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Abstract

Effective convolutional features play an important role

in saliency estimation but how to learn powerful features

for saliency is still a challenging task. FCN-based meth-

ods directly apply multi-level convolutional features with-

out distinction, which leads to sub-optimal results due to

the distraction from redundant details. In this paper, we

propose a novel attention guided network which selectively

integrates multi-level contextual information in a progres-

sive manner. Attentive features generated by our network

can alleviate distraction of background thus achieve better

performance. On the other hand, it is observed that most

of existing algorithms conduct salient object detection by

exploiting side-output features of the backbone feature ex-

traction network. However, shallower layers of backbone

network lack the ability to obtain global semantic informa-

tion, which limits the effective feature learning. To address

the problem, we introduce multi-path recurrent feedback to

enhance our proposed progressive attention driven frame-

work. Through multi-path recurrent connections, global

semantic information from the top convolutional layer is

transferred to shallower layers, which intrinsically refines

the entire network. Experimental results on six benchmark

datasets demonstrate that our algorithm performs favorably

against the state-of-the-art approaches.

1. Introduction

Salient object detection, which simulates the human vi-

sion system to judge the importance of image regions, has

received increasing attention in recent years. During the

past two decades, many salient object detection methods

have been proposed. Conventional saliency methods usual-

ly utilize hand-crafted low-level features such as color, in-

tensity, contrast to predict saliency. However, it is of great

difficulty for these low-level features based approaches to

detect salient objects in complex scenarios.

∗denotes equal contributions.
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Figure 1. Illustration of spatial and channel-wise attention.

Recently, Convolutional Neural Networks (CNNs),

which intelligently extract high-level and multi-scale com-

plex representations from raw images directly, have

achieved superior performance in many vision tasks. Due to

the semantic information obtained from high-level features,

CNN based saliency detection approaches have successful-

ly broken the bottleneck of hand-crafted features. How to

design a reasonable network which is able to learn effec-

tive features and how to process these features for saliency

estimation become the key issues to be addressed.

Many state-of-the-art methods design saliency models

by integrating multi-level convolutional features together.

However, not all features are of equal importance to salien-

cy detection and some even cause interference. Attention

mechanisms, which add weights on image features, provide

a feasible solution. To the best of my knowledge, there are

not many works that utilize attention mechanisms to pro-

cess features for saliency estimation. In this paper, we ap-
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ply multiple attention mechanisms to improve features for

saliency detection. Figure 1 illustrates the motivation of in-

troducing attention mechanisms.

In an image, not all spatial positions are contributing

to saliency prediction in the same way and there some-

times exist background regions that generate distractions.

In Figure 1(a)-(c), we can see that spatial attention (SA)

can highlight the foreground regions and avoid distraction-

s of some non-salient regions. Similarly, different feature

channels have different response to foreground or back-

ground. Some channels have high response to foreground

while some show obvious response to cluttered background.

We visualize the feature maps of conv5 5 of our network in

Figure 1(d). It can be seen that feature map of channel-

56 (with higher response in foreground) is assigned a larger

weight and feature map of channel-36 (with higher response

in background) is assigned a small weight by our channel-

wise attention mechanism. Based on channel-wise and spa-

tial attention mechanisms, we propose a progressive atten-

tion driven framework, which selectively integrates multi-

level contextual information. Benefiting from this frame-

work, our proposed method outputs more effective features,

which can alleviate distractions from background.

Moreover, in most of the state-of-the-art CNN based

methods, saliency values are estimated by dealing with

multi-scale side-output convolutional features. However,

shallower layers of backbone feature extraction network

such as VGG and ResNet lack the ability to obtain global

semantic information thus generate messy results. It is nec-

essary to propose a method which can refine the network

intrinsically. Recurrent based methods such as RFCN [27]

build a connection between the output and the input of the

network. Saliency map of the previous stage is transmitted

to the next stage for refinement. But effects of saliency pri-

or is greatly weakened due to the concatenation with raw

images. The network can be improved to some extent, but

still can not produce enough effective features. In this pa-

per, multi-path recurrent feedback is exploited to iterative-

ly refine our progressive attention guided network. By in-

troducing multi-path recurrent connections, global semantic

information from the top convolutional layer is transferred

to shallower layers, which intrinsically improves the fea-

ture learning ability of our network. The main framework

is shown in Figure 2.

We summarize our contributions as follows:

1. Attention mechanisms are introduced into our model

to generate powerful attentive features.

2. We propose a novel progressive attention guided mod-

ule which selectively integrates multiple contextual in-

formation of multi-level features.

3. Multi-path recurrent feedback, which transfers global

semantic information from the top layer to shallower

layers, is exploited to refine the whole network.

2. Related Works

In this section, we briefly introduce the related works

in three aspects. At the beginning, several representative

salient object detection methods are reviewed. Then we de-

scribe the application of attention mechanisms in various

vision tasks. Finally, we compare our multi-path recurrent

network with other recurrent based works.

2.1. Salient Object Detection

Salient Object Detection methods can be categorized as

conventional low-level hand-crafted features based [20, 4,

33, 15, 9, 38, 23, 21] and Convolutional Neural Networks

driven [25, 13, 37, 14, 12, 16, 27, 18, 7, 35, 36, 28] ap-

proaches. Most of traditional saliency methods are based

on low-level manually designed features, such as color, re-

gion contrast, etc. Detailed introductions of these methods

can be found in recent survey paper [1]. In this paper, we

put more emphasis on CNNs based approaches.

Recently, deep convolutional neural networks have set

new state-of-the-art on saliency detection. Wang et al. [25]

adopt two different deep CNNs to learn local information

and global contrast respectively. In [13], multi-scale fea-

tures are extracted from CNNs to estimate saliency of all

super-pixels in the image. Zhao et al. [37] take both lo-

cal and global context into account and integrate them into

a multi-context deep CNNs for saliency detection. These

methods illustrate that deep learning based methods are su-

perior to traditional approaches. However, all these method-

s take image patches as training and testing samples, which

finally leads to high cost for computation. Following the

success of end-to-end deep networks in semantic segmen-

tation [19], more works are trained end-to-end to predict

pixel-wise saliency maps.

Liu et al. [18] propose a two-stage deep hierarchical

saliency network that refines the coarse prediction map by

recovering details from shallower layers. In [28], Wang et

al. propose a refinement model by adding low-level detailed

features to the saliency map generated in a stagewise man-

ner. In [35], Zhang et al. integrate multi-level convolutional

features at five resolutions respectively to generate salien-

cy predictions. Motivated by the above mentioned meth-

ods, we find that effective features are of great importance

to saliency detection. Therefore, we propose a Progressive

Attention Guided Recurrent Network (PAGRN), which s-

electively integrates multi-level contextual information, to

generate powerful features that possess both high-level in-

formation and necessary details for accurate detection.

2.2. Attention Mechanisms

Attention mechanisms have shown its efficiency in var-

ious vision tasks such as image captioning [31, 2], visual

question answering [34, 30], pose estimation [5] and image

classification [24]. In [31], Xu et al. first introduce visual
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Figure 2. Main framework of our Progressive Attention Guided Recurrent Network. Attention module processes features with channel-wise

and spatial attention sequentially. Then multiple layer-wise attention are integrated in a step by step form. Attentive features from high-

level stage guide the low-level stage to generate new attentive features. Finally, the whole network is optimized by multi-path recurrent

feedback.

attention into image captioning and both ”soft” and ”hard”

attention mechanisms are exploited. Multi-context attention

mechanisms are proposed by Chu et al. [5] for human pose

estimation. In [24], Wang et al. propose an attention resid-

ual learning mechanism to train deep residual networks for

image classification. Recently, Chen et al. [2] propose a

SCA-CNN network that incorporates spatial and channel-

wise attention in CNN for image captioning.

Stimulated by the success of attention in these vision

tasks, we propose a progressive attention guided network

which generates attentive features by channel-wise and s-

patial attention mechanisms sequentially. And on this basis,

multiple layer-wise attentions are generated stage by stage,

where attentive features act as the guidance of the next stage

to produce new attentions and attentive features.

2.3. Recurrent Networks

Recently, recurrent neural networks have been used in

saliency detection. In [27], Wang et al. propose a salien-

cy method based on recurrent fully convolutional networks.

At each time step, both the input RGB image and a salien-

cy prior map feed forward through the RFCN to obtain the

predicted saliency map and this saliency map will be treated

as a saliency prior for the next time step. This kind of recur-

rent architecture can refine saliency map to a certain extent,

however, it can not produce enough effective features for

saliency detection because the effects of saliency prior are

weakened by raw input images.

Kuen et al. [11] also propose a recurrent based network,

that is, recurrent attentional convolutional-deconvolution

network (RACDNN). It is worthy to mention that the usage

of attention in their work is not the same as the one used by

us. In RACDNN, a sub-region of input image is selected

in each time step by a spatial transformer which achieves

spatial attention. Then the attended sub-region will be the

input of the next time step and a local saliency map of this

sub-region is generated to refine the corresponding region

of the whole prediction map. Although attention can drive

the model to focus on a specific sub-region at each time step,

this will cause redundancy in saliency prediction because of

the overlap between these sub-regions.

Different from aforementioned recurrent base method-

s, we propose an attention guided recurrent network which

transfers the high-level semantic information from the top

convolutional layer to shallower layers by multi-path recur-

rent connections. Through multi-path feedback, the learn-

ing ability of shallower layers is enhanced. After feed-

forward process, the entire network is refined in essence.

3. Attention Guided Recurrent Network

In this paper, we propose a novel progressive attention

driven framework which intelligently selects features for in-

tegration. Powerful attentive features are generated to con-

duct saliency prediction. In order to refine the entire net-

work essentially, multi-path recurrent feedback is incorpo-
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rated to transfer high-level semantic information from the

top convolutional layer to shallower layers.

In Section 3.1, we describe the channel-wise and spa-

tial attention mechanisms used in our framework. Then our

progressive attention guidance module is introduced in Sec-

tion 3.2 which is followed by the detailed explanation of

multi-path recurrent feedback module in Section 3.3.

3.1. Spatial and Channelwise Attention

Spatial Attention Mechanism. In general, salient objects

only correspond to partial regions of the input image. And

there exist some background regions which can distract hu-

man attention. Therefore, directly exploiting convolutional

features to predict saliency can lead to sub-optimal results

because of the distraction of non-salient regions. Instead of

considering all spatial positions equally, spatial attention is

able to focus more on the foreground regions, which helps

to generate effective features for saliency prediction. In Fig-

ure 1(a)-(c), we show some examples that spatial attention

can highlight the salient object and avoid distractions in the

background regions.

We represent convolutional features as f ∈ R
W×H×C .

The set of spatial locations is denoted by L = {(x, y)|x =
1, ...,W ; y = 1, ..., H}, where (x, y) is the spatial coordi-

nate. Spatial attention map is generated through the follow-

ing steps: At first, a summarized feature map is generated

as follows:

m = Ws ∗ f + bs, (1)

where ∗ denotes convolution operation, Ws represents con-

volution filters, and bs is the bias parameter. m ∈ R
W×H

integrates the information of all channels in f .

Then attention weight of feature vector at location l is

obtained by applying Softmax operation to m spatially:

as(l) =
em(l)

∑

l′∈L
em(l′)

, (2)

where m(l) denotes the feature at location l. as is the spa-

tial attention map, where
∑

l∈L
as(l) = 1.

Channel-wise Attention Mechanism. Spatial attention as-

signs weights to features from the perspective of space,

which relieves the problem of distraction caused by back-

ground regions. In fact, channel-wise features suffer from

the similar problem. When dealing with convolutional fea-

tures, most of existing methods treat all channels without

distinction. However, different channels of feature in C-

NNs generate response to different semantics. For exam-

ple, in Figure 1 (d), channel-13 and channel-56 have high-

er response to the bird while channel-36 focuses more on

the cluttered background. And our channel-wise attention

mechanism assigns larger weights to channels which show

higher response to salient objects. To alleviate the interfer-

ence of the background, it is necessary to introduce channel-

wise attention too.

caf csaff
ca

sa

Figure 3. Layer-wise attention and attentive feature. Dotted line

represents the saliency map generated by the feature is under the

supervision of ground truth.

Next, we will describe the details of channel-wise at-

tention. For channel-wise attention, we unfold f as f =
[f1, f2, ..., fC ], where fi ∈ R

W×H is the i-th slice of f and

C is the total channel number. We first apply average pool-

ing to each fi to obtain a channel feature vector v ∈ R
C .

Then a convolutional layer is exploited to learn the aggre-

gate feature of each channel:

u = Wc ∗ v + bc, (3)

where ∗ denotes convolution operation, Wc represents con-

volution filters, and bc is the bias parameter. Following the

definition of spatial attention, a Softmax operation is ap-

plied to u to generate attention of each channel i:

ac(i) =
eu(i)

∑C

i=1 e
u(i)

, (4)

where u(i) is the feature of channel i and ac ∈ R
C is the

channel-wise attention vector, where
∑C

i=1 ac(i) = 1.

3.2. Progressive Attention Guidance Module

Due to repeated down-sampling operations such as pool-

ing and convolution, the resolution of prediction map is

greatly reduced, which leads to blurred object boundaries.

Features from deep layers learn more about high-level se-

mantic information, while features of shallow layers keep

rich spatial details. To accurately locate salient objects and

obtain sharper boundaries simultaneously, it is necessary

to combine multi-level features together. However, FCN-

based methods, which directly integrate multi-level features

indiscriminately, are defective due to the redundant details

and distractions from background.

To address the problem, we propose a novel attention

driven network, which progressively encodes multi-level

contextual information to produce more effective features

for saliency estimation. Based on the discussions in Sec-

tion 3.1, we can see that features should be assigned dif-

ferent weights both from spatial and channel-wise aspects.

Therefore, both of the two attention mechanisms are utilized

in our network to generate layer-wise attentive features.

Layer-wise Attentive Features. As displayed in Figure 3,

layer-wise attentions and attentive features are generated

by applying channel-wise attention and spatial attention se-

quentially. Given convolutional features f = [f1, f2, ..., fC ],
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channel-wise attention vector ac is generated by (4). Then

ac is applied to each slice of f as follows:

f
ca

i = ac(i)× fi, (5)

where i ∈ {1, ..., C} and f
ca is the channel-wise attentive

feature. Based on f
ca, the spatial attention as is obtained

through (2). We apply as to feature f
ca as follows:

f
csa = as ⋆ f

ca, (6)

where ⋆ denotes channel-wise Hadamard matrix produc-

t operation. f
csa is the layer-wise attentive feature gener-

ated by our attention module. Then we use the attentive

feature to predict saliency and the saliency map generat-

ed by each layer-wise attentive feature is supervised by the

ground truth.

Progressive Attention Guidance Mechanism. In our

model, layer-wise attentive information serves as a guid-

ance for the next stage to adaptively generate new attention-

s as shown in Figure 2. Multiple layer-wise attentions and

attentive features are generated stage by stage, which se-

lectively introduce contextual information from multi-level

features to refine features in a coarse-to-fine manner. Con-

sider a CNN which is composed of L convolutional blocks.

Denote Sℓ as the side-output convolutional feature of the ℓ-

th block. Beginning from the L-th block, attentive feature

of SL, expressed as S
csa

L , is constructed through (5) and

(6). Then it acts as a guidance for the side-output feature of

the (L-1)-th block to produce attention and attentive feature.

Under the guidance of SL, SL−1 is transformed into:

S̃L−1 = UP (Scsa

L )2⊕SL−1 (7)

where UP (·)2 denotes upsampling feature maps by a fac-

tor of 2, and ⊕ represents element-wise addition operation.

Next, layer-wise attentive feature S̃
csa

L−1 will be generated

and it will serve as the guidance for feature of the (L-2)-th

block. The rest layer-wise attentions and attentive features

can be obtained in the same manner. In our proposed net-

work, L = 5 and attentive features of Sℓ∈{3,4,5} are pro-

duced stage by stage. Attentive features of the final stage

(i.e., S̃csa
3 ) is exploited to predict the final saliency map.

In Figure 7, we compare saliency maps of our pro-

gressive attention guidance mechanism (CA and CSA)

with FCN-based method (FCN). It demonstrates that our

proposed guidance mechanism can better integrate multi-

level contextual information and avoid distractions of back-

ground. Comparing the results of CA and CSA, we can see

that it is reasonable to apply this two kinds of attentions to-

gether. More results are displayed in Section 4.

3.3. MultiPath Recurrent Guidance Module

Most of saliency works predict saliency through side-

output features of certain convolutional blocks. This kinds

t 1
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Figure 4. Illustration of multi-path recurrent connections. PAG

denotes progressive attention guidance module.

of methods depend a lot on the backbone feature extrac-

tion network. However, due to the lack of ability to obtain

high-level semantic information, features learned by shal-

low layers are messy. Side-output features from these layer-

s usually contain redundant details. Designing a method to

refine these side-output features can alleviate the problem

but not enough. The critical point lies in how to improve

the feature learning procedure of the backbone network. To

remedy for the problem, we propose a multi-path recurrent

guidance module that transfers global semantic information

from top layer to shallower layers. Having access to high-

level information, shallow layers can learn more powerful

features, which refines the backbone network essentially.

Multi-Path Recurrent Connections. In [10], Jin et al.

propose a Multi-Path Feedback Recurrent Neural Network

(MPF-RNN). Inspired by their work, we apply multi-path

recurrent connections to our saliency model where high-

level information is adaptively transferred back to different

shallower layers. Figure 4 illustrates the unfolded recurrent

network with multi-path recurrent connections. For sim-

plicity, we consider a network only have L (L=5, in Fig-

ure 4) convolutional layers and unfold our network with

T = 2. Denote Hℓ as the feature of the ℓ-th convolutional

layer. In feed-forward process, it can be expressed as:

Hℓ = fℓ(Wℓ ∗Hℓ−1 + bWℓ
), (8)

where Wℓ and bWℓ
denote kernel and bias parameters, and

fℓ(·) is a composite of multiple functions including activa-

tion function, pooling, etc. When multi-path recurrent con-

nections from the top layer are introduced to hidden layers,

(8) can be rewritten as:

H
t
ℓ =











fℓ(N (Wℓ ∗H
t
ℓ−1 + bWℓ

)

+N (Ut
ℓ ∗H

t−1
L + b

t
Uℓ

)), ℓ ∈ R

fℓ(Wℓ ∗H
t
ℓ−1 + bWℓ

), otherwise

(9)

where N (·) represents normalize operation by l2-norm and

H
t−1
L denotes global convolutional features of top layer at
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time t− 1. Ut
ℓ and b

t
Uℓ

, which are time variable, are adap-

tively learned feedback parameters for the ℓ-th layer. And

R = {rm|m = 1, ...M} is the set of layers with recurrent

connections, where rm ∈ {1, ..., L} indexes the layers.

Recurrent Guidance. CNNs with fewer convolutional lay-

ers usually can not abstract global contextual information

well. However, training a very deep convolutional network

is costly and time consuming. In our paper, through multi-

path recurrent connections, the network is enhanced in mod-

eling long-range contextual information. Global semantic

information is adaptively applied to guide the shallow lay-

ers to generate more effective features. With recurrent guid-

ance, our network can obtain the learning ability of deeper

networks. The output saliency maps at the final time step

achieve state-of-the-art performance.

4. Experiments and Results

4.1. Experimental Setup

Datasets: To evaluate the performance of our algorithm,

we conduct experiments on six benchmark datasets: EC-

SSD [32], HKU-IS [13], THUR15K [3], PASCAL-S [17],

DUT-OMRON [33] and DUTS (the testing dataset which

contains 5019 images) [26].

Implementation Details: The proposed algorithm is based

on Caffe [8]. We use a fixed learning rate 1e-10 with a

weight decay of 0.0005. The parameter of backbone fea-

ture extraction layer is initialized by the pre-trained VGG-

19 model [22]. The training dataset of DUTS [26], which

contains 10,553 images, is utilized to train our network for

salient object detection. In our experiments, all input im-

ages are resized to 353×353.

Evaluation Metrics: We adopt precision-recall (PR)

curves, F-measure, mean absolute error (MAE) and recent-

ly proposed S-measure [6] as our evaluation metrics. The

F-measure, which is an overall performance measurement,

is defined as:

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
, (10)

where β2 = 0.3 is employed to emphasize the precision.

And MAE is defined as the average pixel-wise absolute d-

ifference between the binary ground truth and the saliency

map:

MAE =
1

W ×H

W
∑

x=1

H
∑

y=1

|S(x, y)−G(x, y)|, (11)

where W and H denote width and height of saliency map S.

4.2. Comparison with the StateoftheArt

Our algorithm is compared with thirteen state-of-the-

art salient object detection methods, including DRFI [9],

(a) Input (b) FCN (c) CA (d) CSA (e) GT
Figure 7. Saliency maps of our attention guided model and FCN-

based method. CA denotes that only channel-wise attention is

exploited while CSA incorporates both channel-wise and spatial

attention into our model.

BL [23], KSR [29], LEGS [25], ELD [12], MDF [13], D-

S [16], MCDL [37], DCL [14], RFCN [27], DHS [18],

UCF [36] and Amulet [35]. For fair comparison, we use the

recommended parameter settings to implement these meth-

ods or utilize the saliency maps provided by the authors.

For quantitative evaluation, P-R curves, F-measure

curves and F-measure scores are displayed in Figure 5. We

can see that our proposed method performs favorably a-

gainst other methods on all datasets and evaluation met-

rics. Furthermore, we compare our algorithm with other

state-of-the-art in the form of F-measure and MAE. Ta-

ble 1 illustrates that our method ranks first on almost all

datasets. Comparing F-measure scores, our PAGRN out-

performs the second best method by 2.3%, 3.9%, 4.9%,

3.9%, 4.0%, 8.8% over ECSSD, HKU-IS, THUR15K,

PASCAL-S, DUT-OMRON, DUTS respectively. As for

MAE, our model lower the value by 7.7%, 14.6%, 3.2%,

19.1%, 16.4% on HKU-IS, THUR15K, PASCAL-S, DUT-

OMRON, DUTS respectively.

On the other hand, we also show the qualitative evalu-

ation results in Figure 6. It can be seen that our method

uniformly highlights the foreground regions even in very

challenging scenes. In the third row of Figure 6, almost all

methods wrongly assign foreground label to the shadow of

the dogs except for our method. Beneficial from attention

guidance, our method can effectively suppress the distrac-

tions from the background.

4.3. Ablation Analysis

Comparison with FCN-based structure. To verify the im-

portance of progressive attention guided module, we com-

pare our model with a similar FCN-based structure which is

conducted without attention guidance. Figure 7 shows the

output saliency maps of our attention guided models (i.e.,

CA and CSA) and FCN-based method. We can see that

FCN-based method suffers from background interference,

which mainly due to the unselective combination of multi-

level features. Our proposed progressive attention guided
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(a) ECSSD dataset (b) HKU-IS dataset (c) DUTS dataset (d) THUR15K dataset

Figure 5. The first row shows the P-R curve of the proposed method with other state-of-the-art methods. The second shows F-measure

curves. The last show the average precision, recall, and F-measure scores across four datasets. The proposed method performs best among

all datasets in terms of all metrics.

ECSSD HKU-IS THUR15K PASCAL-S DUT-OMRON DUTS
MAE F-measure MAE F-measure MAE F-measure MAE F-measure MAE F-measure MAE F-measure

DRFI 0.166 0.733 0.145 0.722 0.150 0.576 0.207 0.618 0.138 0.550 0.175 0.541
BL 0.217 0.684 0.207 0.660 0.219 0.530 0.249 0.574 0.239 0.499 0.238 0.490

KSR 0.135 0.782 0.120 0.747 0.123 0.604 0.157 0.704 0.131 0.591 0.121 0.602
LEGS 0.119 0.785 0.119 0.723 0.125 0.607 0.155 0.697 0.133 0.592 0.138 0.585
ELD 0.082 0.810 0.074 0.769 0.098 0.634 0.123 0.718 0.092 0.611 0.093 0.628
MDF 0.108 0.805 - - 0.109 0.636 0.146 0.709 0.092 0.644 0.100 0.673
DS 0.124 0.826 0.078 0.785 0.116 0.626 0.176 0.659 0.120 0.603 0.091 0.632

MCDL 0.102 0.796 0.092 0.757 0.103 0.620 0.145 0.691 0.089 0.625 0.105 0.594
DCL 0.151 0.827 0.136 0.853 0.161 0.676 0.181 0.714 0.157 0.684 0.149 0.714

RFCN 0.109 0.834 0.089 0.835 0.100 0.695 0.133 0.751 0.111 0.627 0.090 0.712
DHS 0.063 0.871 0.054 0.852 0.082 0.673 0.095 0.773 - - 0.067 0.724
UCF 0.080 0.841 0.074 0.808 0.112 0.645 0.127 0.701 0.132 0.613 0.117 0.629

Amulet 0.061 0.869 0.052 0.839 0.094 0.670 0.100 0.763 0.098 0.647 0.085 0.678
Ours 0.064 0.891 0.048 0.886 0.070 0.729 0.092 0.803 0.072 0.711 0.055 0.788

Table 1. MAE (lower is better) and F-measure (higher is better) comparisons with 13 methods on 6 benchmark datasets. The best three

results are shown in red, green, and blue fonts respectively. Our algorithm ranks first on almost all datasets.

network addresses the problem effectively. To make quan-

titative evaluations, histograms of F-measure and MAE on

HKU-IS and THUR datasets are shown in Figure 8. Our at-

tention guided module can selectively integrate multi-level

information thus achieve better performance.

Selection of attention mechanisms. As mentioned in Sec-

tion 3.2, attention mechanisms assign weights to features

from both spatial and channel-wise perspective. We sepa-

rately utilize channel-wise attention mechanism and spatial

attention mechanism in a progressive manner (Denoted as

CA and SA). Comparing the F-measure and MAE results in

Figure 8, we can see that both of these two attention mech-

anisms are helpful and combining them together can have a

better performance.
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Figure 6. Visual comparison between our results and state-of-the-art methods.
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Figure 8. Histograms of F-measure and MAE on HKU-IS and

THUR datasets. Our attention guided network outperforms FCN-

based method in a similar framework.

Settings
THUR DUTS

F-measure S-measure MAE F-measure S-measure MAE

w or w/o middle supervision

CSA 0.716 0.808 0.078 0.761 0.797 0.065

CSA(w/o ms) 0.706 0.807 0.081 0.750 0.804 0.066

layers with recurrent connection(recurrent once, T=2)

5 0.720 0.825 0.074 0.774 0.825 0.058

45 0.719 0.826 0.075 0.780 0.829 0.056

345 0.729 0.830 0.070 0.788 0.825 0.055

2345 0.721 0.827 0.072 0.785 0.833 0.054

12345 0.727 0.826 0.071 0.784 0.823 0.056

recurrent twice, T=3

r2-345 0.723 0.829 0.072 0.783 0.827 0.055

merge the results of each time step

r1-merge 0.723 0.829 0.071 0.775 0.825 0.058

r2-merge 0.716 0.828 0.074 0.772 0.831 0.057

Table 2. Ablation analysis using F-measure, S-measure and MAE

metrics. The results of the top two are shown in red and green.

Effectiveness of middle supervision. In our progressive

attention module, there are three attentive features gener-

ated stage by stage (i.e., Scsa

5
, S̃csa

4
and S̃

csa

3
). To make

attentions at each stage meaningful, we use the three atten-

tive features to estimate saliency respectively and the three

output saliency maps are all supervised by ground truth.

The supervision on S
csa

5
and S̃

csa

4
is called middle super-

vision. In Table 2, we list the F-measure, S-measure and

MAE results with or without middle supervision on THUR

and DUTS datasets. The results verify the rationality of

middle supervision.

Analysis of multi-path recurrent guidance module. We

analyze the multi-path recurrent guidance module from

three aspects: 1) how to choose the layer set R with re-

current connections; 2) recurrent times; 3) merging or not

merging the results of each time step. The F-measure, S-

measure and MAE values are shown in Table 2. For simplic-

ity, we denote ”5” as conv5 1, ”45” as {conv5 1, conv4 1}
and other settings are in the same form. By adding recur-

rent paths, the model is refined gradually. It is observed

that introducing recurrent connections to layer conv2 1 and

conv1 1 can not make improvements. The main reason is

that these two layers are too shallow to possess ability of

effective feature learning. As for recurrent times, we con-

duct recurrent twice and the results are represented by ”r2-

345”. We find that the model is saturated and can not be fur-

ther improved. Every time step can generate saliency maps.

Merging them together reduces the performance which in-

dicates that our model generates best results at the final time

step. With the settings of ”345” and ”T=2”, the best result of

multi-path recurrent is obtained. By comparing this result

with CSA, we can see that multi-path recurrent guidance

module intrinsically refines the whole network to achieve

state-of-the-art results.

5. Conclusion

In this paper, we propose a novel progressive attention

guided recurrent network, which selectively integrates con-

textual information from multi-level features to generate

powerful attentive features. By introducing multi-path re-

current connections, global semantic information is utilized

to guide the feature learning procedure of shallower layer-

s, which refines the entire network essentially. Extensive

evaluations demonstrate the effectiveness of our network.
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