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Abstract

We present a new method for Product Quantization (PQ)

based approximated nearest neighbor search (ANN) in high di-

mensional spaces. Specifically, we first propose a quantization

scheme for the codebook of coarse quantizer, product quantizer,

and rotation matrix, to reduce the cost of accessing these code-

books. Our approach also combines a highly parallel k-selection

method, which can be fused with the distance calculation to re-

duce the memory overhead. We implement the proposed method

on Intel HARPv2 platform using OpenCL-FPGA. The proposed

method significantly outperforms state-of-the-art methods on

CPU and GPU for high dimensional nearest neighbor queries

on billion-scale datasets in terms of query time and accuracy

regardless of the batch size. To our best knowledge, this is the

first work to demonstrate FPGA performance superior to CPU

and GPU on high-dimensional, large-scale ANN datasets.

1. Introduction

Approximate nearest neighbor (ANN) search in high-

dimensional spaces is important to many computer vision tasks,

such as image retrieval [3], recognition[11] and classification

[5]. This algorithm searches a high-dimensional dataset for data

points that are close to a query point. Such searches, however,

are slow as a consequence of the curse of dimensionality. In the

past years, there has been increasing interest [4, 9] in compress-

ing high-dimensional data into compact codes. Compact encod-

ing can compress the size of index to only tens of bits per dataset

entry. It not only reduces the size of database, but also improves

the efficiency of nearest neighbor search on large-scale datasets.

To generate the compact encoding, a large body of existing

works rely on hashing [4], which approximates the similarity be-

tween two dataset entries using the Hamming distance between

the hashed codes. Product quantization (PQ) is an alternative ap-

proach for compact encoding, which has been proven to be more

effective on large-scale datasets than hashing-based approaches,

especially when combined with inverted files (IVF)[19].

PQ uses the Cartesian product of multiple small sub-

codebooks to achieve a large effective codebook size. Due to

its lower quantization distortions, PQ has been shown to be

more accurate than hashing-based methods. Moreover, PQ is

amenable to be implemented on modern parallel processors

(e.g., CPU, GPU), which makes it more promising for

large-scale ANN applications. Further, the distances between

codewords can be pre-computed and stored in look-up-tables

(LUTs). Thus, the query computation involves merely reading

the LUTs. To deal with large datasets, PQ is typically combined

with the IVF technique, which consists of a coarse, exhaustive

step to find a set of probing centroids near the query vector. The

number of probing centroids is typically much smaller than the

dataset size. Thus, it can significantly reduce the the number

of PQ-based distance calculations.

Quantizing dataset elements into a small codebook

introduces a quantization error to the ANN results. To reduce

the quantization error, existing works [6, 17] try to make

the quantization better fit to the underlying distribution of

database entries. Optimized product quantization (OPQ) and

its equivalent Ck-means[17] apply an optimal global rotation

to all product quantizers. Another method is locally optimized

product quantization (LOPQ) [14], which locally optimizes

product quantizer over rotation and space decomposition.

Although the PQ-based methods can effectively reduce

the database size, they cannot leverage the parallel processing

capability of modern processors (e.g. multi-core CPU, GPU,

and FPGA) well to reduce the query time. One of the reasons

is that codebooks are too large to fit into their small but fast

on-chip memories (cache, shared memory and block RAM) and

need to be moved to the larger but slower external memories.

Furthermore, for each query, these codebooks need to be

accessed multiple times, which amplifies the storage delay

problem creating a key performance bottlengeck. To make

matters worse, approaches like OPQ and LOPQ, introduce

one or more large rotation matrices, also too large to fit into

the on-chip memory, that need to be accessed multiple times

for every single query. As a result, the query speed in these

approaches are bounded by the external memory delay, pre-

venting full utilization of the available computation capabilities.

Therefore, existing works on GPU-based ANN acceleration

focus on reducing the number of computations of PQ-based

method. The method in [22] introduces a Product-quantization

tree, which can reduce number of distance calculations, using

an additional codebook. Faiss [13] provides several detailed

GPU-specific optimizations of the IVFPQ method and reports
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the state-of-the-art throughput on billion-scale similarity search

[22, 13]. Noticeably, Faiss uses a very large batch size (10000)

to achieve superior throughput at the cost of the query latency.

In addition to the codebook size issue, another bottleneck

in the PQ-based methods is the k-selection, which sorts the

distances from query to all database points and chooses the

k-smallest ones. Existing approaches, such as Faiss [13],

require to store all distances in the external memory, thus, their

performance is limited by the external memory bandwidth.

In this paper, we propose a new method to achieve better

trade-offs between accuracy and query time on billion-scale

dataset. The main contributions of our work are: 1) a quantiza-

tion method to compress the codebook and the rotation matrix,

which can make a better use of the fast on-chip memory;2)

a k-selection algorithm, which can be fused with the distance

calculation to eliminate the slow external memory access;3) a

highly optimized OpenCL-FPGA implementation. To the best

of our knowledge, this work is the first to implement PQ-based

ANN search on HARPv2 [8] FPGA platform.

We evaluate our method using three common bench-

marks,YFCC100M, BigANN [12] and Deep1B[1].YFCC100M

consists of 100M of feature vectors from CNN model. BigANN

consists of 1 billion 128-dimensional SIFT-vectors and 10000
query vectors and Deep1B consists of 1 billion 96-dimensional

CNN-descriptor. These two datasets are considered challenging

due to the ultra-large scale, which makes the ANN search

extremely difficult.

2. Background

In this section, we formally describe the ANN problem and

the previous approaches to quantization and their implemen-

tations. In particular, we will discuss the IVFPQ technique,

which is the basis of our approach. We will then discuss the

GPU-based implementation. We will finally present a brief

introduction of Open-CL based FPGA development framework,

which our approach targets.

2.1. ANN Search

Nearest Neighbor (NN) problem searches a dataset for

points near a query point. Let Y={y1,...,yn}⊂R
D represent

this dataset and x∈RD the query. NN finds the k closest data

points in Y to x, when the distance between x and y ∈Y is

defined as d(x,y). The result is the set Nx⊂Y such that 1)

|Nx|=k and 2) ∀y∈Y−Nx,yx∈Nx :d(x,yx)≤d(x,y).

Nx=k-argmin
y∈Y

d(x,y) (1)

In general, the NN searching has two step: (i) Calculating

distance between query and database vectors; (ii) k-selection,

which finds k-smallest distances. As D and the size of dataset

|Y| is often large in computer vision tasks, the computation load

of an exhaustive search is extremely high. Because of this, ap-

proximate nearest-neighbor (ANN) search is proposed to reduce

the query time. This method eases the second condition on Nx

and requires it to hold with high probability. In the following, we

discuss one of the ANN search techniques for large-scale dataset.

2.2. PQ­based ANN search

Vector Quantization (VQ) encodes each y ∈ R
D by a

codebook C = {c1,...,ck} to a vector q(y)∈ C, where C is a

finite subset of RD. The codebook C can be built using classical

Lloyd iterations [15]. The vector quantizer maps database

vector y to its nearest centroids in the codebook:

y 7→q(y)=argmin
c∈C

d(y,c) (2)

where the distance d(.,.) is defined as the Euclidean distance

between its argument vectors:

d(y,c)=‖y−c‖2 (3)

The vector quantization method needs to store D×k values

for its codebook.

Product quantization (PQ) compresses high-dimensional

vectors to shorter codewords [10]. PQ takes high-dimensional

vectors y∈RD as the input and splits them into m subvectors

y = [y1T , ... ,ymT

]T of dimension D′ = D/m, where D
is a multiple of m. Then, these subvectors are quantized

by m distinct subquantizer to generate the sub-codewords

q(y) = [q1(y1)T ,...,qm(ym)T ]T . Each sub-quantizer in this

method has its own codebook, denoted by C1,...,Cm ⊂R
D′

,

each of which has k entries:

∀i∈ [1,m] :qi(yi)=argmin
c∈Ci

‖yi−c‖2 (4)

Thus, the codebook of the product quantizer is the Cartesian

product of all sub-codebooks:

C=C1×···×Cm, (5)

Although this method creats km bins, it only requires k ·m
centroids. However, the compressed codebook size is still

considered large when processing large-scale datasets (e.g.

Deep1B, YFCC100M, and BigANN). For instance, to achieve

R@1=0.45 on Deep1B dataset, Faiss [13] uses m = 64 and

k = 256, which needs to store 64× 256 values (64kB). In

section 2.3, we will discuss that such a codebook nearly utilizes

all the on-chip shared memory (96kB) of the latest GPU

devices [18] and further increasing codebook size will result in

significantly increased query processing delay. Therefore, due

to the constraints of on-chip memory size, it is not feasible to

keep increasing the m or k to obtain larger number of bins with

this method. Our compression method, as discussed in section

3, can efficiently reduce the size of the codebook, so that we can

keep increasing the values of m or k to achieve higher accuracy.

The product quantization calculates the distance from

query vector, similarly decomposed into m subvectors
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x=[x1T ,...,xmT

]T to quantized database vector q(y) by:

||x−q(y)||22=

m∑

i=1

||xi−qi(yi)||22 (6)

Since each sub-quantizer q1, ... , qm can produce a limited

number of values, for a given query, distances in each sub-space

can be pre-calculated and stored in look-up tables (LUTs)[13].

While processing a query, PQ first build LUTs for all sub-

quantizers, which requires k×D floating-point multiplication.

Then, it computes the distance between query vector and

all the n dataset vectors using LUTs only, which requires

n×m look-up operations (which are faster than floating point

multiplications). Compared to explicit computation, which

requires n×D floating-point multiplications, using LUTs can

effectively reduce the computational load if number of database

vector n is larger than the number of sub-quantizer level k.

Optimized Product Quantization (OPQ) is proposed to

refine PQ using the following mapping:

y 7→q(y)=argmin
c∈C

‖Rx−c‖22, (7)

where R ∈ R
D×D is an orthogonal matrix which enables

arbitrary rotations and permutations of vector components.

Optimizing the matrix R and the C1,···,Cm can be either joint as

in Ck-means [17] and in the non-parametric solution of OPQNP

[6], or decoupled, as in the parametric solution OPQP of [6].

Inverted Index (IVF) [19] is a widely used index structure

in the field of information retrieval and approximate nearest

neighbor search. IVF first performs clustering on the initial

dataset to divide the space into Voronoi cells by a codebook

Ccoarse. Then, it stores the list of dataset vectors, which belong

to each Voronoi cell. While processing a query, IVF enables

non-exhaustive searches, by finding either the closest or several

of the closest Voronoi cells. As a result, IVF effectively reduces

the search space, and achieves a substantial speed-up over the

exhaustive search. However, IVF requires to store |Ccoarse|
D-dimensional vectors, creating a large storage requirement.

For instance, to achieve R@1=0.45 on Deep1B dataset, Faiss

[13] use |Ccoarse|=262144, which needs to store 262144×128
floating point values (128MB). All these coarse codebooks

need to be accessed from the slow external memory. These

accesses dominate the query time.

2.3. ANN Implementation

Table 1. Memory capacity and bandwidth of CPU[7], GPU[18] and

FPGA[23]

CPU [7] GPU [18] FPGA [23]

On-chip

Mem. Capacity
4608 KB 6144KB 56.875MB

On-chip

Mem. Bandwidth
2.5 TB/s 27.6TB/s 36 TB/s

External

Mem. Bandwidth
68 GB/s 320 GB/s 68 GB/s

Table 2. Computation Capability of modern processors

CPU GPU FPGA

Peak FP Arithmetic

(FLOPS)
600 G 11T 10.5T

Peak look-up

(Loop-up per sec)
625 G 6.9 T 9 T

Hardware platform model: Previously, we mentioned

that large codebooks in PQ-based approaches can severely

increase the query processing time. That is because most

hardware platforms feature two main types of storage where

these codebooks can be stored: on-chip memory and external

memory. Figure 2 shows these two memory types and their

relations to the different computation cores. On-chip memory

is often very small but is close to computation cores. Thus, the

data stored in it can be accesses quickly. In contrast, external

memory is large but provides slow accesses. In table 1 we

compare the on-chip memory and the external memory for latest

CPU, GPU and FPGA platforms[8]. As this table shows, these

platforms all have very small on-chip memories which means

large codebooks would have to be stored in the external memory.

However, the external memories has orders of magnitude

smaller bandwidth and, consequently, much lower speeds.

In table 2, we also compare the computation capabilities in

terms of peak floating-point operations per second (FLOPS)

and peak look-ups per second of these platforms. As this

table shows, these platforms offer look-up performances

comparable to floating-point operations. Therefore, exact

distance calculation, which uses floating-point operations

exclusively, does not leverage the available computation

capacity effectively. On the other hand, approximate methods,

such as PQ, perform both look-ups and floating-point operations.

Thus, they can fully exploit the available computation capacity

and reduce query time significantly. In section 3 and section

4, we will discuss how to utilize the computation and memory

resources effectively by optimizing the algorithm.

GPU-based implementation:Though there are many

implementation of similarity search on GPUs, most of them

focus on the hashing, small datasets, or exhaustive search. To

the best of knowledge, only works in [22, 13] have implemented

ANN search on GPU. In [22], authors introduces a product

quantization tree (PQT), that can reduces the number of distance

calculations. In [13], authors optimized the GPU implemen-

tation of the PQ-based distance look-up and the k-selection

implementation. We note that both of these two works are

focusing on only optimizing the computation kernel, but ignore

the increasing codebook size. In our work, we focus on com-

pressing the codebook to reduce the cost of codebook access and

to achieve a better trade-off between query speed and accuracy.

OpenCL-FPGA development framework: Field pro-

gramming gate array (FPGA) is an excellent acceleration

platform for ANN search, because of its inherent parallelism,

large on-chip distributed memory, and reconfigurability based
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Figure 1. Value distributions of coarse centroids: (a) floating point value; (b) mantissa; (c) exponent
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on the needs of the applications. Recently, major cloud service

vendors (e.g. Microsoft and Amazon) have deployed FPGAs in

their data centers, effectively creating an AI super computer [2].

To allow software developers with little or no hardware back-

ground to use FPGA, FPGA vendors start to offer high-level

programming interface, such as C/C++ and OpenCL. In figure

3, we show the system architecture of the OpenCL-FPGA

framework. It allows programmers to reuse their code on other

platforms (CPUs and GPUs), thus significantly enhancing

programmability and portability.

3. Codebook compression

High accuracy on large datasets in the PQ-based approach

may entail cost-prohibitive storage requirements. As the

size of the dataset increases, larger codebooks need to be

allocated. In billion-scale similarity search, this overhead

becomes non-negligible. For example, Faiss[13] achieves

R@10 = 0.35 on the BIGANN dataset by introducing 256,

100-dimensional centroids in the product quantizer. These

many centroids occupy all the on-chip memory on a GPU. We

alleviate this problem by compressing the codebook, to fit in

the fast on-chip memory. In this section, we first describe the

proposed compression method and then discuss how queries

are processed in the compressed codebook scheme.

3.1. Compression Method

To compress the codebook, we propose to apply the scalar

quantization to each value in it. Specifically, we construct a

second, scalar codebook similar to the finite set Γ⊂R and then

sample elements of each member of C from Γ:

∀i∈ [1,k],j∈ [1,D] : [ci]j→argmin
γ∈Γ

‖ [ci]j−γ‖1 (8)

The resulting quantized codebook, Cq ⊂ ΓD, then can be

efficiently stored in a small-size memory. Our approach to

constructing Γ is guided by a comprehensive analysis of the

value distributions of codebooks. We present this analysis for a

sample dataset here. Then, we discuss a naive approach which

we later compare to our proposed quantization scheme.

We apply IVFPQ method to the DEEP1B dataset. For a recall

rate R@10 = 0.35 on this dataset, the coarse quantizer (C) needs

to contain 262144 centroids, and the product quantizer needs

64 sub-quantizers, each of which would have 256 reproduction

full-precision values. In Figure 1 (a), we plot the histogram of

these values. As shown in this figure, the distribution is highly

biased, with most values populating a small region near zero.

A naive approach to quantizing the codebook elements

would be to use k-means to find representative values in this

biased distribution. Specifically, after a codebook is trained,

we apply Lloyd’s algorithm [15] to the set of all elements of

codebook entries, {[ci]j |∀i∈ [1,k],j∈ [1,D]}, to find a predeter-

mined number of clusters, say kΓ= |Γ|. Then, each quantized

codebook entry is replaced by a vector of integer indexes to

elements of Γ. These vectors can be further compressed using

the Huffman encoding, which is a lossless optimal coding

technique that generates variable-length code words. By

combining scalar quantization and Huffman encoding, we can

fit very large codebooks into small-size memory.

This naive method has two shortcomings. First, in this
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approach, the elements of Γ need to be explicitly stored

alongside Cq, occupying our scarce memory and creating

additional storage overhead. Second, the overhead of Huffman

decoder is high. The storage complexity of Huffman decoder

is proportional to the number of symbols squared (k2Γ in this

case) [21]. Furthermore, in order to achieve a small enough

quantization error on large dataset, we need to use a relatively

large kΓ which exacerbates the problem.

In this work, we propose a new compression technique that

reduces the storage overhead and the decoder complexity of

the compressed codebook. This technique has been designed

based on the observation that the distributions of the codebook

elements are different from the distributions of their mantissa

and exponents, and thus can be compressed separately, using

simpler techniques 1. In Figure 1 (b) and Figure1 (c), we plot

the histograms for mantissa and exponents of all elements in the

codebook, respectively. By adapting to their different distribu-

tions, we can reduce the overhead of the codebook compression.

In our proposed compression scheme, instead of constructing

Γ directly, we construct the sets M and E for the mantissa and

exponents and obtain Γ through their product (Γ=M×E).

As Figure 1 (b) shows, the mantissa have an approximately

uniform distribution. Therefore, we could use a linear quan-

tization method, which divides [0.5,1] into kM equally-sized

subsets (M={ i
2(kM−1)+0.5 |i∈ [0,kM−1]}). Different from

the k-means clustering, the linear quantization does not need

to explicitly store a codebook, as we can obtain the codebook

entries from their indexes (the n-th element in the codebook M
is n−1

2(kM−1) +0.5). Under the uniform distribution, the linear

quantization gives the clustering results similar to k-means. As a

result, we can remove the overhead of storing the extra codebook

in the k-means clustering and retain a similar quantization error.

Moreover, there is no need to further compress the cluster index

using Huffman coding, as the optimal coding scheme is achieved

using equal-length coding if the data distribution is uniform.

Similar to the distributions of the elements (Figure 1 (a)), the

exponents have a biased distribution, but over a much smaller

range (Figure 1 (c)). Thus, applying the naive compression to

exponents does not entail the same disadvantages. We construct

E by first sorting the exponents based on their values and then

encoding each value using Huffman coding. As a result of the

sorting, the Huffman encoding assigns smaller codes to more

frequent symbols. Furthermore, due to their small dimension,

the exponents require fewer symbols, imposing negligible

overhead in the Huffman decoder.

The proposed, decoupled quantization scheme constructs

large codebooks Γ easily since |Γ| = |M | × |E|. To check

this scheme, we compare different compression methods in

terms of the accuracy, codebook sizes and number of symbols

for Huffman coding in table 3. The proposed technique can

achieve the similar codewords compression ratio and the

1Each full-precision value, [ci]j in the memory is stored as a mantissa,

exponent pair (µi,j,ǫi,j), such that [ci]j=µi,j×2ǫi,j .

accuracy compared to the naive, k-means based clustering, but

without the need of storing a large additional codebook and

with minimal Huffman decoding overhead.

3.2. Approximate Nearest Neighbor Search

In the following, we discuss how to apply codebook

quantization to conduct ANN search towards a large-scale

image-retrieval task. Particularly, we quantize all codebooks in

the IVFPQ method and the rotation matrix in the OPQ matrix,

if needed. Then, we encode all vectors in the dataset using the

quantized codebook. While processing a query, we compute

the distance using the asymmetric distance calculation (ADC),

which is formulated as

d2(x,y)=

m∑

i=1

||x−q(y)i||2

= ||x||2+||q(y)||2−2

m∑

i=1

x·q(y)

= ||x||2+||q(y)man ·2
q(y)exp||2

−2

m∑

i=1

x·q2(y)iman ·2
q(y)exp

= ||x||2+

m∑

i=1

q2q(y)iman·2
2·(y)exp

−2
m∑

i=1

x·q(y)iman·2
q(y)exp,

(9)

Here, q(y)man and q(y)exp are vectors of the mantissa and the

exponent of the quantized codebook element y, respectively.

It is worth noting that the q(y)man has only a few reproduction

values (e.g. 32). To reduce the computational load of the

ADC calculation, we can pre-compute all the possible outcome

values of q2(y) offline after codebook quantization, and all the

possible outcome values of x·q(y) online, before calculating

the distance. During the calculation of ADC, we can replace

a large portion of multiplications by look-ups. As discussed in

section 2.3, this technique increases the computation capability,

resulting in lower query times.

Table 3. Comparison of the accuracy, the codebook size and the

number of symbol for Huffman coding kΓ (lower is better)

Dataset R@10 Codebook Size kΓ
Uncompressed [9] 0.353 100.6MB -

K-means 0.364 25MB -

K-means + Huffman 0.364 12.7MB 256

Proposed 0.366 14.5 MB 8

4. Fast K-selection

Apart from the distance calculation, another costly step in

ANN search is the k-selection. In this section, we first identify

that the bottleneck is the external memory bandwidth. Then,
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Algorithm 1: Inserting p distance to the parallel priority

queue

input :p unsorted distanceD[ ], p Index I[ ]
input :top-k distanceDmin[ ], top-k index Imin[ ]
output

:

top-k distanceDmin[ ], top-k index Imin[ ]

1 D′[ ]←{Dmin[ ],D[ ]};
2 I′[]←{Imin[ ],I[ ]};
3 for i←1 to p do in parallel

4 idx[i] = 0;

5 for j←1 to k do in parallel

6 cmp[i] = i;

7 end

8 for j←1 to p do in parallel

9 ifD[i]≥D[j] then cmp[i]++;

10 end

11 for j←1 to k do in parallel

12 ifD[i]≥d[j] then cmp[i]++;

13 else cmp[j+p]++;

14 end

15 end

16 for i←1 to k do in parallel

17 Dmin[cmp[i] ]←D′[i];
18 Imin[cmp[i] ]←I′[i];

19 end

we propose a new k-selection method, which eliminates the

external memory access.

K-selection sorts the distances of the query from all dataset

points and selects the k smallest ones. Johnson et al. [13]

performed this step in a non-“fused” manner and decouple

it from distance calculation. As shown in Figure 4 (a), all

distances in the non-fused approach need to be stored in and

later read back from the slow, external memory, creating a

bottleneck on query time. Fusing these two steps can potentially

solve this issue by storing only the k smallest distances at any

moment during the distance calculation. Thus, in the fused

manner all necessary data can be stored in the fast on-chip

memory (as shown in figure 4 (b). However, fusing the distance

calculation step and the k-selection step in a parallel manner is a

challenge, as distances are computed in parallel, which requires

k-selection to accept several distances at a time. Otherwise,

the distance calculation needs to stall to wait for the k-selection

step, which will increase the query time. Next we will present

the detail of the fused k-selection.

The proposed fused k-selection kernel maintains a priority

queue of the k smallest distances in parallel to the distance

calculation step. As the distance between the query point and

a new dataset entry is calculated, it is compared against the

elements of the queue and, if it is smaller than any of them, is

inserted into the queue. Therefore, at any moment during the

distance calculation step, the queue will hold the k smallest data

entries up to that point. Since the value of k is usually small,

this priority queue can be easily stored in the on-chip memory.

Algorithm 1 shows how to insert p newly calculated distances

into a priority queue of length k. In this algorithm,D represents

a seqence of distances from a query for p dataset points and

I represents the corresponding indexes of these points in Y.

Furthermore,Dmin and Imin represent the k smallest distances

and their corresponding indexes befor the p new distances are in-

serted. This algorithm finds the k smallest distances in the inter-

section ofD andDmin and stores their values and corresponding

indexs back intoDmin and Imin. All throughout this process,

the algorithm guarantees thatDmin is maintained sorted. This

is done by using a 2-D comparator that for each element inD
the position inDmin where it needs to be inserted. Thus, at the

end of the run of the algorithm, all elements inDmin are sorted.

We show a toy example in Figure 5, which inserts 3

distances (p=3) to a priority queue for k=5. The number of

comparisons required is (p+k)·k. We compare each distance

inD with other distances inD as well as with all distances in

the priority queue Dmin. The number of the ”larger or equal”

in each row is the index in theDmin of the distances inD. The

sum of column index and the number of the ”smaller” in each

column determines the new index in the Dmin. We note that

all these comparison can be performed concurrently in parallel,

without interfering each other. In other words, the proposed

priority queue has no data dependency between the p insertions.

The resulting parallelism allows us to perform these inserts at the

same rate at which new distances are calculated. Thus, we can

fuse the distance calculation and the k-selection steps together.

5. Experiments

5.1. Experimental setup

Table 4. Datasets for evaluation
Datasets D #train #test

SIFT1M 128 100k 1,000,000

SIFT1B 128 1M 1,000,000,000

YFCC100M 4096 2M 96,419,740

Deep1B 96 1M 1,000,000,000
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In this section, we present the results of the proposed

technique on several publicly available datasets.

Datasets: We conduct experiments on four publicly avail-

able datasets: SIFT1M, BIGANN[12], YFCC100M[13] and
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Figure 9. mAP vs. size of product quantization codebook

Table 5. Comparison on SIFT1M dataset

Approaches
Query time

(ms /query)

Recall

@1

Recall

@10

Recall

@ 100

LOPQ[14] (CPU) 51.1 0.51 0.93 0.97

IVFPQ [9](CPU) 11.2 0.28 0.70 0.93

FLANN [16](CPU) 5.32 0.97 - -

PQT[22](GPU) 0.02 0.51 0.83 0.86

FAISS[13](GPU) 0.02 0.8 0.88 0.95

Proposed 0.02 0.88 0.94 0.97

DEEP1B[1], which are popular in state-of-the-art ANN eval-

uations. SIFT1M dataset contains 1 million 128-dimensional

SIFT vectors and 10K query vectors; BIGANN (SIFT1B)

contains 1 billion SIFT vectors and 10K queries; YFCC100M

dataset contains 95 million CNN descriptors; DEEP1B contains

1 billion 100-dimension CNN representations for images and

10K query vectors.

Experimental platform: All query time reported on CPU

is measured from a single-thread C++ implementation on a

Xeon E5-1630v3 CPU. All query time of GPU-based methods

is obtained using a Nvidia GTX Titan Xp GPU[18]. All query

times of FPGA-based approach are measured on Intel HARPv2

platform2. The Intel HARPv2 combines a 14 core Broadwell

Xeon CPU and an Arria 10 GX1150 FPGA. The FPGA

accelerator and CPU is connected via a QPI interface, which can

provide 17GB/s bandwidth and sub-micro second level latency.

Settings: We discuss the experimental settings in the follow-

ing. Figure 8 shows mAP with respect to the quantization square

distortion under different quantization levels of the mantissa.

Clearly, the square distortion decreases consistently when the

quantization level increases and at the same time mAP increases.

Since the memory consumption grows with the mantissa quanti-

zation level, we set the mantissa quantization level to 5 bits in the

following experiments as a good trade-off between efficiency

and accuracy. In section 5.3, we will see that this quantization

level is sufficient to outperform the state-of-the-art methods.

Figure 9 shows mAP with respect to the number of centroids

in the PQ with the same code length of PQ. We can see that

2Results in this publication were generated using pre-production hardware

or software, and may not reflect the performance of production of future system
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Figure 10. Query time versus Precision on different datasets
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increasing the number of centroids leads to better precisions

compared to increasing the number of sub quantizers. As

the proposed design can compress the code, it is possible for

us to use a larger size of PQ code book for higher accuracy

while achieving the same memory usage. In the following

experiments, we use a PQ codebook with 1024 entries and will

show in Section 5.2 that our approach leads to a better trade-off

between query time and accuracy.

5.2. Results

K-selection: We compare the proposed k-selection methods

with two state-of-the-art GPU implementations of fgknn

[20] and faiss [13]. We evaluate the k-selection for k=100

from a row-major matrix of Sizebatch × Sizearray random

single-precision floating point values. We fix the Sizebatch to

10000 and vary the Sizearray from 1024 to 16384. Figure 6

shows our relative performance compared to fgknn and Faiss.

The proposed K-selection algorithm is 8.59x faster than Faiss

and 15.65x faster than fgknn.

Query time and accuracy: Table 5 shows the query time

and accuracy on the SIFT1M dataset. We compare the proposed

method with three CPU-based approaches and two GPU-based

approaches. Compared to other CPU-based approaches, the

proposed method shows a significant speed-up. To compare

with two GPU-based methods, we tune the hyperparameters

of our implementation to achieve the same query time. The

accuracy of our approach is 0.08 higher than the state-of-the-art

GPU-based implementation.

In Figure 10, we show the search time per query with respect

to the accuracy and compare it with FAISS, which provides

the state-of-the-art performance. The proposed implementation

always uses a batch size of 1, and FAISS uses two different

batch sizes (10000 and 1). For all three large-scale datasets,

the proposed method has a slightly faster search speed, if the

targeting recall rate is relatively low, as compared with FAISS

in batch mode. However, it is difficult for FAISS to achieve

a higher accuracy due to its large codebook size, which has

already used all the on-chip memory resource.

Precision and database size: We first show the benefit of

increasing the number of sub-quantizers m compared to increas-

ing the codebook size k. As shown in Figure 7, to achieve the

same square distortion on the BigANN dataset, choosing a larger

k instead of m leads to shorter code length. In Figure 11, we fur-

ther show the relationship between accuracy with respect to the

database size. Compared to Faiss, the proposed implementation

can achieve a better accuracy while using the same codeword

length. Benefiting from the compressed codebook, the proposed

method can store a product quantization codebook with larger k.

6. Conclusion

In conclusion, we present a new method for performing

efficient billion-scale similarity search on high-dimensional

vectors. We propose to compress codebooks as well as the

rotation matrices. We further combined this technique with

a novel k-selection method, which can be fused with the

distance calculation. Overall our techniques provide significant

reductions in the memory access overheads.

Our prototype implementation on Intel HARPv2 platform

demonstrates a better trade-off between accuracy and the

query time over the state-of-the-art ANN search on CPU and

GPU. We demonstrated that the performance of proposed

approach outperforms the state-of-the-art methods on both

small benchmark (SIFT1M) and billion-scale large datasets

(BigANN, Depp1B and YFCC100M). The proposed approach

can be easily implemented on a single-machine OpenCL-FPGA

platform and ported to cloud FPGA architectures.
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