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Abstract

This paper presents a novel method to deal with the

challenging task of generating photographic images con-

ditioned on semantic image descriptions. Our method in-

troduces accompanying hierarchical-nested adversarial ob-

jectives inside the network hierarchies, which regularize

mid-level representations and assist generator training to

capture the complex image statistics. We present an ex-

tensile single-stream generator architecture to better adapt

the jointed discriminators and push generated images up to

high resolutions. We adopt a multi-purpose adversarial loss

to encourage more effective image and text information us-

age in order to improve the semantic consistency and image

fidelity simultaneously. Furthermore, we introduce a new

visual-semantic similarity measure to evaluate the semantic

consistency of generated images. With extensive experimen-

tal validation on three public datasets, our method signifi-

cantly improves previous state of the arts on all datasets

over different evaluation metrics.

1. Introduction

Photographic text-to-image synthesis is a significant

problem in generative model research [33], which aims to

learn a mapping from a semantic text space to a complex

RGB image space. This task requires the generated im-

ages to be not only realistic but also semantically consistent,

i.e., the generated images should preserve specific object

sketches and semantic details described in text.

Recently, Generative adversarial networks (GANs) have

become the main solution to this task. Reed et al. [33] ad-

dress this task through a GAN based framework. But this

method only generates 642 images and can barely gener-

ate vivid object details. Based on this method, StackGAN

[46] proposes to stack another low-to-high resolution GAN

to generate 2562 images. But this method requires training

two separate GANs. Later on, [7] proposes to bypass the

difficulty of learning mappings from text to RGB images
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has a little grey belly 

and red organe eyes”
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crown and black secondaries.
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Figure 1: Top: Overview of our hierarchically-nested ad-

versarial network, which produces side output images with

growing resolutions. Each side output is associated with a

discriminator. Bottom: Two test sample results where fine-

grained details are highlighted.

and treat it as a pixel-to-pixel translation problem [14]. It

works by re-rendering an arbitrary-style 1282 training im-

age conditioned on a targeting description. However, its

high-resolution synthesis capability is unclear. At present,

training a generative model to map from a low-dimensional

text space to a high-resolution image space in a fully end-

to-end manner still remains unsolved.

This paper pays attention to two major difficulties for

text-to-image synthesis with GANs. The first is balanc-

ing the convergence between generators and discriminators
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[10, 36], which is a common problem in GANs. The second

is stably modeling the huge pixel space in high-resolution

images and guaranteeing semantic consistency [46]. An ef-

fective strategy to regularize generators is critical to stabi-

lize the training and help capture the complex image statis-

tics [12].

In this paper, we propose a novel end-to-end method that

can directly model high-resolution image statistics and gen-

erate photographic images (see Figure 1 bottom). The con-

tributions are described as follows.

Our generator resembles a simple vanilla GAN, without

requiring multi-stage training and multiple internal text con-

ditioning like [46] or additional class label supervision like

[5]. To tackle the problem of the big leap from the text space

to the image space, our insight is to leverage and regularize

hierarchical representations with additional ‘deep’ adver-

sarial constraints (see Figure 1 top). We introduce accom-

panying hierarchically-nested discriminators at multi-scale

intermediate layers to play adversarial games and jointly

encourage the generator to approach the real training data

distribution. We also propose a new convolutional neural

network (CNN) design for the generator to support accom-

panying discriminators more effectively. To guarantee the

image diversity and semantic consistency, we enforce dis-

criminators at multiple side outputs of the generator to si-

multaneously differentiate real-and-fake image-text pairs as

well as real-and-fake local image patches.

We validate our proposed method on three datasets,

CUB birds [40], Oxford-102 flowers [29], and large-scale

MSCOCO [23]. In complement of existing evaluation met-

rics (e.g. Inception score [36]) for generative models, we

also introduce a new visual-semantic similarity metric to

evaluate the alignment between generated images and con-

ditioned text. It alleviates the issue of the expensive hu-

man evaluation. Extensive experimental results and analy-

sis demonstrate the effectiveness of our method and signif-

icantly improved performance compared against previous

state of the arts on all three evaluation metrics. All source

code will be released.

2. Related Work

Deep generative models have attracted wide interests re-

cently, including GANs [10, 32], Variational Auto-encoders

(VAE) [17], etc [31]. There are substantial existing methods

investigating the better usage of GANs for different appli-

cations, such as image synthesis [32, 38], (unpaired) pixel-

to-pixel translation [14, 51], medical applications [4, 49],

etc [20, 12, 52, 45].

Text-to-image synthesis is an interesting application of

GANs. Reed et al. [33] is the first to introduce a method

that can generate 642 resolution images. This method also

presents a new strategy for image-text matching aware ad-

versarial training. Reed et al. [34] propose a generative

adversarial what-where network (GAWWN) to enable lo-

cation and content instructions in text-to-image synthesis.

Zhang et al. [46] propose a two-stage training strategy that

is able to generate 2562 compelling images. Recently, Dong

et al. [7] propose to learn a joint embedding of images and

text so as to re-render a prototype image conditioned on a

targeting description. Cha et al. [2] explore the usage of

the perceptional loss [15] with a CNN pretrained on Ima-

geNet and Dash et al. [5] make use of auxiliary classifiers

(similar with [30]) to assist GAN training for text-to-image

synthesis. Xu et al. [42] shows an attention-driven method

to improve fine-grained details.

Learning a continuous mapping from a low-dimensional

manifold to a complex real image distribution is a long-

standing problem. Although GANs have made significant

progress, there are still many unsolved difficulties, e.g.,

training instability and high-resolution generation. Wide

methods have been proposed to address the training instabil-

ity, such as various training techniques [35, 1, 38, 30], reg-

ularization using extra knowledge (e.g. image labels, Ima-

geNet CNNs) [8, 20, 5], or different generator and discrim-

inator combinations [27, 9, 12]. While our method shows

a new way to unite generators and discriminators and does

not require any extra knowledge apart from training paired

text and images. In addition, it is easy to see the training

difficulty increases significantly as the targeting image res-

olution increases.

To synthesize high-resolution images, cascade networks

are effective to decompose originally difficult tasks to mul-

tiple subtasks (Figure 2 A). Denton et al. [6] train a cas-

cade of GANs in a Laplacian pyramid framework (LAP-

GAN) and use each to synthesize and refine image details

and push up the output resolution stage-by-stage. Stack-

GAN also shares similar ideas with LAPGAN. Inspired by

this strategy, Chen et al. [3] present a cascaded refinement

network to synthesize high-resolution scenes from seman-

tic maps. Recently, Karras et al. [16] propose a progressive

training of GANs. The idea is to add symmetric generator

and discriminator layers gradually for high-resolution im-

age generation (Figure 2 C). Compared with these strategies

that train low-to-high resolution GANs stage-by-stage or

progressively, our method has the advantage of leveraging

mid-level representations to encourage the integration of

multiple subtasks, which makes end-to-end high-resolution

image synthesis in a single vanilla-like GAN possible.

Leveraging hierarchical representations of CNNs is an

effective way to enhance implicit multi-scaling and ensem-

bling for tasks such as image recognition [21, 48] and pixel

or object classification [41, 25, 22, 37, 44, 50]. Particularly,

using deep supervision [21] at intermediate convolutional

layers provides short error paths and increases the discrim-

inativeness of feature representations. Our hierarchically-

nested adversarial objective is inspired by the family of
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Figure 2: Overviews of some typical GAN frameworks. A uses multi-stage GANs [46, 6]. B uses multiple discriminators

with one generator [9, 28]. C progressively trains symmetric discriminators and generators [16, 12]. A and C can be viewed

as decomposing high-resolution tasks to multi-stage low-to-high resolution tasks. D is our proposed framework that uses a

single-stream generator with hierarchically-nested discriminators trained end-to-end.

deeply-supervised CNNs.

3. Method

3.1. Adversarial objective basics

In brief, a GAN [10] consists of a generator G and a

discriminator D, which are alternatively trained to compete

with each other. D is optimized to distinguish synthesized

images from real images, meanwhile, G is trained to fool

D by synthesizing fake images. Concretely, the optimal G

and D can be obtained by playing the following two-player

min-max game,

G∗, D∗ = arg min
G

max
D

V(D,G, Y, z), (1)

where Y and z ∼ N (0, 1) denote training images and

random noises, respectively. V is the overall GAN objec-

tive, which usually takes the form EY∼pdata

[

logD(Y )
]

+

Ez∼pz

[

log(1−D(G(z)))
]

(the cross-entropy loss) or other

variations [26, 1].

3.2. Hierarchical­nested adversarial objectives

Numerous GAN methods have demonstrated ways to

unite generators and discriminators for image synthesis.

Figure 2 and Section 2 discuss some typical frameworks.

Our method actually explores a new dimension of playing

this adversarial game along the depth of a generator (Figure

2 D), which integrates additional hierarchical-nested dis-

criminators at intermediate layers of the generator. The pro-

posed objectives act as regularizers to the hidden space of

G, which also offer a short path for error signal flows and

help reduce the training instability.

The proposed G is a CNN (defined in Section 3.4), which

produces multiple side outputs:

X1, ..., Xs = G(t, z), (2)

where t ∼ pdata denotes a sentence embedding (gen-

erated by a pre-trained char-RNN text encoder [33]).

{X1, ..., Xs−1} are images with gradually growing resolu-

tions and Xs is the final output with the highest resolution.

For each side output Xi from the generator, a distinct

discriminator Di is used to compete with it. Therefore, our

full min-max objective is defined as

G∗,D∗ = arg min
G

max
D

V(G,D,Y, t, z), (3)

where D = {D1, ..., Ds} and Y = {Y1, ..., Ys} denotes

training images at multi-scales, {1, ..., s}. Compared with

Eq. (1), our generator competes with multiple discrimina-

tors {Di} at different hierarchies (Figure 2 D), which jointly

learn discriminative features in different contextual scales.

In principle, the lower-resolution side output is used

to learn semantic consistent image structures (e.g. ob-

ject sketches, colors, and background), and the subse-

quent higher-resolution side outputs are used to render fine-

grained details. Since our method is trained in an end-

to-end fashion, the lower-resolution outputs can also fully

utilize top-down knowledge from discriminators at higher

resolutions. As a result, we can observe consistent image

structures, color and styles in the outputs of both low and

high resolution images. The experiment demonstrates this

advantage compared with StackGAN.

3.3. Multi­purpose adversarial losses

Our generator produces resolution-growing side outputs

composing an image pyramid. We leverage this hierarchy

property and allow adversarial losses to capture hierarchi-

cal image statistics, with a goal to guarantee both semantic

consistency and image fidelity.

In order to guarantee semantic consistency, we adopt the

matching-aware pair loss proposed by [33]. The discrimi-

nator is designed to take image-text pairs as inputs and be

trained to identify two types of errors: a real image with

mismatched text and a fake image with conditioned text.

The pair loss is designed to guarantee the global seman-

tic consistency. However, there is no explicit loss to guide

the discriminator to differentiate real images from fake im-

ages. And combining both tasks (generating realistic im-

ages and matching image styles with text) into one network

output complicates the already challenging learning tasks.
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Figure 3: For each side out image in the pyramid from

the generator, the corresponding discriminator Di computes

the matching-aware pair loss and the local image loss (out-

putting a Ri×Ri probability map to classify real or fake

image patches).

Moreover, as the image resolution goes higher, it might be

challenging for a global pair-loss discriminator to capture

the local fine-grained details (results are validated in exper-

iments). In addition, as pointed in [38], a single global dis-

criminator may over-emphasize certain biased local features

and lead to artifacts.

To alleviate these issues and guarantee image fidelity,

our solution is to add local adversarial image losses. We

expect the low-resolution discriminators to focus on global

structures, while the high-resolution discriminators to fo-

cus on local image details. Each discriminator Di consists

of two branches (see Section 3.4), one computes a single

scalar value for the pair loss and another branch computes a

Ri×Ri 2D probability map Oi for the local image loss. For

each Di, we control Ri accordingly to tune the receptive

field of each element in Oi, which differentiates whether a

corresponding local image patch is real or fake. The local

GAN loss is also used for pixel-to-pixel translation tasks

[38, 51, 14]. Figure 3 illustrates how hierarchically-nested

discriminators compute the two losses on the generated im-

ages in the pyramid.

Full Objective Overall, our full min-max adversarial

objective can be defined as

V(G,D,Y, t, z) =
s

∑

i=1

(

L2

(

Di(Yi)
)

+ L2

(

Di(Yi, tY )
)

+

L2

(

Di(Xi)
)

+ L2

(

Di(Xi, tXi
)
)

+ L2

(

Di(Yi, tY )
)

)

,

(4)

where L2(x) = E
[

(x−I)2
]

is the mean-square loss (instead

of the conventional cross-entropy loss) and L2(x) = E
[

x2
]

.

This objective is minimized by D. While in practice, G min-

imizes
∑s

i=1
(L2(Di(G(t, z)i)) + L2

(

Di(G(t, z)i, tXi
)))

instead. For the local image loss, the shape of x, I ∈
R

Ri×Ri varies accordingly (see Figure 3). Ri = 1 refers

to the (largest local) global range. Di(Xi) is the image loss

branch and Di(Xi, tXi
) is the pair loss branch (conditioned

on tXi
). {Yi, tY } denotes a matched image-text pair and

{Yi, tY } denotes a mismatched image-text pair.

In the spirit of variational auto-encoder [18] and the prac-

tice of StackGAN [46] (termed conditioning augmentation

(CA)), instead of directly using the deterministic text em-

bedding, we sample a stochastic vector from a Ganssian

distribution N (µ(t),Σ(t)), where µ and Σ are parameter-

ized functions of t. We add the Kullback-Leibler divergence

regularization term, DKL(N (µ(t),Σ(t))||N (0, I)), to the

GAN objective to prevent over-fitting and force smooth

sampling over the text embedding distribution.

3.4. Architecture Design

Generator The generator is simply composed of three

kinds of modules, termed K-repeat res-blocks, stretching

layers, and linear compression layers. A single res-block in

the K-repeat res-block is a modified1 residual block [11],

which contains two convolutional (conv) layers (with batch

normalization (BN) [13] and ReLU). The stretching layer

serves to change the feature map size and dimension. It sim-

ply contains a scale-2 nearest up-sampling layer followed

by a conv layer with BN+ReLU. The linear compression

layer is a single conv layer followed by a Tanh to directly

compress feature maps to the RGB space. We prevent any

non-linear function in the compression layer that could im-

pede the gradient signals. Starting from a 1024×4×4 em-

bedding, which is computed by CA and a trained embed-

ding matrix, the generator simply uses M K-repeat res-

blocks connected by M−1 in-between stretching layers un-

til the feature maps reach to the targeting resolution. For

example, for 256×256 resolution and K=1, there are M=6
1-repeat res-blocks and 5 stretching layers. At pre-defined

side-output positions at scales {1, ..., s}, we apply the com-

pression layer to generate side output images, for the inputs

of discriminators.

Discriminator The discriminator simply contains con-

secutive stride-2 conv layers with BN+LeakyReLU. There

are two branches are added to the upper layer of the dis-

criminator. One branch is a direct fully convolutional lay-

ers to produce a Ri×Ri probability map (see Figure 3) and

classify each location as real or fake. Another branch first

concatenates a 512×4×4 feature map and a 128×4×4 text

embedding (replicated by a reduced 128-d text embedding).

Then we use an 1×1 conv to fuse text and image features

and a 4×4 conv layer to classify an image-text pair to real

or fake.

The optimization is similar to the standard alternative

1We remove ReLU after the skip-addition of each residual block, with

an intention to reduce sparse gradients.
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training strategy in GANs. Please refer to the supplemen-

tary material for more training and network details.

4. Experiments

We denote our method as HDGAN, referring to High-

Definition results and the idea of Hierarchically-nested Dis-

criminators.

Dataset We evaluate our model on three widely used

datasets. The CUB dataset [40] contains 11,788 bird images

belonging to 200 categories. The Oxford-102 dataset [29]

contains 8,189 flow images in 102 categories. Each image

in both datasets is annotated with 10 descriptions provided

by [33]. We pre-process and split the images of CUB and

Oxford-102 following the same pipeline in [33, 46]. The

COCO dataset [23] contains 82,783 training images and

40,504 validation images. Each image has 5 text annota-

tions. We use the pre-trained char-RNN text encoder pro-

vided by [33] to encode each sentence into a 1024-d text

embedding vector.

Evaluation metric We use three kinds of quantitative

metrics to evaluate our method. 1) Inception score [36] is

a measurement of both objectiveness and diversity of gen-

erated images. Evaluating this score needs a pre-trained In-

ception model [39] on ImageNet. For CUB and Oxford-

102, we use the fine-tuned Inception models on the training

sets of the two datasets, respectively, provided by Stack-

GAN. 2) Multi-scale structural similarity (MS-SSIM) met-

ric [36] is used for further validation. It tests pair-wise sim-

ilarity of generated images and can identity mode collapses

reliably [30]. Lower score indicates higher diversity of gen-

erated images (i.e. less model collapses).

3) Visual-semantic similarity The aforementioned met-

rics are widely used for evaluating standard GANs. How-

ever, they can not measure the alignment between gener-

ated images and the conditioned text, i.e., semantic con-

sistency. [46] resorts to human evaluation, but this proce-

dure is expensive and difficult to conduct. To tackle this

issue, we introduce a new measurement inspired by [19],

namely visual-semantic similarity (VS similarity). The in-

sight is to train a visual-semantic embedding model and use

it to measure the distance between synthesized images and

input text. Denote v as an image feature vector extracted

by an Inception model fcnn. We define a scoring function

c(x,y) = x·y
||x||2·||y||2

. Then, we train two mapping func-

tions fv and ft, which map both real images and paired text

embeddings into a common space in R
512, by minimizing

the following bi-directional ranking loss:

∑

v

∑

tv

max(0, δ − c(fv(v), ft(tv)) + c(fv(v), ft(tv)))+

∑

t

∑

v
t

max(0, δ − c(ft(t), fv(vv)) + c(ft(t), fv(vt))),

(5)

Method
Dataset

CUB Oxford-102 COCO

GAN-INT-CLS 2.88±.04 2.66±.03 7.88±.07

GAWWN 3.60±.07 - -

StackGAN 3.70±.04 3.20±.01 8.45±.03
⋆

StackGAN++ 3.84±.06 - -

TAC-GAN - 3.45±.05 -

HDGAN 4.15±.05 3.45±.07 11.86±.18

⋆Recently, it updated to 10.62±.19 in its source code.

Table 1: The Inception-score comparison on the three

datasets. HDGAN outperforms others significantly.

Method
Dataset

CUB Oxford-102 COCO

Ground Truth .302±.151 .336±.138 .426±.157

StackGAN .228±.162 .278±.134 −

HDGAN .246±.157 .296±.131 .199±.183

Table 2: The VS similarity evaluation on the three datasets.

The higher score represents higher semantic consistency

between the generated images and conditioned text. The

groundtruth score is shown in the first row.

where δ is the margin, which is set as 0.2. {v, t} is a ground

truth image-text pair, and {v, tv} and {vt, t} denote mis-

matched image-text pairs. In the testing stage, given an text

embedding t, and the generated image x, the VS score can

be calculated as c(fcnn(x), t). Higher score indicates better

semantic consistency.

4.1. Comparative Results

To validate our proposed HDGAN, we compare our re-

sults with GAN-INT-CLS [33], GAWWN [34], TAC-GAN

[5], Progressive GAN [16], StackGAN [46] and also its im-

proved version StackGAN++ [47]2. We especially compare

with StackGAN in details (results are obtained from its pro-

vided models).

Table 1 compares the Inception score. We follow the ex-

periment settings of StackGAN to sample ∼30, 000 2562

images for computing the score. HDGAN achieves signif-

icant improvement compared against other methods. For

example, it improves StackGAN by .45 and StackGAN++

by .31 on CUB. HDGAN achieves competitive results with

TAC-GAN on Oxford-102. TAC-GAN uses image labels to

increase the discriminability of generators, while we do not

use any extra knowledge. Figure 4 and Figure 5 compare

the qualitative results with StackGAN on CUB and Oxford-

102, respectively, by demonstrating more, semantic details,

natural color, and complex object structures. Moreover, we

qualitatively compare the diversity of samples conditioned

on the same text (with random input noises) in Figure 7 left.

2StackGAN++ and Prog.GAN are two very recently released preprints

we noticed. We acknowledge them as they also target at generating high-

resolution images.
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This is a small bird with tis body 
covered in blue feathers, and 
some brown feathers on its wings

A small bird with brown wings, 
vanilla break and a small black 
beek

The bird has a small black 
eyering and has a white belly

A small bird with brown and 
white feathers, and a red head

H
D

G
A

N
S

ta
ck

G
A

N

Figure 4: Generated images on CUB compared with StackGAN. Each sample shows the input text and generated 642 (left)

and 2562 (right) images. Our results have significantly higher quality and preserve more semantic details, for example, “the

brown and white feathers and read head” in the last column is much better reflected in our images. Moreover, we observed

our birds exhibit nicer poses (e.g. the frontal/back views in the second/forth columns). Zoom-in for better observation.

This flower has a yellow center 
surrounded by layers of long 
yellow petals with rounded tips

This flower is pink and yellow 
in color, with petals that are 
skinny and oval

The petals are purple and white, 
and are spiked outward like 
spines

This flower has petals that are 
white with yellow patches

H
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N
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G
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N

Figure 5: Generated images on Oxford-102 compared with StackGAN. Our generated images perform more natural satisfia-

bility and higher contrast and can generate complex flower structures (e.g. spiked petals in the third example).

HDGAN can generate substantially more compelling sam-

ples.

Different from CUB and Oxford-102, COCO is a much

more challenging dataset and contains largely diverse nat-

ural scenes. Our method significantly outperforms Stack-

GAN as well (Table 1). Figure 6 also shows some gener-

ated samples in several different scenes. Please refer to the

supplementary material for more results.

In
ce

p
ti

o
n
 s

co
re

Resolution
64 128 256

HDGAN

StackGAN

4.15±0.05
3.97±0.03

3.53±0.03

3.70±0.04

3.35±0.02

2.95±0.02

4.0

3.5

3.0

Furthermore, the right

figure compares the multi-

resolution Inception score

on CUB. Our results are

from the side outputs of a

single model. As can be

observed, our 642 results

outperform the 1282 results

of StackGAN and our 1282

results also outperform 2562

results of StackGAN substantially. It demonstrates that our

HDGAN better preserves semantically consistent infor-

A kitchen with 
lots of clutter and 
an open drawer

A man surfing 
beside a bird on a 
cloudy day

There is a tall 
tower connected 
to a building

A man is standing 
on top of a snow 
covered hill

Figure 6: Samples on the COCO validation set, which con-

tain descriptions across different scenes.

mation in all resolutions (as stated in Section 3.2). Figure

7 right validates this property qualitatively. On the other

hand, we observe that, in StackGAN, the low-resolution

images and high-resolution images sometimes are visually

inconsistent (see examples in Figure 4 and 5).

Table 2 compares the proposed visual-semantic simi-

larity (VS) results on three datasets. The scores of the

groundtruth image-text pair are also shown for reference.

HDGAN achieves consistently better performance on both

CUB and Oxford-102. These results demonstrate that
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A small, dull 
brown backed and 
yellow breasted 
bird, with a brown 
head

GroundTruth

This little bird has 
a white breast and 
belly, with a gray 
crown and black 
secondaries

7 samples  

GroundTruth
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Multi-resolution side output 

Figure 7: Left: Multiple samples are shown given a single input text. The proposed HDGAN (top) show obviously more

fine-grained details. Right: Side outputs of HDGAN with increasing resolutions. Different resolutions are semantically

consistent and semantic details appear as the resolution increases.

0.15 0.20 0.25 0.30 0.35 0.40

StackGAN (std: 0.032)
0.15

0.20

0.25

0.30

0.35

0.40

HD
GA

N 
(s

td
: 0

.0
23

) Equality line
Class-wise score

Method MS-SSIM

StackGAN 0.234

Prog.GAN 0.225

HDGAN 0.215

Table 3: Left: Class-wise MS-SSIM evaluation. Lower

score indicates higher intraclass dissimilarity. The points

below the equality line represent classes our HDGAN wins.

The inter-class std is shown in axis text. Right: Overall (not

class-wised) MS-SSIM evaluation.

HDGAN can better capture the visual semantic information

in generated images.

Table 3 compares the MS-SSIM score with StackGAN

and Prog.GAN for bird image generation. StackGAN and

our HDGAN use text as input so the generated images are

separable in class. We randomly sample ∼20, 000 image

pairs (400 per class) and compare the class-wise score in

the left figure. HDGAN outperforms StackGAN in majority

of classes and also has a lower standard deviation (.023 vs.

.032). Note that Prog.GAN uses a noise input rather than

text. We can compare with it for a general measure of the

image diversity. Following the procedure of Prog.GAN, we

randomly sample ∼10, 000 image pairs from all generated

samples3 and show the results in Table 3 right. HDGAN

outperforms both methods.

3We use 256
2 bird images provided by Prog.GAN at https:

//github.com/tkarras/progressive_growing_of_gans.

Note that Prog.GAN is trained on the LSUN [43] bird set, which contains

∼2 million bird images.

4.2. Style Transfer Using Sentence Interpolation

Ideally, a well-trained model can generalize to a smooth

linear latent data manifold. To demonstrate this capability,

we generate images using the linearly interpolated embed-

dings between two source sentences. As shown in Figure 8,

our generated images show smooth style transformation and

well reflect the semantic details in sentences. For example,

in the second row, complicated sentences with detailed ap-

pearance descriptions (e.g. pointy peaks and black wings)

are used, our model could still successfully capture these

subtle features and tune the bird’s appearance smoothly.

4.3. Ablation Study and Discussion

Hierarchically-nested adversarial training Our

hierarchically-nested discriminators play a role of regular-

izing the layer representations (at scale {64, 128, 256}). In

Table 4, we demonstrate their effectiveness and show the

performance by removing parts of discriminators on both

CUB and COCO datasets. As can be seen, increasing the

usage of discriminators at different scales have positive

effects. And using discriminators at 642 is critical (by

comparing the 64-256 and 128-256 cases). For now, it

is uncertain if adding more discriminators and even on

lower resolutions would be helpful. Further validation will

be conducted. StackGAN emphasizes the importance of

using text embeddings not only at the input but also with

intermediate features of the generator, by showing a large

drop from 3.7 to 3.45 without doing so. While our method

only uses text embeddings at the input. Our results strongly

demonstrate the effectiveness of our hierarchically-nested

adversarial training to maintain such semantic information

and a high Inception score.
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This bird is grey and has brown wings 
and a pointy beak.

This yellow bird has a narrow beak 
and brown wings.

This bird is largely red with black 
wings and pointy beak.

This small blue bird has a short pointy beak 
and some brown feathers on its wings.

Figure 8: Text embedding interpolation from the source to

target sentence results in smooth image style changes to

match the targeting sentence.

Discriminators Inception score

64 128 256 CUB COCO

X 3.52±.04 -

X X 3.99±.04 -

X X 4.14±.03 11.29±.18
X X X 4.15±.05 11.86±.18

Table 4: Ablation study of hierarchically-nested adversarial

discriminators on CUB and COO. X indicates whether a

discriminator at a certain scale is used. See text for detailed

explanations.

The local image loss We analyze the effectiveness of

the proposed local adversarial image loss. Table 4 com-

pares the case without using it (denoted as ‘w/o local im-

age loss’). The local image loss helps improve the visual-

semantic matching evidenced by a higher VS score. We

hypothesize that it is because adding the separate local im-

age loss can offer the pair loss more “focus” on learning

the semantic consistency. Furthermore, the local image loss

helps generate more vivid image details. As demonstrated

in Figure 9, although both models can successfully capture

the semantic details in the text, the ‘w/ local’ model gener-

ates complex object structures described in the conditioned

text more precisely.

Design principles StackGAN claims the failure of di-

rectly training a vanilla 2562 GAN to generate meaningful

images. We test this extreme case using our method by re-

moving all nested discriminators without the last one. Our

method still generates fairly meaningful results (the first

row of Table 4), which demonstrate the effectiveness of our

proposed framework (see Section 3.4).

Initially, we tried to share the top layers of the

hierarchical-nested discriminators of HDGAN inspired by

[24]. The intuition is that all discriminators have a common

goal to differentiate real and fake despite difficult scales,

and such sharing would reduce their inter-variances. How-

ever, we did not observe benefits from this mechanism and

our independent discriminators can be trained fairly stably.

HDGAN has a very succinct framework, compared most

Inc. score VS

w/o local image loss 3.12±.02 .263±.130

w/ local image loss 3.45±.07 .296±.130

Table 5: Ablation study of the local image loss on Oxford-

102. See text for detailed explanations.

This petals are 
purple and white, 
and are spiked 
outward like 
spines

This flower has 
plain white petals 
as well as some 
that have dark red 
stripes

w/ local image loss w/o local image loss

Figure 9: Qualitative evaluation of the local image loss. The

two images w/ the local image loss more precisely exhibit

the complex flower petal structures described in the (col-

ored) text.

existing methods, as they [42, 2] adds extra supervision on

output images to ‘inject’ semantic information, which is

shown helpful for improving the inception score. However,

it is not clear that whether these strategies can substantially

improve the visual quality, which is worth further study.

5. Conclusion

In this paper, we present a novel and effective method

to tackle the problem of generating images conditioned on

text descriptions. We explore a new dimension of playing

adversarial games along the depth of the generator using the

hierarchical-nested adversarial objectives. A multi-purpose

adversarial loss is adopted to help render fine-grained image

details. We also introduce a new evaluation metric to eval-

uate the semantic consistency between generated images

and conditioned text. Extensive experiment results demon-

strate that our method, namely HDGAN, can generate high-

resolution photographic images and performs significantly

better than existing state of the arts on three public datasets.

References

[1] D. Berthelot, T. Schumm, and L. Metz. Began: Boundary

equilibrium generative adversarial networks. arXiv preprint

arXiv:1703.10717, 2017. 2, 3

[2] M. Cha, Y. Gwon, and H. T. Kung. Adversarial nets with

perceptual losses for text-to-image synthesis. arXiv preprint

arXiv:1708.09321, 2017. 2, 8

[3] Q. Chen and V. Koltun. Photographic image synthesis with

cascaded refinement networks. ICCV, 2017. 2

86206



[4] P. Costa, A. Galdran, M. I. Meyer, M. D. Abràmoff,
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