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Abstract

Multi-shot pedestrian re-identification problem is at the

core of surveillance video analysis. It matches two tracks of

pedestrians from different cameras. In contrary to existing

works that aggregate single frames features by time series

model such as recurrent neural network, in this paper, we

propose an interpretable reinforcement learning based ap-

proach to this problem. Particularly, we train an agent to

verify a pair of images at each time. The agent could choose

to output the result (same or different) or request another

pair of images to verify (unsure). By this way, our model

implicitly learns the difficulty of image pairs, and postpone

the decision when the model does not accumulate enough

evidence. Moreover, by adjusting the reward for unsure

action, we can easily trade off between speed and accuracy.

In three open benchmarks, our method are competitive with

the state-of-the-art methods while only using 3% to 6% ima-

ges. These promising results demonstrate that our method

is favorable in both efficiency and performance.

1. Introduction

Pedestrian Re-identification (re-id) aims at matching pe-

destrians in different tracks from multiple cameras. It helps

to recover the trajectory of a certain person in a broad area

across different non-overlapping cameras. Thus, it is a fun-

damental task in a wide range of applications such as vi-

deo surveillance for security and sports video analysis. The

most popular setting for this task is single shot re-id, which

judges whether two persons at different video frames are

the same one. This setting has been extensively studied in

recent years[7, 1, 16, 28, 17]. On the other hand, multi-shot

re-id (or a more strict setting, video based re-id) is a more

realistic setting in practice, however it is still at its early age
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Figure 1: Examples to demonstrate the motivation of our

work. For most tracks, several even only one pair of images

are enough to make confident prediction. However, in other

hard cases, it is necessary to use more pairs to alleviate the

influence of these samples of bad quality.

compared with single shot re-id task.

Currently, the main stream of solving multi-shot re-id

task is first to extract features from single frames, and then

aggregate these image level features. Consequently, the key

lies in how to leverage the rich yet possibly redundant and

noisy information resided in multiple frames to build track

level features from image level features. A common choice

is pooling[37] or bag of words[38]. Furthermore, if the in-

put tracks are videos (namely, the temporal order of frames

is preserved), optical flow[5] or recurrent neural network

(RNN)[24, 39] are commonly adopted to utilize the motion

cues. However, most of these methods have two main pro-

blems: the first one is that it is computationally inefficient

to use all the frames in each track due to the redundancy.

The second one is there could be noisy frames caused by

occlusion, blur or incorrect detections. These noisy frames

may significantly deteriorate the performance.

To solve the aforementioned problems, we formulate

multi-shot re-id problem as a sequential decision making

task. Intuitively, if the agent is confident enough about ex-

isting evidences, it could output the result immediately. Ot-

herwise, it needs to ask for another pair to verify. To model

such human like decision process, we feed a pair of ima-
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ges from the two tracks to a verification agent at each time

step. Then, the agent could output one of three actions:

same, different or unsure. By adjusting the rewards of these

three actions, we could trade off between the number of

images used and final accuracy. We depict several exam-

ples in Fig. 1. In case of easy examples, the agent could

decide using only one pair of images, while when the cases

are hard, the agent chooses to see more pairs to accumu-

late evidences. In contrast to previous works that explicitly

deduplicate redundant frames[6] or distinguish high quality

from low quality frames[21], our method could implicitly

consider these factors in a data driven end-to-end manner.

Moreover, our method is general enough to accommodate

all single shot re-id methods as image level feature extrac-

tor even those non-deep learning based methods.

The main contributions of our work are listed as follo-

wing:

• We are the first to introduce reinforcement learning

into multi-shot re-id problem. We train an agent to

either output results or request to see more samples.

Thus, the agent could early stop or postpone the de-

cision as needed. Thanks to this behavior, we could

balance speed and accuracy by only adjusting the re-

wards.

• We verify the effectiveness and efficiency on three po-

pular multi-shot re-id datasets. Along with the deli-

berately designed image feature extractor, our method

could outperform the state-of-the-art methods while

only using 3% to 6% images without resorting to other

post-processing or additional metric learning methods.

• We empirically demonstrate that the Q function could

implicitly indicate the difficulties of samples. This de-

sirable property makes the results of our method more

interpretable.

2. Related Work

Pedestrian re-identification for single still images has

been explored extensively in these years. These researches

mainly focused on two aspects: the first one is to extract

features that are both invariant and discriminative from dif-

ferent viewpoints to overcome difficulties such as illumina-

tion changes, occlusions, blurs, etc. Representative works

before deep learning age include [30, 14, 36]. However,

these hand-crafted features are subverted by the rapidly de-

veloped Convolutional Neural Networks (CNN) in recent

years. CNN has become de facto standard for feature ex-

traction. The second aspect is metric learning. Metric lear-

ning embeds each sample into a latent space that preserves

certain relationships of samples. Popular methods including

Mahalanobis distance metric (RCA)[2], Locally Adaptive

Decision Function (LADF)[18] and Large Margin Nearest

Neighbor (LMNN)[31].

These two streams have met in the deep learning age:

Numerous work focus on learning discriminative featu-

res by the guide of metric learning based loss funcions.

The earliest work was proposed by Chopra et al. in [4].

They presented a Siamese architecture to learn similarity

for face verification task with CNN. Schroff et al. proposed

triplet loss in FaceNet [26] to learn discriminative embed-

dings by maximizing the relative distance between mat-

ched pairs and mismatched pairs. Inspired by these met-

hods for face verification, deep learning methods for image

based re-identification have also shown great progress in

recent years[7, 16, 1]. Recently, [34, 35] utilized dom-

ain knowledge to improve performance: They incorpora-

ted pedestrian landmarks to handle body part misalignment

problem. Concurrently, many deep learning based multi-

task methods are proposed and reported promising perfor-

mance. Wang et al. [28] proposed a joint learning frame-

work by combining patch matching and metric learning. Li

et al. [17] proposed a multi-loss model combining metric

learning and global classification to discover both local and

global features.

Compared with image based re-id task, multi-shot re-id

problem is a more realistic setting, since the most popu-

lar application of re-id problem is surveillance video. It at

least provides several representative frames after conden-

sation, or even the entire videos are stored. Consequently,

how to utilize such multi-frame information is at the core

of multi-shot re-id task. Flow Energy Profile[19] is pro-

posed to detect walking cycles with flow energy profile to

extract spatial and temporal invariant features. In [38], Bag-

of-words are adopted with learned frame-wised features to

generate a global feature. Not surprisingly, deep learning

also expressed its power in multi-shot re-id problem. A na-

tural choice for temporal model in deep learning is Recur-

rent Neural Network (RNN). In the pioneering work [24],

McLaughlin et al. first extracted features with CNN from

images and then use RNN and temporal pooling to aggre-

gate those features. Similarly, Chung et al. [5] presented a

two stream Siamese network with RNN and temporal pool-

ing for each stream. Recently, this idea was extended with

spatial and temporal attention in [39, 33] to automatically

pick out discriminative frames and integrate context infor-

mation. Another interesting work is [21]. In [21], a CNN

model learns the quality for each image, and then the vi-

deo is aggregated with the image features weighted by the

quality.

The goal of Reinforcement Learning (RL) is to learn po-

licies based on trial and error in a dynamic environment.

In contrast to traditional supervised learning, reinforcement

learning trains an agent by maximizing the accumulated re-

ward from environment. Additional to its traditional ap-
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Figure 2: An illustration of our proposed method. Firstly we train an image level feature extractor (the left part) and then

aggregate sequence level feature with an agent (the right part). The agent takes several kinds of features of one pair of images,

and take one of three possible actions. If the taken action is “unsure”, the above process is repeated again.

plications in control and robotics, recently RL has been

successfully applied to a few computer vision tasks by tre-

ating them as a decision making process[3, 22, 10, 15, 12,

23]. Some closely related works include: In [10], the fea-

tures for visual tracking problem are sorted by their costs,

and then an agent is trained to decide whether current fea-

tures are good enough to make accurate prediction. If not,

it proceeds to the next feature. By this way, the agent saves

unnecessary computation of expensive features. [12, 23] are

two works which applied RL techniques to object detection

task. In [12], the authors aimed to solve this task by limi-

ted budget which can be wall time, computing resources or

etc. An agent is trained to learn a sequential policy for fea-

ture selection and stop before the cost budget is exhausted.

While in [23] an agent is trained to learn whether to sample

more image regions for better accuracy or stop the search.

Our method shares the same spirit with these works, but

tailored for multi-shot re-id problem.

3. Method

In this section, we will introduce our approach to multi-

shot re-id problem. First, we will start with a formal for-

mulation of this problem, and then present each component

of our method. The overview of our method is depicted in

Figure 2.

3.1. Formulation

In multi-shot re-id task, for each sequence in query iden-

tities, the goal is to rank all the gallery identities according

to their similarities with the query identity. Given two se-

quences (X ,Y) = ({x1, . . . , xm}, {y1, . . . , yn}), where x

and y represent the images in X and Y , respectively. Let

f(x) be a feature extractor that extracts discriminative fea-

tures for each image x, and g(X ) be an aggregation function

that aggregates image level features of X to sequence level

feature. A similarity function l(·, ·) is designed to calculate

the similarity between the query identity and gallery iden-

tity. According to the similarity computed by l(·, ·), we sort

all the gallery identities for each query identity.

In the sequel, we will first present the details of our sin-

gle image feature extractor f(·) in Sec. 3.2. It is built with

a CNN trained with three different loss functions. Next,

we elaborate our reinforcement learning based aggregation

method g(·) and l(·, ·) in Sec. 3.3.

3.2. Image Level Feature Extraction

For single image feature extractor, a CNN is trained to

embed an image into a latent space that preserves certain re-

lationships of samples. To achieve this goal, we train a CNN

with combination of three different kinds of loss functions:

classification loss, pairwise verification loss [4] and triplet

verification loss [26]. According to a recent work [32], mul-

tiple loss functions could better ensure the structure of the

latent space and margins between samples. Particularly, we

optimize large margin softmax loss[20] instead of softmax

loss, since it demonstrates extraordinary performance in va-

rious classification and verification tasks.

Implementation details: We use two well-known net-

work structures Inception-BN[11] and AlexNet [13] pre-

trained on ILSVRC classification dataset[13] as base net-
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works. We choose these two networks with different capa-

city and expression power to demonstrate the universality

of our proposed aggregation method. In specific, we use

the features from the last pooling layer as image level fea-

tures. In training, we set the margin in triplet loss to 0.9.

For large margin softmax, we set β = 1000, βmin = 3, and

the margin as 3. For more details of these parameters, ple-

ase refer to [20]. We optimize the network by momentum

SGD optimizer with 320000 iterations. The learning rate is

0.01 and multiplied by 0.1 after 50000 and 75000 iterations,

respectively.

As an important baseline, we simply use the average of

l2-normalized features from all the images as the feature for

a sequence. Namely, the aggregation and similarity function

is defined as:

g(X ) =
m∑

i

f(xi)

m
, l(g(X ), g(Y)) = g(X ) · g(Y) (1)

· representing inner product for two vectors. We rank all the

gallery identities according to the value generated by l(·, ·).

3.3. Sequence Level Feature Aggregation

We formulate this problem as a Markov Decision Proces-

ses (MDP), described by (S,A, T ,R) as the states, actions,

transitions and rewards. Each time step t, the agent will get

a selected image pair from the two input sequences to ob-

serve a state st ∈ S and then choose an action at ∈ A
from the experience it has learned. Next the agent will earn

a reward rt ∈ R from the environment in training. After

that if the episode is not terminated, the agent will receive

another image pair determined by state transition distribu-

tion T (st+1|st, at) and turn to the next state st+1. We will

elaborate the details of them in the sequel.

Actions and Transitions: Initially, the agent is fed with

an image pair selected from two selected sequences X and

Y . Note that we don’t assume the order of the input and

randomly form the pair from two sequences. We have three

actions for the agent: same, different and unsure. The first

two actions will terminate the current episode, and output

the result immediately. We anticipate when the agent has

collected enough information and is confident to make the

decision, it stops early to avoid unnecessary computation.

If the agent chooses to take action unsure, we will feed the

agent another image pair.

Rewards: We define the rewards as follows:

1. +1, if at matches gt.

2. −1, if at differs from gt, or when t = tmax, at is still

unsure.

3. rp, if t < tmax, at is unsure.

Here tmax is defined as the maximum time step for each

episode. gt is the ground truth. rp is defined as a penalty

(negative reward) or reward for the agent seeking for anot-

her image pair. If rp is negative, it will be penalized for

requesting more pairs; on the other hand, if rp is positive,

we encourage the agent to gather more pairs, and stop gat-

hering when it has collected tmax pairs to avoid a penalty

of −1. The value of rp may strongly affect the agent’s be-

havior. We will discuss its impact in Sec. 4.2.

States and Deep Q-learning: We use Deep Q-

Learning [25] to find the optimal policy. For each

state and action (st, at), Q(st, at) represents the dis-

counted accumulated rewards for the state and action. In

training, we could iteratively update the Q function by:

Q(st, at) = rt + γmax
at+1

Q(st+1, at+1). (2)

The state st for time step t in the episode consists of three

parts. The first part is the observation ot which is composed

of the image features of current pair (f(x), f(y)) generated

by the image feature extractor mentioned in Section 3.2,

which is defined as ot = |f(xt) − f(yt)|.The second part

is a weighted average of the difference between historical

image features of two sequences. This part makes the agent

be aware of the previous image pairs it has already seen

before. In specific, for each observation ot the weight wt is

defined as:

wt = 1.0−
eQu

eQs + eQd + eQu

(3)

where Qu is short for Q(st, at = unsure), and vice versa.

The weight decreases as Qu increases, as higher Qu may

indicate that current pair of images are hard to distinguish.

The aggregated features should be affected as small as pos-

sible. As a result, ht is the weighted average of the historical

features for t > 1:

ht =

∑t−1

i=1
wi × oi∑t−1

i=1
wi

. (4)

ht = ot when t = 1. 1 Note that though the Q function is

not specifically trained for sample weighting, it still reflects

the importance of each frame. We leave end-to-end learning

of the weights as our future work.

We also augment the image features with hand-crafted

features for better discrimination. For each time step t, we

calculate the distance ‖f(xi)−f(yj)‖
2
2 for all 1 ≤ i, j < t,

1Note that since ht = 0 implies f(x) = f(y), it will introduce a

strong bias to make the agent to choose “same” leading a poor performance

if we set ht = 0 when t = 1.
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and then add the maximum, minimum and mean of them to

the input, which results in 3 dimension extra features. 2

The structure of the Q-network is shown in Fig.2. We

simply use a two layer fully connected network as the Q

function. Each fully connected layer has 128 outputs and is

followed by an ReLU activation function.

Testing: For each query video sequences we play one

episode and take the difference of the Q-value of action

same and different at the terminal step as the final ranking

score. Note that the Q-net essentially combines aggregation

function g(·) and similarity function l(·, ·).
Implementation details: In training phase, for each epi-

sode we randomly choose positive or negative sequence

pairs with ratio 1 : 1. We feed the weighted historical fea-

tures, features of current step and hand-crafted distance fe-

atures into the Q-Net. The whole net along with the single

image feature extractor is trained end-to-end except for fix-

ing the first two stages of the base networks.

We train the Q-Net for 20 epochs by momentum SGD

optimizer, 100000 iterations for each epoch. We use ǫ-

greedy learning[27] as the exploration strategy and anneal ǫ

linearly from 1 to 0.1 in the first 10 epochs. Learning rate

is set to 0.0001, discount factor γ = 0.9 and batch size is

16. Experience replay is used and the memory buffer size

is set to 5000. It takes 5.502 and 2.613 ms per episode for

Inception-BN and Alexnet to verify a single pair of sequen-

ces on a Maxwell Titan X GPU. All these runtimes include

the time of both image level feature extractor and Q-Net.

4. Experiments

In this section, we will present the results of our method

on three open benchmarks, and compare it with other state-

of-the-art methods. We will first introduce the datasets and

evaluation metric used, and then present the ablation analy-

ses of our method. After comparisons with other methods,

we will also present some qualitative results to interpret the

mechanism of our methods.

4.1. Evaluation Settings

We evaluate our algorithm with three most commonly

used public datasets for multi-shot re-id problem: iLIDS-

VID[29], PRID2011[9] and MARS[37]. For iLIDS-VID

and PRID2011 dataset, following the setting in [24] we

randomly split the dataset half-half for training and testing

and average the results of 10 runs to make the evaluation

stable. For MARS dataset, we follow the setting by the aut-

hors of the dataset. 625 identities are used for training, and

the rest are used for testing. In testing, 1980 tracklets are

2Here we don’t make time step t as a part of the state-space. Since the

feature extractor fits better in the training set, the agent uses less time steps

to verify samples in training set compared with that in testing set, adding t

to the state-space will cause overfitting issues.

preserved for query sets, while the rests are used as gallery

sets.

To evaluate performance for each algorithm, we report

the Cumulative Matching Characteristic (CMC) metric. It

represents the expectation of the true matching hits in the

first top-n ranking. Here we use n ∈ {1, 5, 10, 20} in the

evaluations.

4.2. Ablation Studies

Before comparing our models with previous works, we

first conduct ablation studies of some important factors of

our method. The results are listed in Table 1 and Table 2 for

different settings and datasets. As a baseline, we calculate

the averagely pooled features mentioned in Equation 1. The

results of baseline method using all frames are listed in All

frames rows.

First let’s discuss an important parameter of our model:

the reward for unsure action rp. We show the statistics of

how many images are used (which is double of the time

steps) in each episode in Fig. 3 and corresponding CMC

rank 1 in Table 1 and Table 2. When rp is small (negative),

the agent will stop early and verify the identities with fewer

images. When rp is big (positive), the agent will be en-

couraged to be more cautious, requesting more image pairs

for better performance. This will help the agent postpone

its decision to avoid mistakes caused by imperfect quality

like occlusions. Among all different values of rp, we found

that rp = 0.2 gives us the most remarkable performance.

We compare the CMC Rank 1 results of our proposed

models with baseline methods in Figure 4. The dashed

green line denotes the All frames setting in Table 1 and Ta-

ble 2, while the blue stars denotes the setting that we rand-

omly sample pairs from the tracks, and then averagely pool

their features to a track level feature. We vary the number of

images sampled to generate the curve. And the yellow squa-

res show the CMC Rank 1 performance of our model with

different values of rp. We then take a close look of the ana-

lysis of the number of images used in these two networks.

Not surprisingly, our method uses notably less number of

images. Particularly, we can outperform the All frames ba-

selines using only 3% to 4% images. We owe the reason

to that the average pooling of all the frames may be easily

contaminated by some imperfect frames.

In Figure 4, we also compare the CMC Rank 1 results

of our model with different choices of the maximum time

step tmax. We take three different choices: tmax = 4 (red

triangles), tmax = 8 (yellow squares) and tmax = 16 (se-

afoam blue pentagons) and see how CMC Rank 1 changes

with different values of rp. Comparing among three set-

tings, we find that tmax = 8 gives the best trade-off bet-

ween number of images used and performance.

Next, we compare across different datasets. There are

tons of occlusions in iLIDS-VID and MARS datasets. Mo-
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Figure 3: Statistics of the number of images used in each episode of our model with different reward for action unsure.
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Figure 4: CMC Rank 1 results for our model compared with baseline.

reover, there are many mislabeled samples in MARS since

the bounding boxes of MARS dataset are machine genera-

ted. PRID2011 dataset is much easier compared with the

other two datasets. We find that the agent tends to ask

for more images in iLIDS-VID and MARS dataset than

PRID2011 dataset under the same setting. These two fin-

dings coincide with our anticipated behavior of the agent.

Finally there are some more settings worthy trying. We

put these experiment results in Table 1 and Table 2 with

rp = 0.2 and tmax = 8 if not specially mentioned.

• No handcrafted features: We learn the policy without

the 3 dimensions handcrafted distance features, only

with image level features and historical information.

CMC Rank 1 drops a lot and the agent will tend to

make a quicker choice.

• DRQN: We try to replace the last fc layer with a LSTM

layer as in [8] to gather historical features instead of

the method we described in 3.2. The results are worse

compared with our proposed method.
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Dataset PRID2011 iLIDS-VID MARS

Settings CMC1 #.of Images CMC1 #.of Images CMC1 #.of Images

All frames 84.3 200.000 60.0 146.000 68.3 111.838

rp = 0.2 85.2 6.035 60.2 6.681 71.2 6.417

rp = 0.1 84.6 3.970 60.3 3.966 70.5 3.931

rp = 0 83.7 3.162 55.4 3.134 69.0 2.952

rp = −0.1 81.9 2.835 54.0 2.789 68.2 2.507

rp = −0.2 80.8 2.605 50.7 2.307 67.5 2.130

No handcrafted features 83.5 5.679 57.8 5.934 69.2 6.103

DRQN 83.2 4.314 59.8 5.109 69.9 4.577

Sequential 84.1 7.549 59.7 7.021 70.5 6.591

Video fine-tune 84.7 16.000 60.2 16.000 70.7 16.000

Table 1: Test results for our model based on Inception BN image feature extractor.

Dataset PRID2011 iLIDS-VID MARS

Settings CMC1 #.of Images CMC1 #.of Images CMC1 #.of Images

All frames 47.8 200.000 32.1 146.000 36.8 111.838

rp = 0.2 52.6 6.316 35.1 9.154 41.2 7.119

rp = 0.1 50.1 4.317 33.3 5.722 38.9 4.491

rp = 0 47.1 3.349 31.7 3.637 37.3 3.238

rp = −0.1 45.3 2.870 30.3 2.614 36.4 2.604

rp = −0.2 41.5 2.394 28.3 2.307 35.9 2.221

No handcrafted features 48.2 5.931 32.4 7.793 37.3 6.645

DRQN 48.7 3.291 33.0 6.119 40.2 5.716

Sequential 51.4 7.834 34.1 9.318 40.8 7.423

Video fine-tune 50.3 16.000 32.7 16.000 40.0 16.000

Table 2: Test results for our model based on Alexnet image feature extractor.

Dataset PRID2011 iLIDS-VID MARS

CMC Rank 1 5 10 20 1 5 10 20 1 5 10 20

RNN-CNN[24] 70 90 95 97 58 87 91 96 40 64 70 77

ASTPN[33] 77 95 99 99 62 86 94 98 44 70 74 81

Two-Stream[5] 78 94 97 99 60 86 93 97 - - - -

CNN+XQDA[38] 77.9 93.5 - 99.3 53.0 81.4 - 95.1 65.3 82.0 - 89.0

Alexnet (All frames) 47.8 74.4 83.6 91.2 32.1 59.0 70.0 80.6 36.8 53.1 61.6 68.8

Alexnet + Ours 52.6 81.3 88.4 96.3 35.1 61.3 72.1 84.0 41.2 55.6 63.1 73.3

Inception-BN (All frames) 84.3 96.5 98.8 99.7 60.0 85.4 92.0 96.3 68.3 83.5 88.0 90.8

Inception-BN + Ours 85.2 97.1 98.9 99.6 60.2 84.7 91.7 95.2 71.2 85.7 91.8 94.3

QAN[21] 90.3 98.2 99.3 100 68.0 86.8 95.4 97.4 - - - -

STRN[39] 79.4 94.4 - 99.3 55.2 86.5 - 97.0 70.6 90.0 - 97.6

Table 3: Comparisons with other state-of-the-art methods. Please note that the results in last two rows are not directly

comparable due to different setting. For more details, please refer to the text.

• Sequential: Instead of feeding the agent with random

ordered images, we try to provide the images sequen-

tially started from the beginning of the sequences. The

results are worse compared with random order.

• Video fine-tune: Here we randomly sample 8 images

from each sequence, averagely pool the features and

use this sequence level feature to fine-tune the CNN as

described in Sec. 3.2. This model gets a slightly worse

CMC Rank 1 performance, but uses more images.

4.3. Comparisons with State­of­the­art Methods

Table 3 summarizes the CMC results of our model and

other state-of-the-art multi-shot re-id methods. Here we use

the setting of rp = 0.2 since this setting is the most accu-

6787



(a)

(b)
1 2 3 4 5 6 7 8

#. Time Steps

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Q
-V

a
lu

e

(a)

1 2 3 4 5 6 7 8

#. Time Steps

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Q
-V

a
lu

e

(b)

same different unsure

Figure 5: Some example episodes generated by our model. All the sampled images for each identity are listed on the left

with a red dashed line splits used images and unused images. On the right side, normalized Q values for each example are

shown.

rate according to the evaluations in previous section. CNN-

RNN[24], ASTPN[33], STRN[39] and Two-Stream[5] are

four different methods based on RNN time series model

and more advanced attention mechanism. CNN-XQDA[38]

and QAN[21] train discriminative embeddings of images

and apply different pooling methods. Among them, CNN-

RNN[24], ASTPN[33] and Two-Stream[5] use both image

and explicit motion features (optical flow) as inputs for deep

neural network.

Here QAN[21] uses their own extra data for trai-

ning. STRN[39] uses MARS pre-trained model to train

PRID2011 and iLIDS-VID. Therefore, their methods can-

not be fairly compared with other methods. We just list

their results for reference.

For PRID2011 dataset, our method outperforms all ot-

her methods, improves the CMC Rank 1 about 5% compa-

red with best state-of-the-art methods. For iLIDS-VID and

MARS dataset, our results are at least comparable or even

better than the compared methods. For CMC Rank 5, 10
and 20, the trends are similar to Rank 1.

Note that all the other methods use all images for veri-

fication. Our proposed model uses only 3% to 6% images

for each track pairs on average to obtain these encouraging

performance.

4.4. Qualitative Results

In Figure 5, two representative episodes are shown. We

can see the change of the Q values for the agent in dyna-

mic environment. Softmax function is applied to normalize

the Q values. (a) shows an example episode with the same

person, while (b) shows one with different persons. These

two episodes end with different length. Severe occlusions

happen in the early pairs of (a) and (b). After the occlusi-

ons disappear, the agent gradually collects information and

corrects its decisions. After fed with several image pairs

of better quality, the agent is confident enough to make the

correct choices eventually.

5. Conclusion

In this paper we have introduced a novel approach for

multi-shot pedestrian re-identification problem by casting it

as a pair by pair decision making process. Thanks to rein-

forcement learning, we could train an agent for such task.

Specifically, it receives image pairs sequentially, and out-

put one of the three actions: same, different or unsure. By

early stop or decision postponing, the agent could adjust

the budget needs to make confident decision according to

the difficulties of the tracks.

We have tested our method on three different multi-shot

pedestrian re-id datasets. Experimental results have shown

our model can yield competitive or even better results with

state-of-the-art methods using only 3% to 6% of images.

Furthermore, the Q values outputted by the agent is a good

indicator of the difficulty of image pairs, which makes our

decision process is more interpretable.

Currently, the weight for each frame is determined by

the Q value heuristically, which means the weight is not

guided fully by the final objective function. More advanced

mechanism such as attention can be easily incorporated into

our framework. We leave this as our future work.
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