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Abstract

The success of current deep saliency detection meth-

ods heavily depends on the availability of large-scale su-

pervision in the form of per-pixel labeling. Such supervi-

sion, while labor-intensive and not always possible, tends

to hinder the generalization ability of the learned mod-

els. By contrast, traditional handcrafted features based un-

supervised saliency detection methods, even though have

been surpassed by the deep supervised methods, are gener-

ally dataset-independent and could be applied in the wild.

This raises a natural question that “Is it possible to learn

saliency maps without using labeled data while improving

the generalization ability?”. To this end, we present a novel

perspective to unsupervised 1 saliency detection through

learning from multiple noisy labeling generated by “weak”

and “noisy” unsupervised handcrafted saliency methods.

Our end-to-end deep learning framework for unsupervised

saliency detection consists of a latent saliency prediction

module and a noise modeling module that work collabo-

ratively and are optimized jointly. Explicit noise modeling

enables us to deal with noisy saliency maps in a probabilis-

tic way. Extensive experimental results on various bench-

marking datasets show that our model not only outperforms

all the unsupervised saliency methods with a large margin

but also achieves comparable performance with the recent

state-of-the-art supervised deep saliency methods.

1. Introduction

Saliency detection aims at identifying the visually inter-

esting objects in images that are consistent with human per-

ception, which is intrinsic to various vision tasks such as

∗These authors contributed equally in this work.
†Y. Dai (daiyuchao@nwpu.edu.cn) is the corresponding author.
1There could be multiple definitions for unsupervised learning, in this

paper, we refer unsupervised learning as learning without task-specific hu-

man annotations, e.g. dense saliency maps in our task.

Figure 1. Unsupervised saliency learning from weak “noisy”

saliency maps. Given an input image xi and its corresponding

unsupervised saliency maps y
j
i , our framework learns the latent

saliency map ȳi by jointly optimizing the saliency prediction mod-

ule and the noise modeling module. Compared with SBF [35]

which also learns from unsupervised saliency but with different

strategy, our model achieves better performance.

context-aware image editing [36], image caption generation

[31]. Depending on whether human annotations have been

used, saliency detection methods can be roughly divided as:

unsupervised methods and supervised methods. The former

ones compute saliency directly based on various priors (e.g.,

center prior [9], global contrast prior [6], background con-

nectivity prior [43] and etc.), which are summarized and de-

scribed with human knowledge. The later ones learn direct

mapping from color images to saliency maps by exploiting

the availability of large-scale human annotated database.

Building upon the powerful learning capacity of convo-

lutional neural network (CNN), deep supervised saliency

detection methods [42, 11, 40] achieve state-of-the-art per-

formances, outperforming the unsupervised methods by a

wide margin. The success of these deep saliency methods

strongly depend on the availability of large-scale training

dataset with pixel-level human annotations, which is not

only labor-intensive but also could hinder the generaliza-

tion ability of the learned network models. By contrast, the

unsupervised saliency methods, even though have been out-

performed by the deep supervised methods, are generally

dataset-independent and could be applied in the wild.
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In this paper, we present a novel end-to-end deep learn-

ing framework for saliency detection that is free from hu-

man annotations, thus “unsupervised” (see Fig. 1 for a vi-

sualization). Our framework is built upon existing efficient

and effective unsupervised saliency methods and the pow-

erful capacity of deep neural network. The unsupervised

saliency methods are formulated with human knowledge

and different unsupervised saliency methods exploit differ-

ent human designed priors for saliency detection. They

are noisy (compared with ground truth human annotations)

and could have method-specific bias in predicting saliency

maps. By utilizing existing unsupervised saliency maps, we

are able to remove the need of labor-intensive human anno-

tations, also by jointly learn different priors from multiple

unsupervised saliency methods, we are able to get comple-

mentary information of those unsupervised saliency.

To effectively leverage these noisy but informative

saliency maps, we propose a novel perspective to the prob-

lem: Instead of removing the noise in saliency labeling from

unsupervised saliency methods with different fusion strate-

gies [35], we explicitly model the noise in saliency maps.

As illustrated in Fig. 2, our framework consists of two

consecutive modules, namely a saliency prediction mod-

ule that learns the mapping from a color image to the “la-

tent” saliency map based on current noise estimation and the

noisy saliency maps, and a noise modeling module that fits

the noise in noisy saliency maps and updates the noise esti-

mation in different saliency maps based on updated saliency

prediction and the noisy saliency maps. In this way, our

method takes advantages of both probabilistic methods and

deterministic methods, where the latent saliency prediction

module works in a deterministic way while the noise model-

ing module fits the noise distribution in a probabilistic man-

ner. Experiments suggest that our strategy is very effective

and it only takes several rounds 2 till convergence.

To the best of our knowledge, the idea of considering

unsupervised saliency maps as learning from multiple noisy

labels is brand new and different from existing unsupervised

deep saliency methods (e.g., [35]). Our main contributions

can be summarized as:

1) We present a novel perspective to unsupervised deep

saliency detection, and learn saliency maps from mul-

tiple noisy unsupervised saliency methods. We formu-

late the problem as joint optimization of a latent saliency

prediction module and a noise modeling module.

2) Our deep saliency model is trained in an end-to-end

manner without using any human annotations, leading

to an extremely cheap solution.

3) Extensive performance evaluation on seven benchmark-

ing datasets show that our framework outperforms ex-

2In our paper, an epoch means a complete pass through all the training

data, an iteration means a complete pass through a batch, and a round

means an update on noise module.

isting unsupervised methods with a wide margin while

achieving comparable results with state-of-the-art deep

supervised saliency detection methods [11, 40].

2. Related Work

Depending on whether human annotations are used or

not, saliency detection techniques can be roughly grouped

as unsupervised and supervised methods. Deep learning

based methods are particular examples of the latter one. We

will also discuss learning with multiple noisy labels.

2.1. Unsupervised Saliency Detection

Prior to the deep learning revolution, saliency methods

mainly relied on different priors and handcrafted features

[43, 7, 6, 9]. We refer interested readers to [2] and [3] for

surveys and benchmark comparisons. Color contrast prior

has been exploited at superpixel level in [6]. Shen and Wu

[27] formulated saliency detection as a low-rank matrix de-

composition problem by exploiting the sparsity prior for

salient objects. Objectness, which highlights the object-like

regions, has also been used in [15] to mark the regions that

have higher possibilities of being an object. Zhu et al. [43]

presented a robust background measure, namely “bound-

ary connectivity” along with an optimization framework to

measure backgroundness of each superpixel. Building upon

the center prior, [9] detects the image regions that represent

the scene, especially those that are near image center.

2.2. Supervised Saliency Detection

Conventional supervised techniques, such as [14, 17],

formulate saliency detection as a regression problem, and a

classifier is trained to assign saliency at pixel or superpixel

level. Recently, deep neural networks have been adopted

successfully for saliency detection [40, 26, 41, 29, 11, 22,

42, 19, 28, 20, 38, 39, 37]. Deep networks can encode high-

level semantic features and hence capture saliency more ef-

fectively than both unsupervised saliency methods and non-

deep supervised methods. Deep saliency detection meth-

ods generally train a deep neural network to assign saliency

to each pixel or superpixel. Li and Yu [19] used learned

features from an existing CNN model to replace the hand-

crafted features. Recently, Cheng et al. [11] proposed a

deep supervised framework with multi-branch short con-

nections embed both high- and low-level features for ac-

curate saliency detection. With the same purpose, a multi-

level deep feature aggregation framework is proposed in

[40]. A top-down strategy and a loss function which pe-

nalizes errors on the edge is presented in [26].

2.3. Learning with Noisy Labels

Though deep techniques are methods of choice in

saliency detection, very few studies have explicitly ad-

dressed the problem of saliency learning with unreliable
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Figure 2. Conceptual illustration of our saliency detection framework, which consists of a “latent” saliency prediction module and a

noise modeling module. Given an input image, noisy saliency maps are generated by handcrafted feature based unsupervised saliency

detection methods. Our framework jointly optimizes both modules under a unified loss function. The saliency prediction module targets at

learning latent saliency maps based on current noise estimation and the noisy saliency maps. The noise modeling module updates the noise

estimation in different saliency maps based on updated saliency prediction and the noisy saliency maps. In our experiments, the overall

optimization converges in several rounds.

and noisy labels [35]. Learning with noisy labels is mainly

about learning classification models in the presence of inac-

curate class labels. Whitehill et al. [30] solved the problem

of picking the correct label based on the labels provided

by many labelers with different expertise. Jindal et al. [16]

proposed a dropout-regularized noise model by augmenting

existing deep network with a noise model that accounts for

label noise. Yao et al. [34] proposed a quality embedding

model to infer the trustworthiness of noisy labels. Different

from the above supervised learning with noisy labels meth-

ods, Lu et al. [25] proposed a weakly supervised semantic

segmentation framework to deal with noisy labels.

To the best of our knowledge, [35] is the first and only

deep method that learns saliency without human anno-

tations, where saliency maps from unsupervised saliency

methods are fused with manually designed rules in combin-

ing “intra-image” fusion stream and “inter-image” fusion

stream to generate the learning curriculum. The method

iteratively replaces inter-image saliency map of low relia-

bility with its corresponding saliency map. Their recursive

optimization depends on dedicated design and is computa-

tionally expensive. Different from [35], we formulate unsu-

pervised saliency learning as the joint optimization of latent

saliency and noise modeling. Our method is not only sim-

pler and easier to implement, but also outperforms [35] and

existing unsupervised saliency methods. Furthermore, our

method produces competitive performances as compared to

the most recent deep supervised saliency detection methods.

3. Our Framework

Targeting at achieving deep saliency detection without

human annotations, we propose an end-to-end noise model

integrated deep framework, which builds upon existing effi-

cient and effective unsupervised saliency detection methods

and the powerful capacity of deep neural networks.

Given a color image xi, we would like to learn a bet-

ter saliency map from its M noisy saliency maps y
j
i , j =

1, · · · ,M using different unsupervised saliency methods

[32, 13, 21, 43]. A trivial and direct solution would be us-

ing the noisy saliency maps as “proxy” human annotations

and train a deep model with these noisy saliency maps as

supervision. However, it is well-known that the network

training is highly prone to the noise in supervision signals.

A simple fusion of the multiple labels (training with averag-

ing, treating as multiple labels) will also not work due to the

strong inconsistency between labels. While there could be

many other potentials in utilizing the noisy saliency maps,

they are all based on human-designed pipelines, thus cannot

effectively exploit the best manner. Instead, we propose a

principled way to infer the saliency maps from using multi-

ple noisy labels and simultaneously estimate the noise.

3.1. Joint Saliency Prediction and Noise Modeling

By contrast to existing manually designed procedures

and deep learning based pipeline [35], we propose a new

perspective toward the problem of learning from unsuper-

vised saliency. As illustrated in Fig. 2, our framework con-

sists of two consecutive modules, namely a saliency pre-

diction module that learns the mapping from a color image

to the “latent” saliency map, and a noise modeling module

that fits the noise. These two modules work collaboratively

toward fitting the noisy saliency maps. By explicitly mod-

eling noise, we are able to train a deep saliency prediction

model without any human annotations and thus achieve un-

supervised deep saliency detection.

9031



3.2. Loss Function

We start with a set of training images, denoted as X =
{xi, i = 1, . . . , N} and a set of M different saliency maps

of these images, denoted as Y = {yj
i , i = 1, . . . , N ; j =

1, . . . ,M}, where N is number of training images. These

are precomputed by applying M different handcrafted “la-

bellers”. Throughout this discussion, i indexes the training

image and j indexes the handcrafted labeller. We propose

a neural network with parameter Θ for saliency detection,

which computes a saliency map ȳi = f(xi,Θ) of each im-

age. Our idea is to model each of the handcrafted labellers

as the sum of ȳi plus noise: y
j
i = ȳi + n

j
i , where n

j
i is a

sample chosen from some probability (“noise”) distribution

qi, which is to be estimated. For simplicity in this work,

it is assumed that the distribution q depends on xi, and not

on the labeller j3. We assume a simple model for the noise

distributions qi, namely that it a zero-mean Gaussian, inde-

pendent for each pixel of each image xi. Thus, the total

distribution q = {q1, q2, . . . , qN} is assumed independent

for all i and pixel (m,n), and is parametrized by a param-

eter set Σ = {σi
mn}, where i indexes the training image

and (m,n) are pixel coordinates. Sometimes, distribution

q will be denoted as q(Σ) to emphasize the role of the pa-

rameters Σ. With this simple parameterization it is easy to

generate noise samples n
j
i for any i and j.

Given Θ, Σ, and an input image xi, one generates

saliency map ŷ
j
i according to:

ŷ
j
i = f(xi; Θ) + n

j
i = ȳi + n

j
i , (1)

where each n
j
i is a sample drawn from distribution qi(Σ). In

the training process, the parameters Θ of the network and Σ
of the noise model are updated to minimize an appropriate

loss function. The loss function has two parts:

L(Θ,Σ) = Lpred(Θ,Σ) + λLnoise(Θ,Σ), (2)

where λ is the regularizer to balance these two terms. Un-

der our optimization framework, increasing the variance in

noise modeling will make the prediction loss Lpred large

and decrease the Lnoise. Meanwhile, keeping the vari-

ance lower will decrease the cross-entropy loss Lpred but

increase Lnoise. Thus our model balances between these

two losses and converges to the state minimizing the overall

loss. These two losses are described below:

Saliency Prediction: For the latent saliency prediction

module, we use a fully convolutional neural network (FCN)

due to its superior capability in feature learning and fea-

ture representation. We use the conventional cross-entropy

loss and compute the loss function element-wisely across

the whole training images.

3Assuming that distribution q is also dependent on the labeller j was

observed not to improve results

The predictive loss LPred is designed to measure the

agreement of the predicted labellings ŷ
j
i with handcrafted

labellings y
j
i . Cross-entropy loss is used for this purpose,

and the cross-entropy loss between modeled value ŷ and

“ground truth” value y (noisy label) is given by:

LCE = −(y log(ŷ) + (1− y) log(1− ŷ)). (3)

This is applied to all pixel (m,n), all labellers j and all the

test images xi to give the total prediction loss.

Lpred(Θ,Σ) =

N∑

i=1

M∑

j=1

∑

m,n

LCE(y
j
i,mn, ŷ

j
i,mn), (4)

where ŷ
j
i,mn is our noisy saliency map prediction at pixel

(m,n) which can be easily computed by (1) element-wise,

and ŷ
j
i,mn is truncated to lie in the range of [0, 1].

Noise Modeling To effectively handle noisy saliency

maps from different unsupervised saliency map labelers, we

build a probabilistic model to approximate the noise, and

connect it with our deterministic part (latent saliency pre-

diction model as shown in Fig. 2). In this way, our entire

model can be trained in an end-to-end manner to minimize

the overall loss function Eq. (2).

The noise loss Lnoise measures (for each training image

xi) the agreement of the noise distribution qi(Σ) with the

empirical variance of the measurements y
j
i with respect to

the output ȳi = f(xi; Θ) of the network. More precisely,

given an input xi, define n̂
j
i = y

j
i − ȳi, the empirical error

of each y
j
i with respect to the network prediction. For each

pixel location (m,n), this provides M samples from a zero-

mean Gaussian probability distribution pi, and its variance

on every pixel can be written as σ̂i,mn. The complete set of

parameters for pi is denoted as Σ̂ = {σ̂i,mn}.

Since it is intractable to estimate the true posterior distri-

bution of n̂
j
i , thus we propose to approximate it by sequen-

tially optimizing the parameters of prior. We assume that

the noise is generated by some random process, involving

an unobserved continuous random variable set Σ. From an

encoder perspective, the unobserved variable n can be in-

terpreted as a latent representation. Here, we model ŷ
j
i as a

probabilistic encoder, since given an image xi and network

parameters Θ it produces a distribution (e.g. a Gaussian)

over possible values of the code n. The process consists of

two steps: (1) a noise map ni is generated from some prior

distribution q(Σ∗); (2) a noise map n̂
j
i is produced and es-

timating the corresponding parameter σ̂i

The corresponding noise loss is defined to be the KL di-

vergence between distribution pi and qi.

Lnoise(Θ,Σ) =

N∑

i

KL(q(Σi)‖ p(Σ̂i)). (5)
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Since we employ the Gaussian distribution as the prior

distribution for our noise model, the KL divergence has a

closed-form solution as:

KL(q(σ)‖ p(σ̂)) = log(σ̂/σ) +
σ2 + (µ− µ̂)2

2σ̂2
−

1

2
, (6)

Based on this equation, we can update σ2
i for every coordi-

nate (m,n) as

(σt+1
i )2 = (σt

i)
2 + α((σ̂t

i)
2 − (σt

i)
2), (7)

by differentiating Eq. (6) with respect to σ2
i,mn, where α is

the step size, and we set α = 0.01 in this paper.

For different images we have the corresponding noise

maps, which follows i.i.d. Gaussian distributions with dif-

ferent variance. Thus, it is hard to converge if simultane-

ously optimizing the FCN parameters Θ and noise param-

eters Σ. In order to train the whole network smoothly, we

update the parameters of noise module after the prediction

loss converges. Noise maps of a given image are sampled

from the same distribution in a round, but they are updated

in every round. At the first round, we initialize noise vari-

ance to be zero, and train the FCN until it converges. Based

on the variance of the saliency prediction and noisy labels,

we then update the noise variance for each image and retrain

the network. Through minimizing the loss function Eq. (2)

with this procedure, We can train the network and estimate

the corresponding noise maps.

3.3. Deep Noise Model based Saliency Detector

Network Architecture We build our latent saliency pre-

diction module upon the DeepLab network [4], where a

deep CNN (ResNet-101 [10] in particular) originally de-

signed for image classification is re-purposed by 1) trans-

forming all fully connected layers to convolutional layers

and 2) increasing feature resolution through dilated convo-

lution [4]. Figure 2 shows the whole structure of our frame-

work. Specifically, our model takes a rescaled image xi of

425× 425 as input. For training, the noise model is used to

iteratively update saliency prediction ŷ
j
i , and it’s excluded

in testing stage, where the latent saliency prediction output

ȳi in Fig. 2 is our predicted saliency map.

Implementation details: We trained our model using

Caffe [12] with maximum epoch of 20. We initialized our

model by using the Deep Residual Model trained for image

classification [10]. We used the stochastic gradient descent

method with momentum 0.9 and decreased learning rate

90% when the training loss did not decrease. Base learn-

ing rate is initialized as 1e-3 with the “poly” decay policy

[12]. For validation, we set “test iter” as 500 (test batch

size 1) to cover the full 500 validation images. The train-

ing took 4 hours for one round with training batch size 1

and “iter size” 20 on a PC with an NVIDIA Quadro M4000

GPU.

4. Experimental Results

In this section, we report experimental results on various

saliency detection benchmarking datasets.

4.1. Setup

Dataset: We evaluated performance of our proposed

model on 7 saliency benchmarking datasets. 3,000 images

from the MSRA-B dataset[24] are used to get the noisy la-

bels (where 2,500 images for training and 500 images for

validation) and the remaining 2,000 images are kept for

testing. Most of the images in MSRA-B dataset only have

one salient object. The ECSSD dataset [32] contains 1,000

images of semantically meaningful but structurally com-

plex images. The DUT dataset [33] contains 5,168 images.

The SOD saliency dataset [14] contains 300 images, where

many images contain multiple salient objects with low con-

trast. The SED2 [1] dataset contains 100 images with each

image contains two salient objects. The PASCAL-S [23]

dataset is generated from the PASCAL VOC [8] dataset

and contains 850 images. The THUR dataset [5] contains

6,232 images of five classes, namely “butterfly”,“coffee

mug”,“dog jump”,“giraffe” and “plane”.

Unsupervised Saliency Methods: In this paper, we

learn unsupervised saliency from existing unsupervised

saliency detection methods. In our experiment, we choose

RBD [43], DSR [21], MC [13] and HS [32] due to their

effectiveness and efficiency as illustrated in [3].

Competing methods: We compared our method against

10 state-of-the-art deep saliency detection methods (with

clean labels): DSS [11], NLDF [26], Amulet [40], UCF

[41], SRM [35], DMT [22], RFCN [28], DeepMC [42],

MDF [19] and DC [20], 5 conventional handcrafted feature

based saliency detection methods: DRFI [14], RBD [43],

DSR [21], MC [13], and HS [32], which were proven in

[3] as the state-of-the-art methods before the deep learning

revolution, and the very recent unsupervised deep saliency

detection method SBF [35].

Evaluation metrics: We use 3 evaluation metrics, in-

cluding the mean absolute error (MAE), F-measure, as well

as the Precision-Recall (PR) curve. MAE can provide a bet-

ter estimate of the dissimilarity between the estimated and

ground truth saliency map. It is the average per-pixel differ-

ence between the ground truth and the estimated saliency

map, normalized to [0, 1], which is defined as:

MAE =
1

W ×H

W∑

x=1

H∑

y=1

|S(x, y)−GT (x, y)|, (8)

where W and H are the width and height of the respective

saliency map S, GT is the ground truth saliency map.

The F-measure (Fβ) is defined as the weighted harmonic
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Table 1. Performance of mean F-measure (Fβ) and MAE for different methods including ours on seven benchmark datasets.

MSRA-B ECSSD DUT SED2 PASCALS THUR SOD

Methods Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

BL1 .7905 .0936 .7205 .1444 .5825 .1369 .7773 .1112 .6714 .2206 .5953 .1339 .6306 .1870

BL2 .6909 .1710 .6542 .2170 .4552 .2951 .7232 .1406 .6776 .2409 .5119 .2545 .5928 .2566

BL3 .8879 .0587 .8717 .0772 .7253 .0772 .8520 .0819 .8264 .1525 .7368 .0749 .7922 .1231

OURS .8770 .0560 .8783 .0704 .7156 .0860 .8380 .0881 .8422 .1391 .7322 .0811 .7976 .1182

Table 2. Performance of mean F-measure (Fβ) and MAE for different methods including ours on seven benchmark datasets (Best ones in

bold). From DSS to DC are deep learning based supervised methods, from DRFI to HS are the handcrafted feature based unsupervised

methods, SBF and OURS are deep learning based unsupervised saliency detection methods.
MSRA-B ECSSD DUT SED2 PASCALS THUR SOD

Methods Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE Fβ MAE

DSS [11] .8941 .0474 .8796 .0699 .7290 .0760 .8236 .1014 .8243 .1546 .7081 .1142 .8048 .1118

NLDF [26] .8970 .0478 .8908 .0655 .7360 .0796 - - .8391 .1454 - - .8235 .1030

Amulet [40] - - .8825 .0607 .6932 .0976 .8745 .0629 .8371 .1292 .7115 .0937 .7729 .1248

UCF [41] - - .8521 .0797 .6595 .1321 .8444 .0742 .8060 .1492 .6920 .1119 .7429 .1527

SRM [29] .8506 .0665 .8260 .0922 .6722 .0846 .7447 .1164 .7766 .1696 .6894 .0871 .7246 .1369

DMT [22] - - .7589 .1601 .6045 .0758 .7778 .1074 .6657 .2103 .6254 .0854 .6978 .1503

RFCN [28] - - .8426 .0973 .6918 .0945 .7616 .1140 .8064 .1662 .7062 .1003 .7531 .1394

DeepMC [42] .8966 .0491 .8061 .1019 .6715 .0885 .7660 .1162 .7327 .1928 .6549 .1025 .6862 .1557

MDF [19] .7780 .1040 .8097 .1081 .6768 .0916 .7658 .1171 .7425 .2069 .6670 .1029 .6377 .1669

DC [20] .8973 .0467 .8315 .0906 .6902 .0971 .7840 .1014 .7861 .1614 .6940 .0959 .7603 .1208

DRFI [14] .7282 .1229 .6440 .1719 .5525 .1496 .7252 .1373 .5745 .2556 .5613 .1471 .5440 .2046

RBD [43] .7508 .1171 .6518 .1832 .5100 .2011 .7939 .1096 .6581 .2418 .5221 .1936 .5927 .2181

DSR [21] .7227 .1207 .6387 .1742 .5583 .1374 .7053 .1452 .5785 .2600 .5498 .1408 .5500 .2133

MC [13] .7165 .1441 .6114 .2037 .5289 .1863 .6619 .1848 .5742 .2719 .5149 .1838 .5332 .2435

HS [44] .7129 .1609 .6234 .2283 .5205 .2274 .7168 .1869 .5948 .2860 .5157 .2178 .5383 .2729

SBF [35] - - .7870 .0850 .5830 .1350 - - .7780 .1669 - - .6760 .1400

OURS .8770 .0560 .8783 .0704 .7156 .0860 .8380 .0881 .8422 .1391 .7322 .0811 .7976 .1182
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Figure 3. PR curves on six benchmark datasets (DUT, ECSSD, PASCAL-S, SOD, MSRA-B, THUR). Best Viewed on Screen.

mean of precision and recall:

Fβ = (1 + β2)
Precision×Recall

β2Precision+Recall
, (9)

where β2 = 0.3, Precision corresponds to the percentage

of salient pixels being correctly detected, Recall is the frac-

tion of detected salient pixels in relation to the ground truth
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number of salient pixels. The PR curves are obtained by

thresholding the saliency map in the range of [0, 255].

4.2. Baseline Experiments

As there could be different ways to utilize the multiple

noisy saliency maps, and for fair comparisons with straight-

forward solutions for our task, we run the following three

baseline methods and the results are reported in Table 1.

Baseline 1 using noisy unsupervised saliency pseudo

ground truth: For a given input image xi and its M hand-

crafted feature based saliency map y
j
i , j = 1, ...,M , we

get M image pairs with noisy label {xi,y
j
i , j = 1, ...,M ).

Then we train a deep model [10] based on those noisy labels

directly, and the results are shown as “BL1” in Table 1.

Baseline 2: using averaged unsupervised saliency as

pseudo ground truth: Instead of using all the four unsuper-

vised saliency as ground truth, we use the averaged saliency

map of those unsupervised saliency as pseudo ground truth,

and trained another baseline model “BL2” in Table 1.

Baseline 3: supervised learning with ground truth

supervision: Our proposed framework consists of the

saliency prediction module and the noise modeling module

to effectively leverage the noisy saliency maps. To illustrate

the best performance our model can achieve as well as to

provide a baseline comparison for our framework, we train

our latent saliency module directly with clean labels, which

naturally gives an upper bound of the saliency detection per-

formance. The results “BL3” are reported in Table 1.

Analysis: In Table 1, we compare our unsupervised

saliency method with the above baseline configurations.

Our method clearly outperforms both BL1 and BL2 with

a wide margin, demonstrating the superiority of our end-

to-end learning framework. As illustrated in Table 1, the

performance of BL1 is better than the performance of BL2.

This is because: 1) For BL1, we have 12,000 training im-

age pairs (four unsupervised saliency methods), while for

BL2, we have 3,000 averaged noisy labels; 2) as those un-

supervised saliency methods tend to prefer different priors

for saliency detection, and their saliency maps can be com-

plementary or controversial to some extent. Simply av-

eraging those saliency maps results in even worse proxy

saliency map supervision. Compared with BL3, which is

trained with ground truth clean labels and without noise,

our unsupervised method achieves highly comparable re-

sults. This demonstrates that by jointly learning the latent

saliency maps and modeling the noise in a unified frame-

work, we are able to learn the desired reliable saliency maps

even without any human annotations.

4.3. Comparison with the State-of-the-art

Quantitative Comparison We compared our method

with eleven most resent deep saliency methods and five

conventional methods. Results are reported in Table 2

and Fig. 3, where “OURS” represents the results of our

model. Table 2 shows that on those seven benchmark

datasets, deep supervised methods significantly outperform

traditional methods with 2%-12% decrease in MAE, which

further proves the superiority of deep saliency detection.

MSRA-B is a relatively simple dataset, where most

salient objects dominate the whole image. The most re-

cent deep supervised saliency methods [11] [26] [40] can

achieve the highest mean F-measure of 0.8970, and our un-

supervised method without human annotations can achieve

a mean F-measure of 0.8770, which is only a slight worse.

The DUT dataset has more than 25% of images with

saliency occupation less than 4%. Small salient object de-

tection is quite challenging which increase the difficulty of

this dataset. We achieve the third highest mean F-measure

compared with all the competing methods. The THUR

dataset is the largest dataset we used in this paper, and most

of the images have complex background. The state-of-the-

art competing method achieves a mean F-measure/MAE as

0.7115/0.0854, while our method achieves the best mean F-

measure and MAE as 0.7322/0.0811. SBF [35] uses inter-

and intra-image confidence map as pseudo ground truth to

train an unsupervised deep model based on unsupervised

saliency, which is quite different from our formulation of

predicting saliency from unsupervised saliency as learn-

ing from noisy labels. Table 2 shows that our framework

leads to better performance, with 10% mean F-measure im-

provement and 3% decrease of MAE on average. Fig. 3

shows comparison between PR curves of our method and

the competing methods on four benchmarking datasets. For

the PASCAL-S and THUR dataset, our method ranks al-

most the 1st, and for the other three datasets, our method

achieves competitive performance compared with the com-

peting deep supervised methods. These experiments alto-

gether proves the effectiveness our proposed unsupervised

saliency detection framework.

Qualitative Comparison Figure 4 demonstrates several

visual comparisons, where our method consistently outper-

forms the competing methods, especially those four unsu-

pervised saliency we used to train our model. The first im-

age is a simple scenario, and most of the competing meth-

ods can achieve good results, while our method achieves the

best result with most of the background region suppressed.

Background of the third image is very complex, and all the

competing methods fail to detect salient object. With proper

noisy labels, we achieve the best results compared with both

unsupervised saliency methods and deep saliency methods.

The fourth image is in very low-contrast, where most of the

competing methods failed to capture the whole salient ob-

jects with the last penguin mis-detected, especially for those

unsupervised saliency methods. Our method captures all

the three penguins properly. The salient objects in the last

row are quite small, and the competing methods failed to
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Figure 4. Visual comparison between our method and other competing methods.

capture salient regions, while our method capture the whole

salient region with high precision.

Ablation Studies: In this paper, we propose to iter-

atively update the noise modeling module and the latent

saliency prediction model to achieve accurate saliency de-

tection. As the two modules work collaboratively to opti-

mize the overall loss function, it is interesting to see how

the saliency prediction results evolves with respect to the

increase of updating round. In Fig. 5, we illustrate both the

performance metric (MAE) with respect to updating round

and an example saliency detection results. Starting with the

zero noise initialization, our method consistently improves

the performance of saliency detection with the updating of

noise modeling. Also, only after several updating rounds,

our method convergences to desired state as shown in Fig. 5.

5. Conclusions

In this paper, we propose an end-to-end saliency learning

framework without the need of human annotated saliency

maps in network training. We represent unsupervised

saliency learning as learning from multiple noisy saliency

maps generated by various efficient and effective con-

ventional unsupervised saliency detection methods. Our

framework consists of a latent saliency prediction mod-

ule and an explicit noise modeling models, which work

collaboratively. Extensive experimental results on various

benchmarking datasets prove the superiority of our method,

which not only outperforms traditional unsupervised meth-

ods with a wide margin but also achieves highly comparable

performance with current state-of-the-art deep supervised

saliency detection methods. In the future, we plan to in-

vestigate the challenging scenarios of multiple saliency ob-

ject detection and small salient object detection under our
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Figure 5. Performance of each round. Top: MAE of each dataset.

Bottom: an example image, ground-truth and intermedia results

generated by each updating round.

framework. Extending our framework to dense prediction

tasks such as semantic segmentation [25] and monocular

depth estimation [18] could be interesting directions.
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