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Abstract

This paper proposes a method to modify a traditional

convolutional neural network (CNN) into an interpretable

CNN, in order to clarify knowledge representations in high

conv-layers of the CNN. In an interpretable CNN, each fil-

ter in a high conv-layer represents a specific object part.

Our interpretable CNNs use the same training data as or-

dinary CNNs without a need for any annotations of object

parts or textures for supervision. The interpretable CNN

automatically assigns each filter in a high conv-layer with

an object part during the learning process. We can apply

our method to different types of CNNs with various struc-

tures. The explicit knowledge representation in an inter-

pretable CNN can help people understand the logic inside

a CNN, i.e. what patterns are memorized by the CNN for

prediction. Experiments have shown that filters in an inter-

pretable CNN are more semantically meaningful than those

in a traditional CNN. The code is available at https:

//github.com/zqs1022/interpretableCNN .

1. Introduction

Convolutional neural networks (CNNs) [14, 12, 7] have

achieved superior performance in many visual tasks, such as

object classification and detection. Besides the discrimina-

tion power, model interpretability is another crucial prop-

erty for neural networks. However, the interpretability is

always an Achilles’ heel of CNNs, and has presented chal-

lenges for decades.

In this paper, we focus on a new problem, i.e. without

any additional human supervision, can we modify a CNN to

make its conv-layers obtain interpretable knowledge repre-

sentations? We expect the CNN to have a certain introspec-

tion of its representations during the end-to-end learning

process, so that the CNN can regularize its representations

to ensure high interpretability. Our problem of improving

CNN interpretability is different from conventional off-line

visualization [34, 17, 24, 4, 5, 21] and diagnosis [2, 10, 18]

of pre-trained CNN representations.

Bau et al. [2] defined six kinds of semantics in CNNs,

i.e. objects, parts, scenes, textures, materials, and colors.
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Figure 1. Comparison of a filter’s feature maps in an interpretable

CNN and those in a traditional CNN.

In fact, we can roughly consider the first two semantics as

object-part patterns with specific shapes, and summarize the

last four semantics as texture patterns without clear con-

tours. Moreover, filters in low conv-layers usually describe

simple textures, whereas filters in high conv-layers are more

likely to represent object parts.

Therefore, in this study, we aim to train each filter in a

high conv-layer to represent an object part. Fig. 1 shows the

difference between a traditional CNN and our interpretable

CNN. In a traditional CNN, a high-layer filter may describe

a mixture of patterns, i.e. the filter may be activated by both

the head part and the leg part of a cat. Such complex rep-

resentations in high conv-layers significantly decrease the

network interpretability. In contrast, the filter in our inter-

pretable CNN is activated by a certain part. In this way, we

can explicitly identify which object parts are memorized by

CNN filters for classification without ambiguity. The goal

of this study can be summarized as follows.

• We propose to slightly revise a CNN to improve its

interpretability, which can be broadly applied to CNNs

with different structures.

• We do not need any annotations of object parts or tex-

tures for supervision. Instead, our method automati-

cally pushes the representation of each filter towards

an object part.

• The interpretable CNN does not change the loss func-

tion on the top layer and uses the same training sam-

ples as the original CNN.
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• As an exploratory research, the design for inter-

pretability may decrease the discrimination power a

bit, but we hope to limit such a decrease within a s-

mall range.

Method: We propose a simple yet effective loss to push

a filter in a specific conv-layer of a CNN towards the rep-

resentation of an object part. As shown in Fig. 2, we add

the loss for the output feature map of each filter. The loss

encourages a low entropy of inter-category activations and a

low entropy of spatial distributions of neural activations. I.e.

1) each filter must encode a distinct object part that is exclu-

sively contained by a single object category, and 2) the filter

must be activated by a single part of the object, rather than

repetitively appear on different object regions. We assume

that repetitive shapes on various regions are more likely to

describe low-level textures (e.g. colors and edges), instead

of high-level parts. For example, the left eye and the right

eye may be represented by different filters, because contexts

of the two eyes are symmetric, but not the same.

The value of network interpretability: The clear se-

mantics in high conv-layers is of great importance when we

need people to trust a network’s prediction. As discussed

in [38], considering dataset bias and representation bias, a

high accuracy on testing images still cannot ensure a CNN

to encode correct representations (e.g. a CNN may use an

unreliable context—eye features—to identify the “lipstick”

attribute of a face image). Therefore, human beings usually

cannot fully trust a network, unless a CNN can semantically

or visually explain its logic, e.g. what patterns are learned

for prediction. Given an image, current studies for network

diagnosis [5, 21, 18] localize image regions that contribute

most to prediction outputs at the pixel level. In this study,

we expect the CNN to explain its logic at the object-part

level. Given an interpretable CNN, we can explicitly show

the distribution of object parts that are memorized by the

CNN for object classification.

Contributions: In this paper, we focus on a new task,

i.e. end-to-end learning a CNN whose representations in

high conv-layers are interpretable. We propose a simple yet

effective method to modify different types of CNNs into

interpretable CNNs without any annotations of object part-

s or textures for supervision. Experiments show that our

approach has significantly improved the object-part inter-

pretability of CNNs.

2. Related work

Our previous paper [39] provides a comprehensive sur-

vey of recent studies in exploring visual interpretability of

neural networks, including 1) the visualization and diagno-

sis of CNN representations, 2) approaches for disentangling

CNN representations into graphs or trees, 3) the learning of

CNNs with disentangled and interpretable representations,

and 4) middle-to-end learning based on model interpretabil-

ity.

Network visualization: Visualization of filters in a C-

NN is the most direct way of exploring the pattern hidden

inside a neural unit. [34, 17, 24] showed the appearance

that maximized the score of a given unit. up-convolutional

nets [4] were used to invert CNN feature maps to images.

Pattern retrieval: Some studies go beyond passive vi-

sualization and actively retrieve certain units from CNNs for

different applications. Like the extraction of mid-level fea-

tures [26] from images, pattern retrieval mainly learns mid-

level representations from conv-layers. Zhou et al. [40, 41]

selected units from feature maps to describe “scenes”. Si-

mon et al. discovered objects from feature maps of unla-

beled images [22], and selected a certain filter to describe

each semantic part in a supervised fashion [23]. Zhang et

al. [36] extracted certain neural units from a filter’s fea-

ture map to describe an object part in a weakly-supervised

manner. They also disentangled CNN representations in

an And-Or graph via active question-answering [37]. [6]

used a gradient-based method to interpret visual question-

answering. [11, 31, 29, 15] selected neural units with spe-

cific meanings from CNNs for various applications.

Model diagnosis: Many statistical methods [28, 33, 1]

have been proposed to analyze CNN features. The LIME

method proposed by Ribeiro et al. [18], influence func-

tions [10] and gradient-based visualization methods [5, 21]

and [13] extracted image regions that were responsible for

each network output, in order to interpret network represen-

tations. These methods require people to manually check

image regions accountable for the label prediction for each

testing image. [9] extracted relationships between represen-

tations of various categories from a CNN. In contrast, giv-

en an interpretable CNN, people can directly identify object

parts (filters) that are used for decisions during the inference

procedure.

Learning a better representation: Unlike the diagnosis

and/or visualization of pre-trained CNNs, some approach-

es are developed to learn more meaningful representations.

[19] required people to label dimensions of the input that

were related to each output, in order to learn a better model.

Hu et al. [8] designed some logic rules for network output-

s, and used these rules to regularize the learning process.

Stone et al. [27] learned CNN representations with better

object compositionality, and Liao et al. [16] learned com-

pact CNN representations, but they did not make filters ob-

tain explicit part-level or texture-level semantics. Sabour et

al. [20] proposed a capsule model, which used a dynamic

routing mechanism to parse the entire object into a parsing

tree of capsules, and each capsule may encode a specific

meaning. In this study, we invent a generic loss to regularize

the representation of a filter to improve its interpretability.

We can understand the interpretable CNN from the per-
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Figure 2. Structures of an ordinary conv-layer and an interpretable

conv-layer. Green and red lines indicate the forward and backward

propagations, respectively. During the forward propagation, our

CNN assigns each interpretable filter with a specific mask w.r.t.

each input image in an online manner.

spective of the information bottleneck [32] as follows. 1)

Our interpretable filters selectively model the most distinct

parts of each category to minimize the conditional entropy

of the final classification given feature maps of a conv-layer.

2) Each filter represents a single part of an object, which

maximizes the mutual information between the input image

and middle-layer feature maps (i.e. “forgetting” as much

irrelevant information as possible).

3. Algorithm

Given a target conv-layer of a CNN, we expect each fil-

ter in the conv-layer to be activated by a certain object part

of a certain category, while remain inactivated on images

of other categories1. Let I denote a set of training images,

where Ic ⊂ I represents the subset that belongs to catego-

ry c, (c = 1, 2, . . . , C). Theoretically, we can use different

types of losses to learn CNNs for multi-class classification,

single-class classification (i.e. c = 1 for images of a catego-

ry and c = 2 for random images), and other tasks.

Fig. 2 shows the structure of our interpretable conv-layer.

In the following paragraphs, we focus on the learning of a

single filter f in the target conv-layer. We add a loss to the

feature map x of the filter f after the ReLu operation.

During the forward propagation, given each input im-

age I , the CNN computes a feature map x of the filter f after

the ReLu operation, where x is an n×n matrix, xij ≥ 0. Our

method estimates the potential position of the object part on

the feature map x as the neural unit with the strongest acti-

vation µ̂=argmaxµ=[i,j]xij , 1≤ i, j≤n. Then, based on the

estimated part position µ̂, the CNN assigns a specific mask

with x to filter out noisy activations.

Because f ’s corresponding object part may appear at the

n2 different locations given different images, we design n2

templates for f , {Tµ1
, Tµ2

, . . . , Tµ
n2

}. As shown in Fig. 3,

1To avoid ambiguity, we evaluate or visualize the semantic meaning of

each filter by using the feature map after the ReLU and mask operations.

each template Tµi is an n × n matrix, and it describes the

ideal distribution of activations for the feature map x when

the target part mainly triggers the i-th unit in x. Our method

selects the template Tµ̂ w.r.t. the part position µ̂ from the

n2 templates as the mask. We compute xmasked = max{x ◦
Tµ̂, 0} as the output masked feature map, where ◦ denotes

the Hadamard (element-wise) product.

Fig. 4 visualizes the masks Tµ̂ chosen for different im-

ages, and compares the original and masked feature maps.

The CNN selects different templates for different images.

The mask operation supports gradient back-propagations.

During the back-propagation process, our loss pushes

filter f to represent a specific object part of the category c

and keep silent on images of other categories. Please see

Section 3.1 for the determination of the category c for fil-

ter f . Let X = {x|x = f(I), I ∈ I} denote feature maps

of f after an ReLU operation for different training images.

Given an input image I , if I ∈ Ic, we expect the feature

map x = f(I) to exclusively activated at the target part’s

location; otherwise, the feature map keeps inactivated. In

other words, if I ∈ Ic, the feature map x is expected to fit

to the assigned template Tµ̂; if I 6∈ Ic, we design a negative

template T− and hope that the feature map x matches to T−.

Note that during the forward propagation, our method omits

the negative template. All feature maps, including those of

other categories, select n2 templates of {Tµi} as masks.
Thus, each feature map x is supposed to be exclu-

sively fit to one of the n2 + 1 templates T ∈ T = {T−,

Tµ1
, Tµ2

, . . . , Tµ
n2

}. We formulate the loss for f as the mi-
nus mutual information between X and T, i.e. −MI(X;T).

Lossf =−MI(X;T)=−
∑

T

p(T )
∑

x

p(x|T ) log p(x|T )
p(x)

(1)

The prior probability of a template is given as p(Tµ) =
α
n2 , p(T

−) = 1 − α, where α is a constant prior likelihood.
The fitness between a feature map x and a template T is
measured as the conditional likelihood p(x|T ).

∀T ∈ T, p(x|T ) = 1

ZT

exp
[

tr(x · T )
]

(2)

where ZT =
∑

x∈X
exp[tr(x · T )]. x · T indicates the mul-

tiplication between x and T ; tr(·) indicates the trace of a

matrix, and tr(x · T ) =
∑

ij xijtij . p(x) =
∑

T p(T )p(x|T ).
Part templates: As shown in Fig. 3, a negative template

is given as T− = (t−ij), t
−
ij = −τ < 0, where τ is a positive

constant. A positive template corresponding to µ is given

as Tµ=(t+ij), t
+
ij = τ ·max(1 − β

‖[i,j]−µ‖1
n

,−1), where ‖ · ‖1
denotes the L-1 norm distance; β is a constant parameter.

3.1. Learning

We train the interpretable CNN via an end-to-end man-
ner. During the forward-propagation process, each filter in
the CNN passes its information in a bottom-up manner, just
like traditional CNNs. During the back-propagation, each
filter in an interpretable conv-layer receives gradients w.r.t.
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Figure 3. Templates of Tµi . Each template Tµi matches to a fea-

ture map x when the target part mainly triggers the i-th unit in x.

In fact, the algorithm also supports a round template based on the

L-2 norm distance. Here, we use the L-1 norm distance instead to

speed up the computation.
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Figure 4. Given an input image I , from the left to the right, we

consequently show the feature map of a filter after the ReLU layer

x, the assigned mask Tµ̂, the masked feature map xmasked, and the

image-resolution RF of activations in xmasked computed by [40].

its feature map x from both the final task loss L(ŷk, y
∗
k) on

the k-th sample and the filter loss, Lossf , as follows:

∂Loss

∂xij

= λ
∂Lossf

∂xij

+
1

N

N
∑

k=1

∂L(ŷk, y
∗
k)

∂xij

(3)

where λ is a weight. Then, we back propagate ∂Loss

∂xij
to

lower layers and compute gradients w.r.t. feature maps and

Xgradients w.r.t. parameters in lower layers to update the

CNN.
For implementation, gradients of Lossf w.r.t. each ele-

ment xij of feature map x are computed as follows.

∂Lossf

∂xij

=
1

ZT

∑

T

p(T )tije
tr(x·T )

{

tr(x · T )−log
[

ZT p(x)
]

}

≈ p(T̂ )t̂ij
ZT̂

e
tr(x·T̂ )

{

tr(x · T̂ )− logZT̂ − log p(x)
}

(4)

where T̂ is the target template for feature map x. If the

given image I belongs to the target category of filter f , then

T̂ = Tµ̂, where µ̂= argmaxµ=[i,j]xij . If image I belongs to

other categories, then T̂ = T−. Considering ∀T ∈T \ {T̂},

etr(x·T̂ ) ≫ etr(x·T ) after initial learning episodes, we make

the above approximation to simplify the computation. Be-

cause ZT is computed using numerous feature maps, we can

roughly treat ZT as a constant to compute gradients in the

above equation. We gradually update the value of ZT during

the training process2. Similarly, we can also approximate

p(x) without huge computation2.

Determining the target category for each filter: We

need to assign each filter f with a target category ĉ to ap-

proximate gradients in Eqn. (4). We simply assign the filter

f with the category ĉ whose images activate f the most, i.e.

ĉ = argmaxcmeanx=f(I):I∈Ic

∑

ij xij .

4. Understanding of the loss

In fact, the loss in Eqn. (1) can be re-written as

Lossf =−H(T)+H(T′|X)+
∑

x

p(T+
, x)H(T+|X=x) (5)

Where T′ = {T−,T+}. H(T)=−
∑

T∈T
p(T ) log p(T ) is a

constant prior entropy of part templates.

Low inter-category entropy: The second term H(T′ =
{T−,T+}|X) is computed as

H(T′={T−
,T

+}|X) = −
∑

x

p(x)
∑

T∈{T−,T+}

p(T |x) log p(T |x) (6)

where T+ = {Tµ1
, . . . , Tµ

n2
} ⊂T, p(T+|x) =∑

µ p(Tµ|x).
We define the set of all positive templates T+ as a single

label to represent category c. We use the negative template

T− to denote other categories. This term encourages a low

conditional entropy of inter-category activations, i.e. a well-

learned filter f needs to be exclusively activated by a certain

category c and keep silent on other categories. We can use

a feature map x of f to identify whether the input image

belongs to category c or not, i.e. x fitting to either Tµ̂ or T−,

without great uncertainty.

Low spatial entropy: The third term in Eqn. (5) is given as

H(T+|X=x) =
∑

µ

p̃(Tµ|x) log p̃(Tµ|x) (7)

where p̃(Tµ|x) = p(Tµ|x)

p(T+|x)
. This term encourages a low con-

ditional entropy of spatial distribution of x’s activations. I.e.

given an image I ∈ Ic, a well-learned filter should only be

activated by a single region µ̂ of the feature map x, instead

of being repetitively triggered at different locations.

5. Experiments

In experiments, to demonstrate the broad applicability

of our method, we applied our method to CNNs with four

types of structures. We used object images in three dif-

ferent benchmark datasets to learn interpretable CNNs for

single-category classification and multi-category classifica-

tion. We visualized feature maps of filters in interpretable

2We can use a subset of feature maps to approximate the value of

ZT , and continue to update ZT when we receive more feature map-

s during the training process. Similarly, we can approximate p(x) us-

ing a subset of feature maps. We compute p(x) =
∑

T p(T )p(x|T ) =
∑

T p(T )
exp[tr(x·T )]

ZT
≈

∑
T p(T )meanx

exp[tr(x·T )]
ZT

.
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conv-layers to illustrate semantic meanings of these filter-

s. We used two types of metrics, i.e. the object-part inter-

pretability and the location instability, to evaluate the clarity

of the part semantics of a filter. Experiments showed that

filters in our interpretable CNNs were much more semanti-

cally meaningful than those in ordinary CNNs.

Three benchmark datasets: Because we needed

ground-truth annotations of object landmarks3 (parts) to e-

valuate the semantic clarity of each filter, we chose three

benchmark datasets with part annotations for training and

testing, including the ILSVRC 2013 DET Animal-Part

dataset [36], the CUB200-2011 dataset [30], and the Pas-

cal VOC Part dataset [3]. As discussed in [3, 36], non-rigid

parts of animal categories usually present great challenges

for part localization. Thus, we followed [3, 36] to select the

37 animal categories in the three datasets for evaluation.

All the three datasets provide ground-truth bounding

boxes of entire objects. For landmark annotations, the

ILSVRC 2013 DET Animal-Part dataset [36] contains

ground-truth bounding boxes of heads and legs of 30 ani-

mal categories. The CUB200-2011 dataset [30] contains a

total of 11.8K bird images of 200 species, and the dataset

provides center positions of 15 bird landmarks. The Pascal

VOC Part dataset [3] contain ground-truth part segmenta-

tions of 107 object landmarks in six animal categories.

Four types of CNNs: We modified four typical CNNs,

i.e. the AlexNet [12], the VGG-M [25], the VGG-S [25], the

VGG-16 [25], into interpretable CNNs. Considering that

skip connections in residual networks [7] usually make a s-

ingle feature map encode patterns of different filters, in this

study, we did not test the performance on residual networks

to simplify the story. Given a certain CNN, we modified all

filters in the top conv-layer of the original network into in-

terpretable filters. Then, we inserted a new conv-layer with

M filters above the original top conv-layer, where M is the

channel number of the input of the new conv-layer. We also

set filters in the new conv-layer as interpretable filters. Each

filter was a 3×3×M tensor with a bias term. We added zero

padding to input feature maps to ensure that output feature

maps were of the same size as the input.

Implementation details: We set parameters as τ = 0.5
n2 ,

α = n2

1+n2 , and β = 4. We updated weights of filter losses

w.r.t. magnitudes of neural activations in an online man-

ner, λ ∝ 1
t
meanx∈X maxi,j xij in the t-th epoch. We ini-

tialized parameters of fully-connected (FC) layers and the

new conv-layer, and loaded parameters of other conv-layers

from a traditional CNN that was pre-trained using 1.2M Im-

ageNet images in [12, 25]. We then fine-tuned parameters

of all layers in the interpretable CNN using training images

in the dataset. To enable a fair comparison, traditional C-

3To avoid ambiguity, a landmark is referred to as the central position

of a semantic part (a part with an explicit name, e.g. a head, a tail). In

contrast, the part corresponding to a filter does not have an explicit name.

NNs were also fine-tuned by initializing FC-layer parame-

ters and loading conv-layer parameters.

5.1. Experiments

Single-category classification: We learned four types of

interpretable CNNs based on the AlexNet, VGG-M, VGG-

S, and VGG-16 structures to classify each category in the

ILSVRC 2013 DET Animal-Part dataset [36], the CUB200-

2011 dataset [30], and the Pascal VOC Part dataset [3]. Be-

sides, we also learned ordinary AlexNet, VGG-M, VGG-

S, and VGG-16 networks using the same data for com-

parison. We used the logistic log loss for single-category

classification. Following experimental settings in [36, 35],

we cropped objects of the target category based on their

bounding boxes as positive samples with ground-truth la-

bels y∗ =+1. Images of other categories were regarded as

negative samples with ground-truth labels y∗=−1.

Multi-category classification: We used the six ani-

mal categories in the Pascal VOC Part dataset [3] and the

thirty categories in the ILSVRC 2013 DET Animal-Part

dataset [36] respectively, to learn CNNs for multi-category

classification. We learned interpretable CNNs based on the

VGG-M, VGG-S, and VGG-16 structures. We tried two

types of losses, i.e. the softmax log loss and the logistic log

loss4 for multi-class classification.

5.2. Quantitative evaluation of part interpretability

As discussed in [2], filters in low conv-layers usual-

ly represent simple patterns or object details (e.g. edges,

simple textures, and colors), whereas filters in high conv-

layers are more likely to represent complex, large-scale

parts. Therefore, in experiments, we evaluated the clarity

of part semantics for the top conv-layer of a CNN. We used

the following two metrics for evaluation.

5.2.1 Evaluation metric: part interpretability

We followed the metric proposed by Bau et al. [2] to mea-

sure the object-part interpretability of filters. We briefly

introduce this evaluation metric as follows. For each fil-

ter f , we computed its feature maps X after ReLu/mask

operations on different input images. Then, the distribu-

tion of activation scores in all positions of all feature maps

was computed. [2] set an activation threshold Tf such that

p(xij > Tf ) = 0.005, so as to select top activations from all

spatial locations [i, j] of all feature maps x ∈ X as valid map

regions corresponding to f ’s semantics. Then, [2] scaled up

low-resolution valid map regions to the image resolution,

4We considered the output yc for each category c independent to out-

puts for other categories, thereby a CNN making multiple independen-

t single-class classifications for each image. Table 7 reported the average

accuracy of the multiple classification outputs of an image.
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bird cat cow dog horse sheep Avg.

AlexNet 0.332 0.363 0.340 0.374 0.308 0.373 0.348

AlexNet, interpretable 0.770 0.565 0.618 0.571 0.729 0.669 0.654

VGG-16 0.519 0.458 0.479 0.534 0.440 0.542 0.495

VGG-16, interpretable 0.818 0.653 0.683 0.900 0.795 0.772 0.770

VGG-M 0.357 0.365 0.347 0.368 0.331 0.373 0.357

VGG-M, interpretable 0.821 0.632 0.634 0.669 0.736 0.756 0.708

VGG-S 0.251 0.269 0.235 0.275 0.223 0.287 0.257

VGG-S, interpretable 0.526 0.366 0.291 0.432 0.478 0.251 0.390

Table 1. Part interpretability of filters in CNNs for single-category

classification based on the Pascal VOC Part dataset [3].

thereby obtaining the receptive field (RF)5 of valid activa-

tions on each image. The RF on image I , denoted by SI
f ,

described the part region of f .

The compatibility between each filter f and the k-th part

on image I was reported as an intersection-over-union s-

core IoUI
f,k =

‖SI
f∩SI

k‖

‖SI
f
∪SI

k
‖

, where SI
k denotes the ground-truth

mask of the k-th part on image I . Given an image I , we

associated filter f with the k-th part if IoUI
f,k > 0.2. The

criterion of IoUI
f,k > 0.2 for part association is stricter than

IoUI
f,k > 0.04 used in [2]. It is because compared to oth-

er CNN semantics discussed in [2] (such as colors and tex-

tures), object-part semantics requires a stricter criterion. We

computed the probability of the k-th part being associating

with the filter f as Pf,k = meanI:with k-th part1(IoU
I
f,k > 0.2).

Note that one filter might be associated with multiple object

parts in an image. Among all parts, we reported the highest

probability of part association as the interpretability of filter

f , i.e. Pf = maxk Pf,k.

For single-category classification, we used testing im-

ages of the target category for evaluation. In the Pascal

VOC Part dataset [3], we used four parts for the bird cat-

egory. We merged ground-truth regions of the head, beak,

and l/r-eyes as the head part, merged regions of the torso,

neck, and l/r-wings as the torso part, merged regions of l/r-

legs/feet as the leg part, and used tail regions as the fourth

part. We used five parts for the cat category. We merged

regions of the head, l/r-eyes, l/r-ears, and nose as the head

part, merged regions of the torso and neck as the torso part,

merged regions of frontal l/r-legs/paws as the frontal legs,

merged regions of back l/r-legs/paws as the back legs, and

used the tail as the fifth part. We used four parts for the cow

category, which were defined in a similar way to the cat cat-

egory. We added l/r-horns to the head part and omitted the

tail part. We applied five parts of the dog category in the

same way as the cat category. We applied four parts of both

5[40] computes the RF when the filter represents an object part. Fig. 5

used RFs computed by [40] to visualize filters. However, when a filter in an

ordinary CNN does not have consistent contours, it is difficult for [40] to

align different images to compute an average RF. Thus, for ordinary CNNs,

we simply used a round RF for each valid activation. We overlapped all

activated RFs in a feature map to compute the final RF as mentioned in [2].

For a fair comparison, in Section 5.2.1, we uniformly applied these RFs to

both interpretable CNNs and ordinary CNNs.

Network Logistic log loss4 Softmax log loss

VGG-16 0.710 0.723

VGG-16, interpretable 0.938 0.897

VGG-M 0.478 0.502

VGG-M, interpretable 0.770 0.734

VGG-S 0.479 0.435

VGG-S, interpretable 0.572 0.601

Table 2. Part interpretability of filters in CNNs that are trained for

multi-category classification based on the VOC Part dataset [3].

Filters in our interpretable CNNs exhibited significantly better part

interpretability than ordinary CNNs in all comparisons.

the horse and sheep categories in the same way as the cow

category. We computed the average part interpretability Pf

over all filters for evaluation.

For multi-category classification, we first assigned each

filter f with a target category ĉ, i.e. the category that acti-

vated the filter most ĉ = argmaxcmeanx=f(I):I∈Ic

∑

i,j xij .

Then, we computed the object-part interpretability using

images of category ĉ, as introduced above.

5.2.2 Evaluation metric: location instability

The second metric measures the instability of part locations,

which was proposed in [35]. Given a feature map x of filter

f , we regarded the unit µ̂ with the highest activation as the

location inference of f . We assumed that if f consistently

represented the same object part through different object-

s, then distances between the inferred part location µ̂ and

some object landmarks3 should not change a lot among dif-

ferent objects. For example, if f represented the shoulder,

then the distance between the shoulder and the head should

keep stable through different objects.

Therefore, [35] computed the deviation of the distance

between the inferred position µ̂ and a specific ground-truth

landmark among different images, and used the average de-

viation w.r.t. various landmarks to evaluate the location in-

stability of f . Let dI(pk, µ̂) =
‖pk−p(µ̂)‖√

w2+h2
denote the normal-

ized distance between the inferred part and the k-th land-

mark pk on image I , where p(µ̂) denotes the center of the

unit µ̂’s RF when we backward propagated the RF to the

image plane.
√
w2 + h2 denotes the diagonal length of the

input image. We computed Df,k =
√

varI [dI(pk, µ̂)] as the

relative location deviation of filter f w.r.t. the k-th land-

mark, where varI [dI(pk, µ̂)] is referred to as the variation of

the distance dI(pk, µ̂). Because each landmark could not

appear in all testing images, for each filter f , the metric

only used inference results with the top-100 highest activa-

tion scores xµ̂ on images containing the k-th landmark to

compute Df,k. Thus, we used the average of relative lo-

cation deviations of all the filters in a conv-layer w.r.t. all

landmarks, i.e. meanfmeanK
k=1Df,k, to measure the location

instability of f , where K denotes the number of landmarks.

More specifically, object landmarks for each category
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gold. bird frog turt. liza. koala lobs. dog fox cat lion tiger bear rabb. hams. squi.

AlexNet 0.161 0.167 0.152 0.153 0.175 0.128 0.123 0.144 0.143 0.148 0.137 0.142 0.144 0.148 0.128 0.149

AlexNet, interpretable 0.084 0.095 0.090 0.107 0.097 0.079 0.077 0.093 0.087 0.095 0.084 0.090 0.095 0.095 0.077 0.095

VGG-16 0.153 0.156 0.144 0.150 0.170 0.127 0.126 0.143 0.137 0.148 0.139 0.144 0.143 0.146 0.125 0.150

VGG-16, interpretable 0.076 0.099 0.086 0.115 0.113 0.070 0.084 0.077 0.069 0.086 0.067 0.097 0.081 0.079 0.066 0.065

VGG-M 0.161 0.166 0.151 0.153 0.176 0.128 0.125 0.145 0.145 0.150 0.140 0.145 0.144 0.150 0.128 0.150

VGG-M, interpretable 0.088 0.088 0.089 0.108 0.099 0.080 0.074 0.090 0.082 0.103 0.079 0.089 0.101 0.097 0.082 0.095

VGG-S 0.158 0.166 0.149 0.151 0.173 0.127 0.124 0.143 0.142 0.148 0.138 0.142 0.143 0.148 0.128 0.146

VGG-S, interpretable 0.087 0.101 0.093 0.107 0.096 0.084 0.078 0.091 0.082 0.101 0.082 0.089 0.097 0.091 0.076 0.098

horse zebra swine hippo catt. sheep ante. camel otter arma. monk. elep. red pa. gia.pa. Avg.

AlexNet 0.152 0.154 0.141 0.141 0.144 0.155 0.147 0.153 0.159 0.160 0.139 0.125 0.140 0.125 0.146

AlexNet, interpretable 0.098 0.084 0.091 0.089 0.097 0.101 0.085 0.102 0.104 0.095 0.090 0.085 0.084 0.073 0.091

VGG-16 0.150 0.153 0.141 0.140 0.140 0.150 0.144 0.149 0.154 0.163 0.136 0.129 0.143 0.125 0.144

VGG-16, interpretable 0.106 0.077 0.094 0.083 0.102 0.097 0.091 0.105 0.093 0.100 0.074 0.084 0.067 0.063 0.085

VGG-M 0.151 0.158 0.140 0.140 0.143 0.155 0.146 0.154 0.160 0.161 0.140 0.126 0.142 0.127 0.147

VGG-M, interpretable 0.095 0.080 0.095 0.084 0.092 0.094 0.077 0.104 0.102 0.093 0.086 0.087 0.089 0.068 0.090

VGG-S 0.149 0.155 0.139 0.140 0.141 0.155 0.143 0.154 0.158 0.157 0.140 0.125 0.139 0.125 0.145

VGG-S, interpretable 0.096 0.080 0.092 0.088 0.094 0.101 0.077 0.102 0.105 0.094 0.090 0.086 0.078 0.072 0.090

Table 3. Location instability of filters (Ef,k[Df,k]) in CNNs that are trained for single-category classification using the ILSVRC 2013 DET

Animal-Part dataset [36]. Filters in our interpretable CNNs exhibited significantly lower localization instability than ordinary CNNs.

bird cat cow dog horse sheep Avg.

AlexNet 0.153 0.131 0.141 0.128 0.145 0.140 0.140

AlexNet, interpretable 0.090 0.089 0.090 0.088 0.087 0.088 0.088

VGG-16 0.145 0.133 0.146 0.127 0.143 0.143 0.139

VGG-16, interpretable 0.101 0.098 0.105 0.074 0.097 0.100 0.096

VGG-M 0.152 0.132 0.143 0.130 0.145 0.141 0.141

VGG-M, interpretable 0.086 0.094 0.090 0.087 0.084 0.084 0.088

VGG-S 0.152 0.131 0.141 0.128 0.144 0.141 0.139

VGG-S, interpretable 0.089 0.092 0.092 0.087 0.086 0.088 0.089

Table 4. Location instability of filters (Ef,k[Df,k]) in CNNs that

are trained for single-category classification using the Pascal VOC

Part dataset [3]. Filters in our interpretable CNNs exhibited sig-

nificantly lower localization instability than ordinary CNNs.

Network Avg. location instability

AlexNet 0.150

AlexNet, interpretable 0.070

VGG-16 0.137

VGG-16, interpretable 0.076

VGG-M 0.148

VGG-M, interpretable 0.065

VGG-S 0.148

VGG-S, interpretable 0.073

Table 5. Location instability of filters (Ef,k[Df,k]) in CNNs for

single-category classification using the CUB200-2011 dataset.

were selected as follows. For the ILSVRC 2013 DET

Animal-Part dataset [36], we used the head and frontal legs

of each category as landmarks for evaluation. For the Pascal

VOC Part dataset [3], we selected the head, neck, and torso

of each category as the landmarks. For the CUB200-2011

dataset [30], we used ground-truth positions of the head,

back, tail of birds as landmarks. It was because these land-

marks appeared on testing images most frequently.

For multi-category classification, we needed to deter-

mine two terms for each filter f , i.e. 1) the category that

f mainly represented and 2) the relative location deviation

Dataset ILSVRC Part [36] Pascal VOC Part [3]

Network Logistic log loss4 Logistic log loss4 Softmax log loss

VGG-16 – 0.128 0.142

interpretable – 0.073 0.075

VGG-M 0.167 0.135 0.137

interpretable 0.096 0.083 0.087

VGG-S 0.131 0.138 0.138

interpretable 0.083 0.078 0.082

Table 6. Location instability of filters (Ef,k[Df,k]) in CNNs that

are trained for multi-category classification. Filters in our inter-

pretable CNNs exhibited significantly lower localization instabili-

ty than ordinary CNNs in all comparisons.

Df,k w.r.t. landmarks in f ’s target category. Because filters

in ordinary CNNs did not exclusively represent a single cat-

egory, we simply assigned filter f with the category whose

landmarks can achieve the lowest location deviation to sim-

plify the computation. I.e. we used the average location

deviation meanf minc meank∈PartcDf,k to evaluate the loca-

tion instability, where Partc denotes the set of part indexes

belonging to category c.

5.2.3 Experimental results and analysis

Tables 1 and 2 show part interpretability of CNNs for

single-category classification and that of CNNs for multi-

category classification, respectively. Tables 3, 4, and 5 list

location instability of CNNs for single-category classifica-

tion. Table 6 compares location instability of CNNs for

multi-category classification. Our interpretable CNNs ex-

hibited much higher part interpretability and much lower

location instability than ordinary CNNs in almost all com-

parisons. Table 7 compares classification accuracy of dif-

ferent CNNs. Ordinary CNNs performed better in single-

category classification, while interpretable CNNs outper-

formed in multi-category classification.
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Figure 5. Visualization of filters in top conv-layers. We used [40] to estimate the image-resolution receptive field of activations in a feature

map to visualize a filter’s semantics. The top four rows visualize filters in interpretable CNNs, and the bottom two rows correspond to

filters in ordinary CNNs. We found that interpretable CNNs usually encoded head patterns of animals in its top conv-layer for classification,

although no part annotations were used to train the CNN.

multi-category single-category

ILSVRC Part VOC Part ILSVRC PartVOC Part CUB200

logistic4 logistic4 softmax

AlexNet – – – 96.28 95.40 95.59

interpretable – – – 95.38 93.93 95.35

VGG-M 96.73 93.88 81.93 97.34 96.82 97.34

interpretable 97.99 96.19 88.03 95.77 94.17 96.03

VGG-S 96.98 94.05 78.15 97.62 97.74 97.24

interpretable 98.72 96.78 86.13 95.64 95.47 95.82

VGG-16 – 97.97 89.71 98.58 98.66 98.91

interpretable – 98.50 91.60 96.67 95.39 96.51

Table 7. Classification accuracy based on different datasets. In

single-category classification, ordinary CNNs performed better,

while in multi-category classification, interpretable CNNs exhibit-

ed superior performance.

5.3. Visualization of filters

We followed the method proposed by Zhou et al. [40] to

compute the RF of neural activations (after ReLU and mask

operations) of a filter, which was scaled up to the image res-

olution. Fig. 5 shows RFs5 of filters in top conv-layers of C-

NNs, which were trained for single-category classification.

Filters in interpretable CNNs were mainly activated by a

certain object part, whereas feature maps of ordinary CNNs

after ReLU operations usually did not describe explicit se-

mantic meanings. Fig. 6 shows heat maps for distributions

of object parts that were encoded in interpretable filters. In-

terpretable filters usually selectively modeled distinct object

parts of a category and ignored other parts.

6. Conclusion and discussions

In this paper, we have proposed a general method to

modify traditional CNNs to enhance their interpretability.

As discussed in [2], besides the discrimination power, the

interpretability is another crucial property of a network. We

Figure 6. Heat maps for distributions of object parts that are encod-

ed in interpretable filters. We use all filters in the top conv-layer to

compute the heat map.

design a loss to push a filter in high conv-layers toward the

representation of an object part without any part annotations

for supervision. It is because compared to low conv-layers,

high conv-layers are more likely to represent large-scale

parts. Experiments have shown that our interpretable C-

NNs encoded more semantically meaningful knowledge in

high conv-layers than traditional CNNs. When we use an

interpretable CNN to classify a large number of categories

simultaneously, filters in a conv-layer are assigned with d-

ifferent categories, which makes each category corresponds

to only a few filters. In this case, the CNN’s classification

accuracy may decrease a bit.
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