (DML) schematic. Each network is trained with a supervised learning loss, and a Kullback Leibler

Divergence based mimcry loss to match the probability estimates of its peers.

xi given by a neural network Θ1 is computed as

pm1 (xi) =
exp(zm1 )

∑M

m=1
exp(zm

1
)
, (1)

where the logit zm is the output of the “softmax” layer in

Θ1.

For multi-class classification, the objective function to

train the network Θ1 is defined as the cross entropy error

between the predicted values and the correct labels,

LC1
= −

N
∑

i=1

M
∑

m=1

I(yi,m) log(pm1 (xi)), (2)

with an indicator function I defined as

I(yi,m) =

{

1 yi = m

0 yi 6= m
(3)

The conventional supervised loss trains the network to

predict the correct labels for the training instances. To im-

prove the generalisation performance of Θ1 on the testing

instances, we use another peer network Θ2 to provide train-

ing experience in the form of its posterior probability p2.

To quantify the match of the two network’s predictions p1

and p2, we use the Kullback Leibler (KL) Divergence.

The KL distance from p1 to p2 is computed as

DKL(p2‖p1) =

N
∑

i=1

M
∑

m=1

pm2 (xi) log
pm2 (xi)

pm
1
(xi)

. (4)

The overall loss functions LΘ1
and LΘ2

for networks Θ1

and Θ2 respectively are thus:

LΘ1
= LC1

+DKL(p2‖p1). (5)

LΘ2
= LC2

+DKL(p1‖p2). (6)

In this way each network learns both to correctly predict

the true label of training instances (supervised loss LC) as

well as to match the probability estimate of its peer (KL

mimicry loss).

Our KL divergence based mimicry loss is asymmetric,

thus different for the two networks. One can instead use a

symmetric Jensen-Shannon Divergence loss:

1

2
(DKL(p1‖p2) +DKL(p1‖p2)). (7)

However, we found empirically that whether a symmetric or

asymmetric KL loss is used does not make any difference.

3.2. Optimisation

A key difference between model distillation and DML

is that in DML, the two models are optimised jointly and

collaboratively, with the optimisation processes for the two

models being closely intervened. The mutual learning strat-

egy is embedded in each mini-batch based model update

step for both models and throughout the whole training pro-

cess. The models are learned with the same mini-batches.

At each iteration, we compute the predictions of the two

models and update both networks’ parameters according to

the predictions of the other. The optimisation of Θ1 and Θ2

is conducted iteratively until convergence. The optimisation

details are summarised in Algorithm 1. It consists of 4 se-

quential steps if running on a single GPU. When two GPUs

are available, distributed training can be implemented by

running Steps 1, 2 on one GPU and Steps 3,4 on another in

parallel.

3.3. Extension to Larger Student Cohorts

The proposed DML approach naturally extends to more

networks in the student cohort. Given K networks

Θ1,Θ2, ...,ΘK(K ≥ 2), the objective function for opti-

mising Θk, (1 ≤ k ≤ K) becomes

LΘk
= LCk

+
1

K − 1

K
∑

l=1,l 6=k

DKL(pl‖pk). (10)

Equation (10) indicates that with K networks, DML for

each student effectively takes the other K − 1 networks in

the cohort as teachers to provide mimicry targets. Equa-

tion (6) is now a special case of (10) with K = 2. Note that
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Algorithm 1: Deep Mutual Learning

Input: Training set X , label set Y , learning rate γt
Initialize: Initialise Θ1 and Θ2 to different conditions;

t = 0.

Repeat :

t = t+ 1
Randomly sample data x from X .

Compute predictions p1 and p2 by (1).

1: Compute the stochastic gradient and update Θ1 :

Θ1 ← Θ1 + γt
∂LΘ1

∂Θ1

(8)

2: Update the predictions p1 of x by (1).

3: Compute the stochastic gradient and update Θ2 :

Θ2 ← Θ2 + γt
∂LΘ2

∂Θ2

(9)

4: Update the predictions p2 of x by (1).

Until : convergence

we have added the coefficient 1

K−1
to make sure that the

training is mainly directed by supervised learning of the true

labels. The optimisation for DML with more than two net-

works is a straightforward extension of Algorithm 1. This

learning strategy naturally suits distributed learning [21]: It

can be distributed by learning each network on one device

and passing the small probability vectors between devices.

With more than two networks, an interesting alternative

learning strategy for DML is to take the ensemble of all

the other K − 1 networks as a single teacher to provide a

combined mimicry target, which would be very similar to

the distillation approach but performed at each mini-batch

model update. Then the objective function of Θk can be

written as

LΘk
= LCk

+DKL(pavg‖pk), pavg =
1

K − 1

K
∑

l=1,l 6=k

pl.

(11)

In our experiments (see Sec. 4.8), we find that this DML

strategy with a single ensemble teacher (denoted DML e)

leads to worse performance than DML with K−1 teachers.

This is because the model averaging step (Equation (11))

to build the teacher ensemble makes the teacher’s posterior

probabilities more peaked at the true class, thus reducing

the posterior entropy over all classes. It is therefore contra-

dictory to one of the objectives of DML which is to produce

robust solutions with high posterior entropy.

3.4. Extension to Semisupervised Learning

The proposed DML extends straightforwardly to semi-

supervised learning. Under the semi-supervised learning

setting, we only activate the cross-entropy loss for labelled

data, while computing the KL distance based mimicry loss

for all the training data. This is because the KL distance

computation does not require class labels, so unlabelled

data can also be used. Denote the labelled and unlabelled

data as L and U , where we have X = L ∪ U , the objective

function for learning network Θ1 can be reformulated as

LΘ1
= LC1

x∈L

+DKL
x∈X

(p2‖p1). (12)

4. Experiments

4.1. Datasets and Settings

Datasets Four datasets are used in our experiments. The

ImageNet [20] dataset contains 1000 object classes with

about 1.2 million images for training and 50,000 images for

validation. The CIFAR-10 and CIFAR-100 [12] datasets

consist of 32× 32 color images containing objects from 10

and 100 classes respectively. Both are split into a 50,000-

image train set and a 10,000-image test set. The Top-1

classification accuracy is used as evaluation metric. The

Market-1501 [33] dataset is a widely used benchmark in

the person re-identification (re-id) problem [5]. Different

from the object category recognition problem in CIFAR, re-

id is an instance recognition problem that aims to associate

person identities across different non-overlapping camera

views. Market-1501 contains 32,668 images of 1,501 iden-

tities captured from six camera views, with 751 identities

for training and 750 identities for testing. As per state of the

art approaches to re-id [35], we train the network for 751-

way classification and use the resulting feature output of the

last pooling layer as a representation for nearest neighbour

matching at testing. For evaluation, the standard Cumula-

tive Matching Characteristic (CMC) Rank-k accuracy and

mean average precision (mAP) metrics [33] are used.

Networks The networks used in our experiments include

compact networks of typical student size: Resnet-32 [7] and

MobileNet [9]; as well as large networks of typical teacher

size: InceptionV1 [24] and Wide ResNet WRN-28-10 [28].

Table 1 compares the number of parameters of all the net-

works for CIFAR-100.

ResNet-32 MobileNet InceptionV1 WRN-28-10

0.5M 3.3M 7.8M 36.5M

Table 1. Number of parameters on the CIFAR-100 dataset

Implementation Details We implement all networks and

training procedures in TensorFlow and conduct all ex-

periments on an NVIDIA GeForce GTX 1080 GPU. For

CIFAR-100, we follow the experimental settings of [28].

Specifically, we use SGD with Nesterov momentum and set

the initial learning rate to 0.1, momentum to 0.9 and mini-

batch size to 64. The learning rate dropped by 0.1 every

60 epochs and we train for 200 epochs. The data augmen-

tation includes horizontal flips and random crops from im-
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Network Types
CIFAR-10 CIFAR-100

Independent DML DML-Ind Independent DML DML-Ind

Net 1 Net 2 Net 1 Net 2 Net 1 Net 2 Net 1 Net 2 Net 1 Net 2 Net 1 Net 2 Net 1 Net 2

Resnet-32 Resnet-32 92.47 92.47 92.68 92.80 0.21 0.33 68.99 68.99 71.19 70.75 2.20 1.76

WRN-28-10 Resnet-32 95.01 92.47 95.75 93.18 0.74 0.71 78.69 68.99 78.96 70.73 0.27 1.74

MobileNet Resnet-32 93.59 92.47 94.24 93.32 0.65 0.85 73.65 68.99 76.13 71.10 2.48 2.11

MobileNet MobileNet 93.59 93.59 94.10 94.30 0.51 0.71 73.65 73.65 76.21 76.10 2.56 2.45

WRN-28-10 MobileNet 95.01 93.59 95.73 94.37 0.72 0.78 78.69 73.65 80.28 77.39 1.59 3.74

WRN-28-10 WRN-28-10 95.01 95.01 95.66 95.63 0.65 0.62 78.69 78.69 80.28 80.08 1.59 1.39

Table 2. Top-1 accuracy (%) on the CIFAR-10 and CIFAR-100 dataset. “DML-Ind” measures the difference in accuracy between the

network learned with DML and the same network learned independently.

age padded by 4 pixels on each side, filling missing pixels

with reflections of original image. For Market-1501, we use

the Adam optimiser [11], with learning rate lr = 0.0002,

β1 = 0.5, β2 = 0.999 and a mini-batch size of 16. For

ImageNet, we use RMSProp with decay of 0.9, mini-batch

size of 64, and initial learning rate of 0.1. The learning rate

decayed every 20 epochs using an exponential rate of 0.16.

4.2. Results on CIFAR100

Table 2 compares the Top-1 accuracy of the CIFAR-100

dataset obtained by various architectures in a two-network

DML cohort. From the table we can make the follow-

ing observations: (i) All the network combinations among

ResNet-32, MobileNet and WRN-28-10 improve perfor-

mance when learning in a cohort compared to learning inde-

pendently, indicated by the all positive values in the “DML-

Independent” columns. (ii) The networks with smaller ca-

pacity (ResNet-32 and MobileNet) generally benefit more

from DML. (iii) Although WRN-28-10 is a much larger net-

work than MobileNet or ResNet-32 (Table 1), it still benefits

from being trained together with a smaller peer. (iv) Train-

ing a cohort of large networks (WRN-28-10) is still ben-

eficial compared to learning them independently. Thus in

contrast to the conventional wisdom of model distillation,

we see that a large pre-trained teacher does not necessary

bring large benefits, and multiple large networks can still

benefit from our distillation-like process.

4.3. Results on Market1501

In this experiment, we use MobileNet in a two-network

DML cohort. Table 3 summarises the mAP (%) and rank-

1 accuracy (%) of Market-1501 of MobileNets trained

with/without DML, as well as the comparison against ex-

isting state of the art methods. We can see that on this more

challenging instance recognition problem, DML greatly im-

proves the performance of MobileNet compared to indepen-

dent learning, both with and without pre-training on Ima-

geNet. It can also be seen that our DML approach using two

MobileNets significantly outperforms prior state-of-the-art

deep re-id methods. This is noteworthy as MobileNet is

Method pre?
Single-Query Multi-Query

mAP Rank-1 mAP Rank-1

Gated S-CNN [26] no 39.55 65.88 48.45 76.04

k-reciprocal [35] yes 63.63 77.11 - -

MSCAN [13] no 57.53 80.31 66.70 86.79

PDC [23] no 63.41 84.14 - -

DLPAR [32] no 63.40 81.00 - -

MobileNet no 50.15 76.87 60.16 84.06

MobileNet+DML no 54.71 79.12 64.10 85.63

MobileNet yes 65.06 85.01 74.53 90.59

MobileNet+DML yes 70.51 89.34 78.95 92.81

Table 3. Comparative results on the Market-1501 dataset. Each

MobileNet is trained in a two-network cohort and the averaged

performance of the two networks in the cohort is reported. ‘pre?’

indicates whether ImageNet pretraining was carried out.

a simple, small, and general-purpose network. In contrast

many recently proposed deep re-id networks such as those

in [31, 23, 34] have complicated and specially designed ar-

chitectures to handle the drastic pose-changes and body-part

mis-alignment when matching people across camera views.

4.4. Results on ImageNet

Figure 2 (a) compares MobileNet and InceptionV1 accu-

racy on ImageNet with Independent and DML training. We

can see that the DML variants of both architectures con-

sistently performs better than their independently trained

counterparts. These results show that DML is applicable

to large-scale problems.

4.5. Distributed Training of DML

To investigate the impact of training strategy on DML,

we compared two DML variants: 1) sequential: train two

networks according to Algorithm 1 on one GPU; two net-

works are updated one after the other; 2) distributed: each

network is trained on a separate GPU and CPU is used for

KL divergence communication; in this way, the predictions

and parameters of two networks are updated simultane-

ously. We experiment on Market-1501 with 2 MobileNets,
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Dataset
Network Types Independent 1 distills 2 DML

Net1 Net 2 Net 1 Net 2 Net 2 Net 1 Net 2

CIFAR-100
WRN-28-10 ResNet-32 78.69 68.99 69.48 78.96 70.73

MobilNet ResNet-32 73.65 68.99 69.12 76.13 71.10

Market-1501
Inception V1 MobileNet 63.91 50.15 52.30 64.42 58.47

MobileNet MobileNet 50.15 49.87 50.07 55.28 54.13

Table 4. Comparison with distillation on CIFAR-100 (Top-1 accuracy (%)) and Market-1501 dataset (mAP (%))

1 1.5 2 2.5 3 3.5 4 4.5

Iterations 10
5

50

52

54

56

58

60

62

64

T
o

p
-1

 A
c
c
u

ra
c
y
 (

%
)

[63.5] InceptionV1-DML

[62.7] IncpetionV1-Ind

[62.6] MobileNet-DML

[62.1] MobileNet-Ind

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Iterations ×10
5

1

2

3

4

5

6

7

8

L
o
s
s

[54.71] DML-sequential

[58.46] DML-distributed

(a) ImageNet (b) Market-1501

Figure 2. (a) Results on ImageNet. It shows top-1 acc. (%)

w.r.t. training steps; (b) Convergence effect and test mAP (%) on

Market-1501 with sequential and distributed training.

and show the convergence and mAP results in Fig. 2 (b). It

is interesting to observe that our DML’s performance is fur-

ther boosted by distributed training. Comparing these two

variants, the two networks are more ‘equal’ when trained

distributed as they always have exactly the same number of

training iterations. This result thus suggests that the stu-

dents benefit the most from the DML peer-teaching when

the discrepancy in their learning progress is minimised.

4.6. Comparison with Model Distillation

As our method is closely related to model distillation, we

next provide a focused comparison to Distillation [8]. Ta-

ble 4 compares our DML with model distillation where the

teacher network (Net 1) is pre-trained and provides fixed

posterior targets for the student network (Net 2). As ex-

pected the conventional distillation approach from a power-

ful pre-trained teacher does indeed improve the student per-

formance compared to independently learning the student

(1 distills 2 versus Net 2 Independent).

However, the results show that training both networks

together in deep mutual learning provides a clear improve-

ment compared to distillation (1 distills 2 versus DML Net

2). This implies that in the process of mutual learning, the

network that would play the role of teacher actually be-

comes better than a pre-trained teacher, via learning from

interactions with an a-priori untrained student.

4.7. DML with Larger Student Cohorts

The prior experiments studied cohorts of 2 students. We

next investigate how DML scales with more students in the
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Figure 3. Performance (mAP (%)) on Market-1501 with different

cohort size.

cohort. Figure 3(a) shows the results on Market-1501 with

DML training of increasing cohort sizes of MobileNets.

The figure shows average mAP, as well as the standard de-

viation. From Fig. 3(a) we can see that the performance

of the average single network increases with the number of

networks in the DML cohort, hence its gap to the indepen-

dently trained networks. This demonstrates that the gener-

alisation ability of students is enhanced when learning to-

gether with increasing numbers of peers. The performance

of different networks is also more consistent with larger co-

hort size, indicated by the smaller standard deviations.

A common technique when training multiple networks is

to use them as an ensemble and make a combined predic-

tion. In Fig. 3(b) we use the same models as Fig. 3(a) but

make predictions based on the ensemble (matching based

on concatenated feature of all members) instead of reporting

the average prediction of each individual. From the results

we can see that the ensemble prediction outperforms indi-

vidual network predictions as expected (Fig. 3(b) vs. (a)).

Moreover, the ensemble performance also benefits from

training multiple networks as a DML cohort (Fig. 3(b) DML

ensemble vs. Independent ensemble).

4.8. How and Why does DML Work?

In this section we attempt to give some insights about

how and why our deep mutual learning strategy works.

There has been a wave of recent research on the subject of

“Why Deep Nets Generalise” [4, 30, 10], which have pro-

vided some insights such as: While there are often many

solutions (deep network parameter settings) that generate

zero training error, some of these generalise better than oth-
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Figure 4. Analysis on why DML works

ers due to being in wide valleys rather than narrow crevices

[4, 10] – so that small perturbations do not change the pre-

diction efficacy drastically; and that deep networks are bet-

ter than might be expected at finding these good solutions

[30], but that the tendency towards finding robust minima

can be enhanced by biasing deep nets towards solutions

with higher posterior entropy [4, 17].

DML Leads to Better Quality Solutions with More Ro-

bust Minima With these insights in mind we make some

observations about the DML process. Firstly we note that

in our experiments, the networks typically fit the training

data perfectly: Training accuracy goes to 100% and classi-

fication loss becomes minimal (e.g., Fig. 4(a)). However, as

we saw earlier, DML performs better on test data. There-

fore rather than helping to find a better (deeper) minimum

of training loss, DML appears to be helping us to find a

wider/more robust minimum that generalises better to test

data. Inspired by [4, 10], we perform a simple test to anal-

yse the robustness of the discovered minima on CIFAR-100

using MobileNet. For the DML and independent models,

we compare the training loss of the learned models before

and after adding independent Gaussian noise with variable

standard deviation σ to each model parameter. We see that

the depths of the two minima were the same (Fig. 4(a)), but

after adding this perturbation the training loss of the inde-

pendent model jumps up while the loss of the DML model

increases much less. This suggests that the DML model has

found a much wider minimum, which is expected to provide

better generalisation performance [4, 17].

How is a Better Minimum Found? When asking each

network to match its peer’s probability estimates, mis-

matches where a given network predicts zero and its

teacher/peer predicts non-zero are heavily penalised. There-

fore the overall effect of DML is that, where each network

independently would put a small mass on a small set of

secondary probabilities, all networks in the DML tend to

aggregate their prediction of secondary probabilities, and

both (i) put more mass on the secondary probabilities alto-

gether, and (ii) place non-zero mass on more distinct sec-

ondary probabilities. We illustrate this effect by comparing

the probabilities assigned to the top-5 highest ranked classes

obtained by a ResNet-32 on CIFAR-100 trained by DML

vs. an independently trained ResNet-32 model in Fig. 4(c).

For each training sample, the top 5 classes are ranked ac-

cording to the posterior probabilities produced by the model

(Class 1 being the true class and Class 2 the second most

probable class, etc). Here we can see that the assignment of

mass to probabilities below the Top-1 decays more quickly

for Independent than DML. This can be quantified by the

entropy values averaged over all training samples of the

DML trained model and the independently trained model,

which are 1.7099 and 0.2602 respectively. Thus our method

has connection to entropy regularisation-based approaches

[4, 17] to finding wide minima, but by mutual probability

matching on ‘reasonable’ alternatives, rather than a blind

high-entropy preference. Table 5 further shows that this is

more effective way to learn a more generalisation model

when DML is compared with the entropy regularisation-

based approach [4] (DML vs. Independent, Entropy).

Settings mAP Rank-1

Independent 50.15 76.87

DML 54.71 79.12

Independent, Entropy [4] 50.94 76.34

DML, L2 51.01 77.58

Table 5. Single-Query results on Market-1501 under different set-

tings with MobileNets. L2 indicates decreasing the feature dis-

tance of two networks.

DML with Ensemble Teacher In DML, each student is

taught by all other students in the cohort individually, re-

gardless how many students are in the cohort (Eq. (10)).

In Sec. 3.3, an alternative DML strategy (DML e) is dis-

cussed, by which each student is asked to match the pre-

dictions of the ensemble of all other students in the cohort

(Eq. (11)). One might reasonably expect this approach to be

better: As the ensemble prediction is better than individual

predictions, it should provide a cleaner and stronger teach-
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Figure 5. tSNE Visualisation of MobileNets trained with DML and

independently on the Market-1501 dataset. Different numbers in-

dicate different identities.

ing signal – more like conventional distillation. In practice

the results of ensemble rather than peer teaching are worse

(see Fig. 3). By analysing the teaching signal of the en-

semble in comparison to peer teaching, the ensemble tar-

get is much more sharply peaked at the true label than the

peer targets, resulting in larger prediction entropy value for

DML (0.2805) than DML e (0.1562). Thus while the noise-

averaging property of ensembling is effective for making a

correct prediction, it is actually detrimental to providing a

teaching signal where the secondary class probabilities are

the salient cue in the signal and having high-entropy poste-

rior leads to more robust solutions to model training.

4.9. Does DML Makes Models More Similar?

We know that with the same training objective, the pre-

dicted class posterior would be similar for different mod-

els in a DML cohort. The question is do these model also

produce similar features, especially when the models have

identical architecture? Figure 5 shows the t-SNE visualisa-

tion of feature distribution on the Market-1501 test set by

two MobileNets. We can see that either with or without

DML, the two MobileNets do indeed different features, in-

dicating diverse models are obtained. This helps to explain

why different models in a DML cohort can teach each other:

Each has learned something that the others have not.

We note that in a number of model distillation studies

[1, 19], a feature distance loss is added to force the student

network to produce similar features to the teacher at corre-

sponding layers. This makes sense when the teacher is pre-

trained and fixed and the student aims to imitate the teacher.

However, in DML, aligning the internal representations dif-

ferent DML models would diminish the cohort diversity and

thus damage the ability of each network to teach its peers.

Table 5 shows that indeed, when a feature L2 loss is intro-

duced, DML becomes less effective (DML vs. DML, L2).
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Figure 6. Semi-supervised learning with DML.

4.10. SemiSupervised Learning

We finally explore semi-supervised learning in CIFAR-

100 and Market-1501. For CIFAR-100 , we randomly se-

lect a subset (from 10% to 100%) of the training images per

class as labeled, and treat the rest as unlabeled. For Market-

1501, we randomly select M identities as labelled in the

training set, varying M from 100 to 751. Experiments are

performed with 3 different training strategies: 1) training

on the labelled data only with single network; 2) training on

labelled data only with DML (DML-labelled). 3) training

on all data with DML, where the classification loss is com-

puted for labelled data only, and KL loss is calculated for

all the training data (DML-all).

From the results in Figure 6, we can see that: (1) Train-

ing two networks with DML consistently performs better

than training a single network – as before, but now with

varying amounts of labeled data. (2) Compared with adding

DML to only labelled data (DML-labelled), DML-all fur-

ther improves the performance by exploiting the unlabelled

data using the KL-distance based mimicry loss. The im-

provement is bigger when the percentage of labelled data is

smaller. This confirms that DML benefits both supervised

and semi-supervised learning scenarios.

5. Conclusion

We have proposed a simple and generally applicable ap-

proach to improving the performance of deep neural net-

works by training them in a cohort with peers and mutual

distillation. With this approach we can obtain compact net-

works that perform better than those distilled from a strong

but static teacher. One application of DML is to obtain

compact, fast and effective networks. We also showed that

this approach is also promising to improve the performance

of large powerful networks, and that the network cohort

trained in this manner can be combined as an ensemble to

further improve performance.
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