
Translating and Segmenting Multimodal Medical Volumes with Cycle- and

Shape-Consistency Generative Adversarial Network

Zizhao Zhang+∗, Lin Yang+, Yefeng Zheng∗

+University of Florida
∗Medical Imaging Technologies, Siemens Healthcare

Abstract

Synthesized medical images have several important ap-

plications, e.g., as an intermedium in cross-modality image

registration and as supplementary training samples to boost

the generalization capability of a classifier. Especially, syn-

thesized computed tomography (CT) data can provide X-

ray attenuation map for radiation therapy planning. In

this work, we propose a generic cross-modality synthesis

approach with the following targets: 1) synthesizing real-

istic looking 3D images using unpaired training data, 2)

ensuring consistent anatomical structures, which could be

changed by geometric distortion in cross-modality synthesis

and 3) improving volume segmentation by using synthetic

data for modalities with limited training samples. We show

that these goals can be achieved with an end-to-end 3D con-

volutional neural network (CNN) composed of mutually-

beneficial generators and segmentors for image synthesis

and segmentation tasks. The generators are trained with an

adversarial loss, a cycle-consistency loss, and also a shape-

consistency loss, which is supervised by segmentors, to re-

duce the geometric distortion. From the segmentation view,

the segmentors are boosted by synthetic data from gener-

ators in an online manner. Generators and segmentors

prompt each other alternatively in an end-to-end training

fashion. With extensive experiments on a dataset including

a total of 4,496 CT and magnetic resonance imaging (MRI)

cardiovascular volumes, we show both tasks are beneficial

to each other and coupling these two tasks results in better

performance than solving them exclusively.

1. Introduction

In current clinical practice, multiple imaging modalities

may be available for disease diagnosis and surgical planning

[5]. For a specific patient group, a certain imaging modality

might be more popular than others. Due to the prolifera-

tion of multiple imaging modalities, there is a strong clini-

cal need to develop a cross-modality image transfer analysis

system to assist clinical treatment, such as radiation therapy

CT
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Figure 1: Our method learns two parallel sets of genera-

tors GA/B and segmentors SA/B for two modalities A and

B to translate and segment holistic 3D volumes. Here we

illustrate using CT and MRI cardiovascular 3D images.

planning [4].

Machine learning (ML) based methods have been widely

used for medical image analysis [41, 40], including detec-

tion, segmentation, and tracking of an anatomical structure.

Such methods are often generic and can be extended from

one imaging modality to the other by re-training on the tar-

get imaging modality. However, a sufficient number of rep-

resentative training images are required to achieve enough

robustness. In practice, it is often difficult to collect enough

training images, especially for a new imaging modality not

well established in clinical practice yet. Synthesized data

are often used to as supplementary training data in hope that

they can boost the generalization capability of a trained ML

model. This paper presents a novel method to address the

above-mentioned two demanding tasks (Figure 1). The first

is cross-modality translation and the second is improving

segmentation models by making use of synthesized data.

To synthesize medical images, recent advances [24, 6]

have used generative adversarial networks (GANs) [10] to

formulate it as an image-to-image translation task. These

methods require pixel-to-pixel correspondence between two

domain data to build direct cross-modality reconstruction.
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However, in a more common scenario, multimodal medi-

cal images are in 3D and do not have cross-modality paired

data. A method to learn from unpaired data is more general

purpose. Furthermore, tomography structures (e.g. shape),

in medical images/volumes, contain diagnostic information.

Keeping their invariance in translation is critical. However,

when using GANs without paired data, due to the lack of

direct reconstruction, relying on discriminators to guaran-

tee this requirement is not enough as we explain later.

It is an active research area by using synthetic data to

overcome the insufficiency of labeled data in CNN train-

ing. In the medical image domain, people are interested in

learning unsupervised translation between different modal-

ities [17], so as to transfer existing labeled data from other

modalities. However, the effectiveness of synthetic data

heavily depends on the distribution gap between real and

synthetic data. A possible solution to reduce such gap is by

matching their distributions through GANs [30, 3].

In this paper, we present a general-purpose method to re-

alize both medical volume translation as well as segmenta-

tion. In brief, given two sets of unpaired data in two modal-

ities, we simultaneously learn generators for cross-domain

volume-to-volume translation and stronger segmentors by

taking advantage of synthetic data translated from another

domain. Our method is composed of several 3D CNNs.

From the generator learning view, we propose to train ad-

versarial networks with cycle-consistency [43] to solve the

problem of data without correspondence. We then propose

a novel shape-consistency scheme to guarantee the shape

invariance of synthetic images, which is supported by an-

other CNN, namely segmentor. From the segmentor learn-

ing view, segmentors directly take advantage of generators

by using synthetic data to boost the segmentation perfor-

mance in an online fashion. Both generator and segmentor

can take benefits from another in our end-to-end training

fashion with one joint optimization objective.

On a dataset with 4,496 cardiovascular 3D image in MRI

and CT modalities, we conduct extensive experiments to

demonstrate the effectiveness of our method qualitatively

and quantitatively from both generator and segmentor views

with our proposed auxiliary evaluation metrics. We show

that using synthetic data as an isolated offline data aug-

mentation process underperforms our end-to-end online ap-

proach. On the volume segmentation task, blindly using

synthetic data with a small number of real data can even

distract the optimization when trained in the offline fashion.

However, our method does not have this problem and leads

to consistent improvement.

2. Related work

There are two demanding goals in medical image syn-

thesis. The first is synthesizing realistic cross-modality im-

ages [12, 24], and second is to use synthetic data from other

modalities with sufficient labeled data to help classification

tasks (e.g. domain adaption [17]).

In computer vision, recent image-to-image translation

is formulated as a pixel-to-pixel mapping using encoder-

decoder CNNs [16, 21, 43, 18, 44, 21, 38, 9]. Several stud-

ies have explored cross-modality translation for medical im-

ages, using sparse coding [12, 33], GANs [24, 26], CNN

[32], etc. GANs have attracted wide interests in helping

addressing such tasks to generate high-quality, less blurry

results [10, 1, 2, 42]. More recent studies apply pixel-to-

pixel GANs for brain MRI to CT image translation [24, 17]

and retinal vessel annotation to image translation [6]. How-

ever, these methods presume targeting images have paired

cross-domain data. Learning from unpaired cross-domain

data is an attractive yet not well explored problem [33, 22].

Synthesizing medical data to overcome insufficient la-

beled data attracted wide interests recently [30, 14, 34, 13].

Due to the diversity of medical modalities, learning an un-

supervised translation between modalities is a promising di-

rection [6]. [17] demonstrates the benefits on brain (MRI

and CT) images, by using synthetic data as augmented train-

ing data to help lesion segmentation.

Apart from synthesizing data, several studies [20, 23, 36,

35] use adversarial learning as an extra supervision on the

segmentation or detection networks. The adversarial loss

plays a role of constraining the prediction to be close to

the distribution of groundtruth. However, such strategy is a

refinement process, so it is less likely to remedy the cost of

data insufficiency.

3. Proposed Method

This section introduces our proposed method. We be-

gin by discussing the recent advances for image-to-image

translation and clarify their problems when used for med-

ical volume-to-volume translation. Then we introduce our

proposed medical volume-to-volume translation, with ad-

versarial, cycle-consistency and shape-consistency losses,

as well as dual-modality segmentation. Figure 2 illustrates

our method.

3.1. Image­to­Image Translation for Unpaired Data

GANs have been widely used for image translation in

the applications that need pixel-to-pixel mapping, such as

image style transfer [39]. ConditionalGAN [16] shows a

strategy to learn such translation mapping with a condi-

tional setting to capture structure information. However,

it needs paired cross-domain images for the pixel-wise re-

construction loss. For some types of translation tasks, ac-

quiring paired training data from two domains is difficult

or even impossible. Recently, CycleGAN [43] and other

similar methods [18, 37] are proposed to generalize Condi-

tionalGAN to address this issue. Here we use CycleGAN to

illustrate the key idea.
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Figure 2: The illustration of our method from the generator view (left) and the segmentor view (right). Generator view:

Two generators learn cross-domain translation between domain A and B, which are supervised by a cycle-consistency loss, a

discriminative loss, and a shape-consistency loss (supported by segmentors), respectively. Segmentor view: Segmentors are

trained by real data and extra synthetic data translated from domain-specific generators. Best viewed in color.

Given a set of unpaired data from two domains, A and

B, CycleGAN learns two mappings, GB : A → B and

GA : B → A, with two generators GA and GB , at the same

time. To bypass the infeasibility of pixel-wise reconstruc-

tion with paired data, i.e. GB(A) ≈ B or GA(B) ≈ A, Cy-

cleGAN introduces an effective cycle-consistency loss for

GA(GB(A)) ≈ A and GB(GA(B)) ≈ B. The idea is that

the generated target domain data is able to return back to

the exact data in the source domain it is generated from. To

guarantee the fidelity of fake data GB(A) and GA(B), Cy-

cleGAN uses two discriminators DA and DB to distinguish

real or synthetic data and thereby encourage generators to

synthesize realistic data [10].

3.2. Problems in Unpaired Volume­to­Volume
Translation

Lacking supervision with a direct reconstruction error

between GB(A) and B or GA(B) and A brings some un-

certainties and difficulties towards to the desired outputs for

more specified tasks. And it is even more challenging when

training on 3D CNNs.

To be specific, cycle-consistency has an intrinsic ambi-

guity with respect to geometric transformations. For exam-

ple, suppose generation functions, GA and GB , are cycle

consistent, e.g., GA(GB(A)) = A. Let T be a bijective ge-

ometric transformation (e.g., translation, rotation, scaling,

or even nonrigid transformation) with inverse transforma-

tion T−1.

It is easy to show that G
′

A = GA◦T and G
′

B = GB◦T
−1

are also cycle consistent. Here, ◦ denotes the concatenation

operation of two transformations. That means, using Cy-

cleGAN, when an image is translated from one domain to

the other it can be geometrically distorted. And the dis-

tortion can be recovered when it is translated back to the

original domain without provoking any penalty in data fi-

delity cost. From the discriminator perspective, geometric

transformation does not change the realness of synthesized

images since the shape of training data is arbitrary.

Such problem can destroy anatomical structures in syn-

thetic medical volumes, which, however, has not being ad-

dressed by existing methods.

3.3. Volume­to­Volume Cycle­consistency

To solve the task of learning generators with unpaired

volumes from two domains, A and B, we adopt the idea

of the cycle-consistency loss (described above) for genera-

tors GA and GB to force the reconstructed synthetic sample

GA(GB(xA)) and GB(GA(xB)) to be identical to their in-

puts xA and xB :

Lcyc(GA, GB) = ExA∼pd(xA)[||GA(GB(xA))− xA||1]

+ ExB∼pd(xB)[||GB(GA(xB))− xB ||1],

(1)

where xA is a sample from domain A and xB is from do-

main B. Lcyc uses the L1 loss over all voxels, which shows

better visual results than the L2 loss.

3.4. Volume­to­Volume Shape­consistency

To solve the intrinsic ambiguity with respect to geomet-

ric transformations in cycle-consistency as we pointed out

above, our method introduces two auxiliary mappings, de-

fined as SA : A → Y and SB : B → Y , to constrain the

geometric invariance of synthetic data. They map the trans-

lated data from respective domain generators into a shared

shape space Y (i.e. a semantic label space) and compute

pixel-wise semantic ownership. The two mappings are rep-

resented by two CNNs, namely segmentors. We use them
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as extra supervision on the generators to support shape-

consistency (see Figure 2), by optimizing

Lshape(SA, SB , GA, GB) =

ExB∼pd(xB)[−
1

N

∑

i

yiAlog(SA(GA(xB))i)]

+ExA∼pd(xA)[−
1

N

∑

i

yiBlog(SB(GB(xA))i)],

(2)

where yA, yB ∈ Y denote the groundtruth shape represen-

tation of sample volumes xA and xB , respectively, where

yiA, y
i
B ∈ {0, 1, ..., C} represent one voxel with one out of

C classes. N is the total number of voxels in a volume.

Lshape is formulated as a standard multi-class cross-entropy

loss.

Regularization Shape-consistency provides a level of reg-

ularization on generators. Recall that different from Condi-

tionalGAN, since we have no paired data, the only supervi-

sion for GA(xB) and GB(xA) is the adversarial loss, which

is not sufficient to preserve all types of information in syn-

thetic images, such as the annotation correctness. [30] intro-

duces a self-regularization loss between an input image and

an output image to force the annotations to be preserved.

Our shape-consistency performs a similar role to preserve

pixel-wise semantic label ownership, as a way to regular-

ize the generators and guarantee the anatomical structure

invariance in medical volumes.

3.5. Multi­modal Volume Segmentation

The second parallel task we address in our method is

to make use of synthetic data for improving the gener-

alization of segmentation network, which is trained to-

gether with generators. From the segmentor view (Figure

2) of SA and SB , the synthetic volumes {GB(xA), yA} and

{GA(xB), yB} provide extra training data to help improve

the segmentors in an online manner. During training, SA

and SB take both real data and synthetic data that are gen-

erated by generators online (see Figure 2). By maximizing

the usage of synthetic data, we also use reconstructed syn-

thetic data, {GA(GB(xA)), yA} and {GB(GA(xB)), yB},

as the inputs of segmentors.

Note that the most straightforward way to use synthetic

data is fusing them with real data and then train a segmen-

tation CNN. We denote this as an ad-hoc offline data aug-

mentation approach. Compared with it, our method implic-

itly performs data augmentation in an online manner. For-

mulated in our optimization objective, our method can use

synthetic data more adaptively, which thereby offers more

stable training and thereby better performance than the of-

fline approach. We will demonstrate this in experiments.

CT to MRI MRI to CT
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u
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Figure 3: Example outputs on 2D slides of 3D cardiovascu-

lar CT and MRI images of the results using 3D CycleGAN

(second row) and ours (third row). The first row is the in-

put samples. The original results of CycleGAN have severe

artifacts, checkerboard effects, and missing anatomies (e.g.,

descending aorta and spine), while our method overcomes

these issues and achieves significantly better quality.

3.6. Objective

Given the definitions of cycle-consistency and shape-

consistency losses above, we define our full objective as:

L(GA, GB , DA, DB , SA, SB) = LGAN (GA, DA)

+ LGAN (GB , DB)

+ λLcyc(GA, GB)

+ γLshape(SA, SB , GA, GB)

(3)

The adversarial loss LGAN (defined in [43, 16]) encourages

local realism of synthetic data (see architecture details). λ is

set to 10 and γ is set to 1 during training. To optimize LGAN

, Lcyc, and Lshape, we update them alternatively: optimiz-

ing GA/B with SA/B and DA/B fixed and then optimizing

SA/B and DA/B (they are independent), respectively, with

GA/B fixed.

The generators and segmentors are mutually beneficial,

because to make the full objective optimized, the gener-

ators have to generate synthetic data with lower shape-

consistency loss, which, from another angle, indicates lower

segmentation losses over synthetic training data.

4. Network Architecture and Details

This section discusses necessary architecture and train-

ing details for generating high-quality 3D images.

4.1. Architecture

Training deep networks end-to-end on 3D images is

much more difficult (from optimization and memory as-
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Figure 4: Qualitative results of our translation from MRI to CT (first row) and from CT to MRI (second row). For each

sample (in one out of six grids), we show three orthogonal cuts through the center of 3D volumes.

pects) than 2D images. Instead of using 2.5D [28] or sub-

volumes [17], our method directly deals with holistic vol-

umes. Our design trades-off network size and maximizes

its effectiveness. There are several keys of network de-

signs in order to achieve visually better results. The ar-

chitecture of our method is composed by 3D fully convo-

lutional layers with instance normalization [31] (performs

better than batch normalization [15]) and ReLU for gener-

ators or LeakyReLU for discriminators. CycleGAN origi-

nally designs generators with multiple residual blocks [11].

Differently, in our generators, we make several critical mod-

ifications with justifications.

First, we find that using both bottom and top layer repre-

sentations are critical to maintain the anatomical structures

in medical images. We use long-range skip-connection in

U-net [27] as it achieves much faster convergence and lo-

cally smooth results. ConditionalGAN also uses U-net gen-

erators, but we do not downsample feature maps as greedily

as it does. We apply 3 times downsampling with stride-

2 3×3×3 convolutions totally, so the maximum downsam-

pling rate is 8. The upsampling part is symmetric. Two se-

quential convolutions are used for each resolution, as it per-

forms better than using one. Second, we replace transpose-

convolutions to stride 2 nearest upsampling followed by a

3×3×3 convolution to realize upsampling as well as chan-

nel changes. It is also observed in [25] that transpose-

convolution can cause checkerboard artifacts due to the un-

even overlapping of convolutional kernels. Actually, this

effect is even severer for 3D transpose-convolutions as one

pixel will be covered by 23 overlapping kernels (results in

8 times uneven overlapping). Figure 3 compares the results

with CycleGAN, demonstrating that our method can obtain

significantly better visual quality1.

For discriminators, we adopt the PatchGAN proposed by

[30] to classify whether an overlapping sub-volume is real

or fake, rather than to classify the whole volume. Such ap-

proach limits discriminators to use unexpected information

from arbitrary volume locations to make decisions.

For segmentors, we use an U-Net [27], but without any

normalization layer. Totally 3 times symmetric downsam-

pling and upsampling are performed by stride 2 max-poling

and nearest upsampling. For each resolution, we use two

sequential 3×3×3 convolutions.

4.2. Training details

We use the Adam solver [19] for segmentors with a

learning rate of 2e−4 and closely follow the settings in Cy-

cleGAN to train generators with discriminators. In the next

section, for the purpose of fast experimenting, we choose

to pre-train the GA/B and DA/B separately first and then

train the whole network jointly. We hypothesized that fine-

tuning generators and segmentors first is supposed to have

better performance because they only affect each other af-

ter they have the sense of reasonable outputs. Neverthe-

less, we observed that training all from scratch can also

obtain similar results. It demonstrates the effectiveness to

couple both tasks in an end-to-end network and make them

converge harmonically. We pre-train segmentors for 100
epochs and generators for 60 epochs. After jointly train-

1We have experimented many different configurations of generators

and discriminators. All trials did not achieve desired visual results com-

pared with our configuration.
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Table 1: Shape quality evaluation using S-score (see text

for definition). The synthetic volumes using our method has

much better shape quality on both modalities. SC denotes

shape-consistency.

Method
S-score (%)

CT MRI

G w/o SC 66.8 67.5

G w/ SC (Ours) 69.2 69.6

ing for 50 epochs, we decrease the learning rates for both

generators and segmentors steadily for 50 epochs till 0. We

found that if the learning rate decreases to a certain small

value, the synthetic images turn to show clear artifacts and

the segmentors tend to overfit. We apply early stop when the

segmentation loss no longer decreases for about 5 epochs

(usually takes 40 epochs to reach a desired point). In train-

ing, the number of training data in two domains can be dif-

ferent. We go through all data in the domain with larger

amount as one epoch.

5. Experimental Results

This section evaluates and discusses our method. We

introduce a 3D cardiovascular image dataset. Heart is a

perfect example of the difficulty in getting paired cross-

modality data as it is a nonrigid organ and it keeps beating.

Even if there are CT and MRI scans from the same patient,

they cannot be perfectly aligned. Then we evaluate the two

tasks we addressed in our method, i.e., volume segmenta-

tion and synthesis, both qualitatively and quantitatively with

our proposed auxiliary evaluation metrics.

5.1. Dataset

We collected 4,354 contrasted cardiac CT scans from pa-

tients with various cardiovascular diseases (2−3 volumes

per patients). The resolution inside an axial slice is isotropic

and varies from 0.28 mm to 0.74 mm for different volumes.

The slice thickness (distance between neighboring slices) is

larger than the in-slice resolution and varies from 0.4 mm

to 2.0 mm. In addition, we collected 142 cardiac MRI scans

with a new compressed sensing scanning protocol. The

MRI volumes have a near isotropic resolution ranging from

0.75 to 2.0 mm. This true 3D MRI scan with isotropic voxel

size is a new imaging modality, only available in handful

top hospitals. All volumes are resampled to 1.5 mm for

the following experiments. We crop 86×112×112 volumes

around the heart center. The endocardium of all four car-

diac chambers is annotated. The left ventricle epicardium is

annotated too, resulting in five anatomical regions.

We denote CT as domain A data and MRI as domain

B. We organize the dataset in two sets S1 and S2. For S1,

we randomly select 142 CT volumes from all CT images

GA/B

Ad-hoc approach Our approach 

SA/B

Real data

Syn. data

SA/B

Real data

Figure 5: Illustration of the strategies to use synthetic data

to improve segmentation. The left is the comparing ad-hoc

offline approach. The right in our approach that uses syn-

thetic data from the generator in an online fashion.

to match the number of MRI volumes. For both modalities,

50% data is used as training and validation and the rest 50%
as testing data. For S2, we use all the rest 4,212 CT volumes

as an extra augmentation dataset, which is used to generate

synthetic MRI volumes for segmentation. We fix the testing

data in S1 for all experiments.

5.2. Cross­domain Translation Evaluation

We evaluate the generators both qualitatively and quan-

titatively. Figure 4 shows some typical synthetic results of

our method. As can be observed visually, the synthetic im-

ages are close to real images and no obvious geometric dis-

tortion is introduced during image translation. Our method

well preserves cardiac anatomies like aorta and spine.

Shape invariance evaluation For methods of GANs to gen-

erate class-specific natural images, [29] proposes to use the

Inception score to evaluate the diversity of generated im-

ages, by using an auxiliary trained classification network.

Inspired by this, we propose the S-core (segmentation

score) to evaluate the shape invariance quality of synthetic

images. We train two segmentation networks on the train-

ing data of respective modalities and compare the multi-

class Dice score of synthetic volumes. For each syn-

thetic volume, S-score is computed by comparing to the

groundtruth of the corresponding real volume it is trans-

lated from. Hence, higher score indicates better matched

shape (i.e. less geometric distortion). Table 1 shows the

S-score of synthetic data from CT and MRI for generators

without the shape-consistency loss, denoted as G w/o SC.

Note that it is mostly similar with CycleGAN but using our

optimized network designs. As can be seen, our method (G

w/ SC) with shape-consistency achieves large improvement

over the baseline on both modalities.

5.3. Segmentation Evaluation

Here we show how well our method can use the synthetic

data and help improve segmentation. We compare to an

ad-hoc approach as we mentioned above. Specifically, we

individually train two segmentors, denoted as S̃A and S̃B .

We treat the segmentation performance of them as Base-
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Table 2: The segmentation performance comparison. Ini-

tialized from the baseline model trained with only Real data

(Baseline (R)), the second and third rows show the boosted

results by using Synthetic data with the comparing ADA

and our method, respectively.

Method
Dice score (%)

CT MRI

Baseline (R) 67.8 70.3

ADA (R+S) 66.0 71.0

Ours (R+S) 74.4 73.2

line (R) in the following. Then we train generators G̃A and

G̃B with the adversarial and cycle-consistency losses (set-

ting the weight of the shape-consistency loss to 0). Then by

adding synthetic data, we perform the following compari-

son:

1. Ad-hoc approach (ADA): We use G̃A and G̃B to gen-

erate synthetic data (To make fair comparison, both

synthetic data GA/B(xB/A) and reconstructed data

GA/B(GB/A(xA/B)) are used). We fine-tune S̃A/B

using synthetic together with real data (Figure 5 left)2.

2. Our method: We join S̃A, S̃B , G̃A, and G̃B (also with

discriminators) and fine-tune the overall networks in

an end-to-end fashion (Figure 5 right), as specified in

the training details.

Note that the comparing segmentation network is U-net

[27]. For medical image segmentation, U-Net is well recog-

nized as one of the best end-to-end CNN. Its long-range skip

connection performs usually better or equal well as FCN or

ResNet/DenseNet based architectures do [8], especially for

small size medical datasets. The results of U-net is very rep-

resentative for state-of-the-art medical image segmentation

on our dataset.

We perform this experimental procedure on S1 and S2

both. In the the first experiment on S1, we test the scenario

that how well our method uses synthetic data to improve

segmentation given only limited real data. Since we need to

vary the number of data in one modality and fix another, we

perform the experiments on both modalities, respectively.

By using 14% real data and all synthetic data from the

counter modality, Table 2 compares the segmentation re-

sults. We use the standard multi-class Dice score as the

evaluation metric [7]. As can be observed, our method

achieves much better performance on both modalities. For

CT segmentation, ADA even deteriorates the performance.

We speculate that it is because the baseline model trained

with very few real data has not been stabilized. Synthetic

data distracts optimization when used for training offline.

2At each training batch, we take half real and half synthetic data to

prevent possible distraction from low-quality synthetic data.

Figure 6: The qualitative evaluation of segmentation results

on MRI. We show the axial and sagittal views of two sam-

ples. Our method boosts the baseline segmentation network

with only extra synthetic data. As can be observed, the seg-

mentation errors of the baseline are largely corrected.

While our method adapts them fairly well and leads to sig-

nificant improvement.

We also demonstrate the qualitative results of our method

in Figure 6. By only using extra synthetic data, our method

largely corrects the segmentation errors. Furthermore, we

show the results by varying the number of real data used

in Figure 7 (left and middle). Our method has consistently

better performance than the ADA. In addition, we notice

the increment is growing slower as the number of real data

increases. One reason is that more real data makes the seg-

mentors get closer to its capacity, so the effect of extra syn-

thetic data gets smaller. But this situation can be definitely

balanced out by increasing the size of segmentors with suf-

ficient GPU memory.

The second experiment is applied on S2, which has much

more CT data, so we aim at boosting the MRI segmen-

tor. We vary the number of used synthetic data and use all

real MRI data. Figure 7 (right) compares the results. Our

method still shows better performance. As can be observed,

our method uses 23% synthetic data to reach the accuracy

of the ADA when it uses 100% synthetic data.

5.4. Gap between synthetic and real data

Reducing the distribution gap between real and synthetic

data is the key to make synthetic data useful for segmen-

tation. Here we show a way to interpret the gap between

9248



10 20 30 40 50 60
Percentage (%) of R data used 

66

68

70

72

74

76

78

80

 D
ic

e
 s

co
re

 (
%

)

CT segmentation

Baseline (R)
ADA (R+S)
Ours (R+S)

10 20 30 40 50 60
Percentage (%) of R data used

70

72

74

76

78

80

82

 D
ic

e
 s

co
re

 (
%

)

MRI segmentation

Baseline (R)
ADA (R+S)
Ours (R+S)

20 30 40 50 60
Precentage (%) of S data used

82.4

82.6

82.8

83

83.2

83.4

D
ic

e
 s

co
re

 (
%

)

MRI segmentation

ADA (R+S)
Ours (R+S)

Figure 7: The segmentation accuracy (mean Dice score) comparison to demonstrate the effectiveness of our method of using

Synthetic data to boost segmentation. The left plot shows the segmentation accuracy by varying the percentage of Real data

used for training segmentation on CT using dataset S1, using a equal number of synthetic data. Baseline (R) is trained with

only real data. Others are trained from it, e.g. ADA (R+S) is trained by adding only S data. The middle plot shows the same

experiments on MRI. The right plot shows results by varying the number of synthetic data on MRI using dataset S2 using a

equal number of real data. Our method has consistently better performance. See text for details about comparing methods.
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Figure 8: The gap analysis of Real and Synthetic data.

For all comparing methods, we use one pre-trained network

with 14% real data, whose Dice score is 70.3%. Then we

vary the number of R or S data used to boost segmentation

of Baseline (R+R), Baseline (R+S), and Ours (R+S). Our

method significantly reduces the gap for all settings.

synthetic and real data by evaluating their performance to

improve segmentation. On dataset S1, we train a MRI seg-

mentor using 14% real data. Then we boost the segmentor

by adding 1) pure MRI real data, 2) using ADA, and 3) us-

ing our method. As shown in Figure 8, our method reduces

the gap of the ADA significantly, i.e., by 61% given 14%
real data and 20.9% given 85% real data.

Moreover, we found that, when using the synthetic data

as augmented data offline (our comparing baseline), too

much synthetic data could diverge the network training.

While in our method, we did not observe such situation.

However, we also observe that the gap is more difficult to

reduce as the number of read data increases. Although one

of reasons is due to the modal capacity, we believe the so-

lution of this gap-reduction worth further study.

6. Conclusion

In this paper, we present a method that can simultane-

ously learn to translate and segment medical 3D images,

which are two significant tasks in medical imaging. Train-

ing generators for cross-domain volume-to-volume transla-

tion is more difficult than that on 2D images. We address

three key problems that are important in synthesizing realis-

tic 3D medical images: 1) learn from unpaired data, 2) keep

anatomy (i.e. shape) consistency, and 3) use synthetic data

to improve volume segmentation effectively. We demon-

strate that our unified method that couples the two tasks is

more effective than solving them exclusively. Extensive ex-

periments on a 3D cardiovascular dataset validate the effec-

tiveness and superiority of our method.
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