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Abstract

Single image rain streak removal is an extremely chal-

lenging problem due to the presence of non-uniform

rain densities in images. We present a novel density-

aware multi-stream densely connected convolutional neural

network-based algorithm, called DID-MDN, for joint rain

density estimation and de-raining. The proposed method

enables the network itself to automatically determine the

rain-density information and then efficiently remove the

corresponding rain-streaks guided by the estimated rain-

density label. To better characterize rain-streaks with

different scales and shapes, a multi-stream densely con-

nected de-raining network is proposed which efficiently

leverages features from different scales. Furthermore, a

new dataset containing images with rain-density labels is

created and used to train the proposed density-aware net-

work. Extensive experiments on synthetic and real datasets

demonstrate that the proposed method achieves signifi-

cant improvements over the recent state-of-the-art meth-

ods. In addition, an ablation study is performed to demon-

strate the improvements obtained by different modules in

the proposed method. The code can be downloaded at

https://github.com/hezhangsprinter/DID-MDN

1. Introduction

In many applications such as drone-based video surveil-

lance and self driving cars, one has to process images and

videos containing undesirable artifacts such as rain, snow,

and fog [8, 7] or other distortion such as blur and light

[25]. Furthermore, the performance of many computer vi-

sion systems often degrades when they are presented with

images containing some of these artifacts. Hence, it is im-

portant to develop algorithms that can automatically remove

these artifacts. In this paper, we address the problem of

rain streak removal from a single image. Various methods

have been proposed in the literature to address this problem

[19, 7, 39, 21, 3, 16, 11, 2, 41, 36, 6].

One of the main limitations of the existing single im-

(a) (b) (c)

(d) (e) (f)

Figure 1: Image de-raining results. (a) Input rainy image. (b)

Result from Fu et al. [7]. (c) DID-MDN. (d) Input rainy image.

(e) Result from Li et al. [36]. (f) DID-MDN. Note that [7] tends to

over de-rain the image while [36] tends to under de-rain the image.

age de-raining methods is that they are designed to deal

with certain types of rainy images and they do not effec-

tively consider various shapes, scales and density of rain

drops into their algorithms. State-of-the-art de-raining al-

gorithms such as [36, 7] often tend to over de-rain or under

de-rain the image if the rain condition present in the test im-

age is not properly considered during training. For example,

when a rainy image shown in Fig. 1(a) is de-rained using the

method of Fu et al. [7], it tends to remove some important

parts in the de-rained image such as the right arm of the

person, as shown in Fig. 1(b). Similarly, when [36] is used

to de-rain the image shown in Fig. 1(d), it tends to under

de-rain the image and leaves some rain streaks in the output

de-rained image. Hence, more adaptive and efficient meth-

ods, that can deal with different rain density levels present

in the image, are needed.

One possible solution to this problem is to build a very

large training dataset with sufficient rain conditions contain-

ing various rain-density levels with different orientations

and scales. This has been achieved by Fu et al. [7] and
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Yang et al.[36], where they synthesize a novel large-scale

dataset consisting of rainy images with various conditions

and they train a single network based on this dataset for im-

age de-raining. However, one drawback of this approach is

that a single network may not be capable enough to learn

all types of variations present in the training samples. It can

be observed from Fig. 1 that both methods tend to either

over de-rain or under de-rain results. Alternative solution

to this problem is to learn a density-specific model for de-

raining. However, this solution lacks flexibility in practical

de-raining as the density label information is needed for a

given rainy image to determine which network to choose for

de-raining.

In order to address these issues, we propose a novel

Density-aware Image De-raining method using a Multi-

stream Dense Network (DID-MDN) that can automatically

determine the rain-density information (i.e. heavy, medium

or light) present in the input image (see Fig. 2). The pro-

posed method consists of two main stages: rain-density

classification and rain streak removal. To accurately esti-

mate the rain-density level, a new residual-aware classifier

that makes use of the residual component in the rainy im-

age for density classification is proposed in this paper. The

rain streak removal algorithm is based on a multi-stream

densely-connected network that takes into account the dis-

tinct scale and shape information of rain streaks. Once

the rain-density level is estimated, we fuse the estimated

density information into our final multi-stream densely-

connected network to get the final de-rained output. Fur-

thermore, to efficiently train the proposed network, a large-

scale dataset consisting of 12,000 images with different

rain-density levels/labels (i.e. heavy, medium and light) is

synthesized. Fig. 1(c) & (d) present sample results from our

network, where one can clearly see that DID-MDN does not

over de-rain or under de-rain the image and is able to pro-

vide better results as compared to [7] and [36].

This paper makes the following contributions:

1. A novel DID-MDN method which automatically deter-

mines the rain-density information and then efficiently

removes the corresponding rain-streaks guided by the

estimated rain-density label is proposed.

2. Based on the observation that residual can be used as a

better feature representation in characterizing the rain-

density information, a novel residual-aware classifier

to efficiently determine the density-level of a given

rainy image is proposed in this paper.

3. A new synthetic dataset consisting of 12,000 training

images with rain-density labels and 1,200 test images

is synthesized. To the best of our knowledge, this is

the first dataset that contains the rain-density label in-

formation. Although the network is trained on our syn-

thetic dataset, it generalizes well to real-world rainy

images.

4. Extensive experiments are conducted on three highly

challenging datasets (two synthetic and one real-

world) and comparisons are performed against several

recent state-of-the-art approaches. Furthermore, an ab-

lation study is conducted to demonstrate the effects of

different modules in the proposed network.

2. Background and Related Work

In this section, we briefly review several recent related

works on single image de-raining and multi-scale feature

aggregation.

2.1. Single Image Deraining

Mathematically, a rainy image y can be modeled as a lin-

ear combination of a rain-streak component r with a clean

background image x, as follows

y = x+ r. (1)

In single image de-raining, given y the goal is to recover

x. As can be observed from (1) that image de-raining is

a highly ill-posed problem. Unlike video-based methods

[26, 32, 28], which leverage temporal information in re-

moving rain components, prior-based methods have been

proposed in the literature to deal with this problem. These

include sparse coding-based methods [16, 11, 47], low-

rank representation-based methods [3, 39] and GMM-based

(gaussian mixture model) methods [19]. One of the limita-

tions of some of these prior-based methods is that they often

tend to over-smooth the image details [16, 39].

Recently, due to the immense success of deep learning

in both high-level and low-level vision tasks [10, 34, 44,

23, 35, 37, 25], several CNN-based methods have also been

proposed for image de-raining [4, 6, 36, 7]. In these meth-

ods, the idea is to learn a mapping between input rainy im-

ages and their corresponding ground truths using a CNN

structure.

2.2. Multiscale Feature Aggregation

It has been observed that combining convolutional fea-

tures at different levels (scales) can lead to a better rep-

resentation of an object in the image and its surrounding

context [9, 45, 13, 38]. For instance, to efficiently lever-

age features obtained from different scales, the FCN (fully

convolutional network) method [20] uses skip-connections

and adds high-level prediction layers to intermediate layers

to generate pixel-wise prediction results at multiple resolu-

tions. Similarly, the U-Net architecture [27] consists of a

contracting path to capture the context and a symmetric ex-

panding path that enables the precise localization. The HED

model [33] employs deeply supervised structures, and au-

tomatically learns rich hierarchical representations that are

fused to resolve the challenging ambiguity in edge and ob-

ject boundary detection. Multi-scale features have also been
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Figure 2: An overview of the proposed DID-MDN method. The proposed network contains two modules: (a) residual-aware rain-density

classifier, and (b) multi-stream densely-connected de-raining network. The goal of the residual-aware rain-density classifier is to determine

the rain-density level given a rainy image. On the other hand, the multi-stream densely-connected de-raining network is designed to

efficiently remove the rain streaks from the rainy images guided by the estimated rain-density information.

leveraged in various applications such as semantic segmen-

tation [45], face-alignment [22], visual tracking [18] crowd-

counting [30], single image super-resolution[43], face anti-

Spoofing [1], action recognition [48], depth estimation [5],

single image dehazing [24, 42, 40] and also in single im-

age de-raining [36]. Similar to [36], we also leverage a

multi-stream network to capture the rain-streak components

with different scales and shapes. However, rather than us-

ing two convolutional layers with different dilation factors

to combine features from different scales, we leverage the

densely-connected block [13] as the building module and

then we connect features from each block together for the

final rain-streak removal. The ablation study demonstrates

the effectiveness of our proposed network compared with

the structure proposed in [36].

3. Proposed Method

The proposed DID-MDN architecture mainly consists

of two modules: (a) residual-aware rain-density classifier,

and (b) multi-stream densely connected de-raining network.

The residual-aware rain-density classifier aims to determine

the rain-density level given a rainy image. On the other

hand, the multi-stream densely connected de-raining net-

work is designed to efficiently remove the rain streaks from

the rainy images guided by the estimated rain-density in-

formation. The entire network architecture of the proposed

DID-MDN method is shown in Fig. 2.

3.1. Residualaware Raindensity Classifier

As discussed above, even though some of the previ-

ous methods achieve significant improvements on the de-

raining performance, they often tend to over de-rain or un-

der de-rain the image. This is mainly due to the fact that

a single network may not be sufficient enough to learn dif-

ferent rain-densities occurring in practice. We believe that

incorporating density level information into the network can

benefit the overall learning procedure and hence can guar-

antee better generalization to different rain conditions [26].

Similar observations have also been made in [26], where

they use two different priors to characterize light rain and

heavy rain, respectively. Unlike using two priors to charac-

terize different rain-density conditions [26], the rain-density

label estimated from a CNN classifier is used for guiding the

de-raining process. To accurately estimate the density in-

formation given a rainy input image, a residual-aware rain-

density classifier is proposed, where the residual informa-

tion is leveraged to better represent the rain features. In

addition, to train the classier, a large-scale synthetic dataset

consisting of 12,000 rainy images with density labels is syn-

thesized. Note that there are only three types of classes (i.e.

labels) present in the dataset and they correspond to low,

medium and high density.

One common strategy in training a new classifier is to

fine-tune a pre-defined model such as VGG-16 [29], Res-net

[10] or Dense-net [13] on the newly introduced dataset. One

of the fundamental reasons to leverage a fine-tune strategy

for the new dataset is that discriminative features encoded

in these pre-defined models can be beneficial in accelerat-

ing the training and it can also guarantee better generaliza-

tion. However, we observed that directly fine-tuning such a

‘deep’ model on our task is not an efficient solution. This is

mainly due to the fact that high-level features (deeper part)
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of a CNN tend to pay more attention to localize the discrim-

inative objects in the input image [46]. Hence, relatively

small rain-streaks may not be localized well in these high-

level features. In other words, the rain-streak information

may be lost in the high-level features and hence may de-

grade the overall classification performance. As a result, it

is important to come up with a better feature representation

to effectively characterize rain-streaks (i.e. rain-density).

From (1), one can regard r = y−x as the residual com-

ponent which can be used to characterize the rain-density.

To estimate the residual component (̂r) from the observa-

tion y, a multi-stream dense-net (without the label fusion

part) using the new dataset with heavy-density is trained.

Then, the estimated residual is regarded as the input to

train the final classifier. In this way, the residual estimation

part can be regarded as the feature extraction procedure, 1

which is discussed in Section 3.2. The classification part

is mainly composed of three convolutional layers (Conv)

with kernel size 3 × 3, one average pooling (AP) layer

with kernel size 9×9 and two fully-connected layers (FC).

Details of the classifier are as follows:

Conv(3,24)-Conv(24,64)-Conv(64,24)-AP-

FC(127896,512)-FC(512,3),

where (3,24) means that the input consists of 3 channels and

the output consists of 24 channels. Note that the final layer

consists of a set of 3 neurons indicating the rain-density

class of the input image (i.e. low, medium, high). An

ablation study, discussed in Section 4.3, is conducted to

demonstrate the effectiveness of proposed residual-aware

classifier as compared with the VGG-16 [29] model.

Loss for the Residual-aware Classifier:. To efficiently

train the classifier, a two-stage training protocol is lever-

aged. A residual feature extraction network is firstly trained

to estimate the residual part of the given rainy image, then

a classification sub-network is trained using the estimated

residual as the input and is optimized via the ground truth

labels (rain-density). Finally, the two stages (feature extrac-

tion and classification) are jointly optimized. The overall

loss function used to train the residual-aware classier is as

follows:

L = LE,r + LC , (2)

where LE,r indicates the per-pixel Euclidean-loss to esti-

mate the residual component and LC indicates the cross-

entropy loss for rain-density classification.

3.2. Multistream Dense Network

It is well-known that different rainy images contain rain-

streaks with different scales and shapes. Considering the

images shown in Fig. 3, the rainy image in Fig. 3 (a) con-

tains smaller rain-streaks, which can be captured by small-

1Classificaiton network can be regarded as two parts: 1.Feature extrac-

tor and 2. Classifer

(a) (b)

Figure 3: Sample images containing rain-streaks with various

scales and shapes.(a) contains smaller rain-streaks, (b) contains

longer rain-streaks.

scale features (with smaller receptive fields), while the im-

age in Fig. 3 (b) contains longer rain-streaks, which can

be captured by large-scale features (with larger receptive

fields). Hence, we believe that combining features from dif-

ferent scales can be a more efficient way to capture various

rain streak components [12, 36].

Based on this observation and motivated by the success

of using multi-scale features for single image de-raining

[36], a more efficient multi-stream densely-connected net-

work to estimate the rain-streak components is proposed,

where each stream is built on the dense-block introduced in

[13] with different kernel sizes (different receptive fields).

These multi-stream blocks are denoted by Dense1 (7 × 7),
Dense2 (5 × 5), and Dense3 (3 × 3), in yellow, green and

blue blocks, respectively in Fig. 2. In addition, to further

improve the information flow among different blocks and

to leverage features from each dense-block in estimating

the rain streak components, a modified connectivity is intro-

duced, where all the features from each block are concate-

nated together for rain-streak estimation. Rather than lever-

aging only two convolutional layers in each stream [36], we

create short paths among features from different scales to

strengthen feature aggregation and to obtain better conver-

gence. To demonstrate the effectiveness of our proposed

multi-stream network compared with the multi-scale struc-

ture proposed in [36], an ablation study is conducted, which

is described in Section 4.

To leverage the rain-density information to guide the de-

raining process, the up-sampled label map 2 is concatenated

with the rain streak features from all three streams. Then,

the concatenated features are used to estimate the residual

(̂r) rain-streak information. In addition, the residual is sub-

tracted from the input rainy image to estimate the coarse

de-rained image. Finally, to further refine the estimated

coarse de-rained image and make sure better details well

preserved, another two convolutional layers with ReLU are

2For example, if the label is 1, then the corresponding up-sampled

label-map is of the same dimension as the output features from each stream

and all the pixel values of the label map are 1.
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adopted as the final refinement.

There are six dense-blocks in each stream. Mathemati-

cally, each stream can be represented as

sj = cat[DB1, DB2, ..., DB6], (3)

where cat indicates concatenation, DBi, i = 1, · · · 6 de-

notes the output from the ith dense block, and sj , j = 1, 2, 3
denotes the jth stream. Furthermore, we adopt different

transition layer combinations3 and kernel sizes in each

stream. Details of each stream are as follows:

Dense1: three transition-down layers, three transition-up

layers and kernel size 7× 7.

Dense2: two transition-down layers, two no-sampling

transition layers, two transition-up layers and kernel size

5× 5.

Dense3: one transition-down layer, four no-sampling

transition layers, one transition-up layer and kernel size

3× 3.

Note that each dense-block is followed by a transition layer.

Fig 4 presents an overview of the first stream, Dense1.

Figure 4: Details of the first stream Dense1.

Loss for the De-raining Network:. Motivated by the ob-

servation that CNN feature-based loss can better improve

the semantic edge information [15, 17] and to further en-

hance the visual quality of the estimated de-rained image

[41], we also leverage a weighted combination of pixel-

wise Euclidean loss and the feature-based loss. The loss

for training the multi-stream densely connected network is

as follows

L = LE,r + LE,d + λFLF , (4)

where LE,d represents the per-pixel Euclidean loss function

to reconstruct the de-rained image and LF is the feature-

based loss for the de-rained image, defined as

LF =
1

CWH
‖F (x̂)c,w,h − F (x)c,w,h‖2

2
, (5)

where F represents a non-linear CNN transformation and x̂

is the recovered de-rained image. Here, we have assumed

that the features are of size w × h with c channels. In our

method, we compute the feature loss from the layer relu1 2

of the VGG-16 model [29].

3The transition layer can function as up-sample transition, down-

sample transition or no-sampling transition [14].

3.3. Testing

During testing, the rain-density label information using

the proposed residual-aware classifier is estimated. Then,

the up-sampled label-map with the corresponding input im-

age are fed into the multi-stream network to get the final

de-rained image.

4. Experimental Results

In this section, we present the experimental details and

evaluation results on both synthetic and real-world datasets.

De-raining performance on the synthetic data is evaluated

in terms of PSNR and SSIM [31]. Performance of different

methods on real-world images is evaluated visually since

the ground truth images are not available. The proposed

DID-MDN method is compared with the following recent

state-of-the-art methods: (a) Discriminative sparse coding-

based method (DSC) [21] (ICCV’15), (b) Gaussian mixture

model (GMM) based method [19] (CVPR’16), (c) CNN

method (CNN) [6] (TIP’17), (d) Joint Rain Detection and

Removal (JORDER) method [36] (CVPR’17), (e) Deep de-

tailed Network method (DDN) [7] (CVPR’17), and (f) Joint

Bi-layer Optimization (JBO) method [47] (ICCV’17).

4.1. Synthetic Dataset

Even though there exist several large-scale synthetic

datasets [7, 41, 36], they lack the availability of the corre-

sponding rain-density label information for each synthetic

rainy image. Hence, we develop a new dataset, denoted

as Train1, consisting of 12,000 images, where each image

is assigned a label based on its corresponding rain-density

level. There are three rain-density labels present in the

dataset (e.g. light, medium and heavy). There are roughly

4,000 images per rain-density level in the dataset. Similarly,

we also synthesize a new test set, denoted as Test1, which

consists of a total of 1,200 images. It is ensured that each

dataset contains rain streaks with different orientations and

scales. Images are synthesized using Photoshop. We mod-

ify the noise level introduced in step 3 of 4 to generate dif-

ferent rain-density images, where light, medium and heavy

rain conditions correspond to the noise levels 5% ∼ 35%,

35% ∼ 65%, and 65% ∼ 95%, respectively 5. Sample syn-

thesized images under these three conditions are shown in

Fig 5. To better test the generalization capability of the pro-

posed method, we also randomly sample 1,000 images from

the synthetic dataset provided by Fu [7] as another testing

set, denoted as Test2.

4http://www.photoshopessentials.com/photo-

effects/photoshopweather-effects-rain/
5The reason why we use three labels is that during our experiments, we

found that having more than three rain-density levels does not significantly

improve the performance. Hence, we only use three labels (heavy, medium

and light) in the experiments.
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Table 1: Quantitative results evaluated in terms of average SSIM and PSNR (dB) (SSIM/PSNR).

Input DSC [21] (ICCV’15) GMM [19] (CVPR’16) CNN [6] (TIP’17) JORDER [36] (CVPR’17) DDN [7] (CVPR’17) JBO [47] (ICCV’17) DID-MDN

Test1 0.7781/21.15 0.7896/21.44 0.8352/22.75 0.8422/22.07 0.8622/24.32 0.8978/ 27.33 0.8522/23.05 0.9087/ 27.95

Test2 0.7695/19.31 0.7825/20.08 0.8105/20.66 0.8289/19.73 0.8405/22.26 0.8851/25.63 0.8356/22.45 0.9092/ 26.0745

Heavy Medium Light

Figure 5: Samples synthetic images in three different conditions.

Table 2: Quantitative results compared with three baseline config-

urations on Test1.

Single Yang-Multi [36] Multi-no-label DID-MDN

PSNR (dB) 26.05 26.75 27.56 27.95

SSIM 0.8893 0.8901 0.9028 0.9087

Table 3: Accuracy of rain-density estimation evaluated on Test1.

VGG-16 [29] Residual-aware

Accuracy 73.32 % 85.15 %

4.2. Training Details

During training, a 512 × 512 image is randomly

cropped from the input image (or its horizontal flip) of size

586×586. Adam is used as optimization algorithm with a

mini-batch size of 1. The learning rate starts from 0.001

and is divided by 10 after 20 epoch. The models are trained

for up to 80×12000 iterations. We use a weight decay

of 0.0001 and a momentum of 0.9. The entire network

is trained using the Pytorch framework. During training,

we set λF = 1. All the parameters are defined via cross-

validation using the validation set.

4.3. Ablation Study

The first ablation study is conducted to demonstrate the

effectiveness of the proposed residual-aware classifier com-

pared to the VGG-16 [29] model. The two classifiers are

trained using our synthesized training samples Train1 and

tested on the Test1 set. The classification accuracy corre-

sponding to both classifiers on Test1 is tabulated in Table 3.

It can be observed that the proposed residual-aware classi-

fier is more accurate than the VGG-16 model for predicting

the rain-density levels.

In the second ablation study, we demonstrate the effec-

tiveness of different modules in our method by conducting

the following experiments:

• Single: A single-stream densely connected network

(Dense2) without the procedure of label fusion.

• Yang-Multi [36] 6 : Multi-stream network trained

without the procedure of label fusion.

• Multi-no-label: Multi-stream densely connected net-

work trained without the procedure of label fusion.

• DID-MDN (our): Multi-stream Densely-connected

network trained with the procedure of estimated label

fusion.

The average PSNR and SSIM results evaluated on Test1

are tabulated in Table 2. As shown in Fig. 6, even though

the single stream network and Yang’s multi-stream network

[36] are able to successfully remove the rain streak com-

ponents, they both tend to over de-rain the image with the

blurry output. The multi-stream network without label fu-

sion is unable to accurately estimate the rain-density level

and hence it tends to leave some rain streaks in the de-

rained image (especially observed from the derained-part

around the light). In contrast, the proposed multi-stream

network with label fusion approach is capable of removing

rain streaks while preserving the background details. Sim-

ilar observations can be made using the quantitative results

as shown in Table 2.

4.3.1 Results on Two Synthetic Datasets

We compare quantitative and qualitative performance of

different methods on the test images from the two synthetic

datasets - Test1 and Test2. Quantitative results correspond-

ing to different methods are tabulated in Table 1. It can

be clearly observed that the proposed DID-MDN is able to

achieve superior quantitative performance.

To visually demonstrate the improvements obtained by

the proposed method on the synthetic dataset, results on two

sample images selected from Test2 and one sample chosen

from our newly synthesized Test1 are presented in Figure 7.

Note that we selectively sample images from all three con-

ditions to show that our method performs well under differ-

ent variations 7. While the JORDER method [36] is able

to remove some parts of the rain-streaks, it still tends to

leave some rain-streaks in the de-rained images. Similar re-

sults are also observed from [47]. Even though the method

6To better demonstrate the effectiveness of our proposed muli-stream

network compared with the state-of-the-art multi-scale structure proposed

in [36], we replace our multi-stream dense-net part with the multi-scale

structured in [36] and keep all the other parts the same.
7Due to space limitations and for better comparisons, we only show the

results corresponding to the most recent state-of-the-art methods [36, 7,

47].
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PSNR: 16.47

SSIM: 0.51

Input

PSNR: 22.87

SSIM: 0.8215

Single

PSNR: 23.02

SSIM: 0.8213

Yang-Multi [36]

PSNR: 23.47

SSIM: 0.8233

Multi-no-label

PSNR: 24.88

SSIM: 0.8623

DID-MDN

PSNR: Inf

SSIM: 1

Ground Truth

Figure 6: Results of ablation study on a synthetic image.

PSNR: 17.27

SSIM: 0.8257

PSNR:21.89

SSIM: 0.9007

PSNR: 25.30

SSIM:0.9455

PSNR: 20.72

SSIM: 0.8885

PSNR: 25.95

SSIM: 0.9605

PSNR: Inf

SSIM: 1

PSNR:19.31

SSIM: 0.7256

PSNR:22.28

SSIM: 0.8199

PSNR:26.88

SSIM:0.8814

PSNR: 21.42

SSIM:0.7878

PSNR: 29.88

SSIM:0.9252

PSNR: Inf

SSIM:1

PSNR: 20.74

SSIM:0.7992

Input

PSNR:24.20

SSIM:0.8502

JORDER (CVPR’17)

[36]

PSNR:29.44

SSIM:0.9429

DDN (CVPR’17)

[7]

PSNR:25.32

SSIM: 0.8922

JBO (ICCV’17)

[47]

PSNR:29.84

SSIM:0.9482

DID-MDN

PSNR: Inf

SSIM:1

Ground Truth

Figure 7: Rain-streak removal results on sample images from the synthetic datasets Test1 and Test2.

of Fu et al. [7] is able to remove the rain-streak, espe-

cially in the medium and light rain conditions, it tends to

remove some important details as well, such as flower de-

tails, as shown in the second row and window structures

as shown in the third row (Details can be better observed

via zooming-in the figure). Overall, the proposed method

is able to preserve better details while effectively removing

the rain-streak components.

4.3.2 Results on Real-World Images

The performance of the proposed method is also evaluated

on many real-world images downloaded from the Internet

and also real-world images published by the authors of [41,

7]. The de-raining results are shown in Fig 8.

As before, previous methods either tend to under de-rain

or over de-rain the images. In contrast, the proposed method

achieves better results in terms of effectively removing rain

streaks while preserving the image details. In addition, it

can be observed that the proposed method is able to deal

with different types of rain conditions, such as heavy rain

shown in the second row of Fig 8 and medium rain shown

in the fifth row of Fig 8. Furthermore, the proposed method

can effectively deal with rain-streaks containing different

shapes and scales such as small round rain streaks shown in

the third row in Fig 8 and long-thin rain-streak in the second

row in Fig 8. Overall, the results evaluated on real-world

images captured from different rain conditions demonstrate

the effectiveness and the robustness of the proposed DID-
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[36]
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[47]
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Figure 8: Rain-streak removal results on sample real-world images.

MDN method. More results can be found in Supplementary

Material.

4.3.3 Running Time Comparisons

Running time comparisons are shown in the table below. It

can be observed that the testing time of the proposed DID-

MDN is comparable to the DDN [7] method. On average, it

takes about 0.2s to de-rain an image of size 512× 512.

Table 4: Running time (in seconds) for different methods aver-

aged on 1000 images with size 512×512.

DSC GMM CNN (GPU) JORDER (GPU) DDN (GPU) JBO (CPU) DID-MDN (GPU)

512X512 189.3s 674.8s 2.8s 600.6s 0.3s 1.4s 0.2s

5. Conclusion

In this paper, we propose a novel density-aware image

deraining method with multi-stream densely connected net-

work (DID-MDN) for jointly rain-density estimation and

deraining. In comparison to existing approaches which at-

tempt to solve the de-raining problem using a single net-

work to learn to remove rain streaks with different densities

(heavy, medium and light), we investigated the use of esti-

mated rain-density label for guiding the synthesis of the de-

rained image. To efficiently predict the rain-density label, a

residual-aware rain-density classier is proposed in this pa-

per. Detailed experiments and comparisons are performed

on two synthetic and one real-world datasets to demonstrate

that the proposed DID-MDN method significantly outper-

forms many recent state-of-the-art methods. Additionally,

the proposed DID-MDN method is compared against base-

line configurations to illustrate the performance gains ob-

tained by each module.
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