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Abstract

Weakly-supervised object detection has attracted much

attention lately, since it does not require bounding box an-

notations for training. Although significant progress has

also been made, there is still a large gap in performance be-

tween weakly-supervised and fully-supervised object detec-

tion. Recently, some works use pseudo ground-truths which

are generated by a weakly-supervised detector to train a

supervised detector. Such approaches incline to find the

most representative parts of objects, and only seek one

ground-truth box per class even though many same-class

instances exist. To overcome these issues, we propose a

weakly-supervised to fully-supervised framework, where a

weakly-supervised detector is implemented using multiple

instance learning. Then, we propose a pseudo ground-truth

excavation (PGE) algorithm to find the pseudo ground-truth

of each instance in the image. Moreover, the pseudo ground-

truth adaptation (PGA) algorithm is designed to further re-

fine the pseudo ground-truths from PGE. Finally, we use

these pseudo ground-truths to train a fully-supervised de-

tector. Extensive experiments on the challenging PASCAL

VOC 2007 and 2012 benchmarks strongly demonstrate the

effectiveness of our framework. We obtain 52.4% and 47.8%

mAP on VOC2007 and VOC2012 respectively, a significant

improvement over previous state-of-the-art methods.

1. Introduction

Object detection is a fundamental problem in computer

vision, since it is the basic technology of some advanced

tasks such as object segmentation, object tracking, action

analysis and detection, etc. Recently, many state-of-the-art

methods [11, 12, 5, 20] based on deep Convolutional Neural

∗This work is done when Yongqiang Zhang was a visiting PhD student

at KAUST.

Figure 1. An illustration of our weakly-supervised to fully-

supervised framework for object detection (W2F). Given an image

collection with only image-level labels, we first combine a weakly

supervised deep detection network (WSDDN) with online instance

classifier refinement (OICR) to train a weakly-supervised detector,

and here both tight bounding boxes and discriminative boxes of

object parts are found. Then, we propose a pseudo ground-truth ex-

cavation (PGE) algorithm to preserve those tight bounding boxes

as pseudo ground-truth, which is in turn used to train a supervised

detector whose RPN (region proposal network in Faster-RCNN)

makes use of our proposed pseudo ground-truth adaptation (PGA)

algorithm to further fine-tune the pseudo ground-truths.

Networks (CNNs) [22, 15] have been proposed and supe-

rior performances have been achieved. The key to their suc-

cesses is the strong learning ability (i.e. regression ability)

of fully-supervised deep CNN models and the availability

of large scale labeled datasets [30, 25], which include tight

bounding box annotations. However, collecting such accu-

rate annotations are expensive and time-consuming. More-

over, these annotations usually have bias and errors intro-

duced by the subjectivity of annotators, which could lead

the learned models to converge to an undesirable solution.

To address these problems, some weakly-supervised de-

tectors [4, 19, 2] are trained by only utilizing image-level

labels (e.g. ”dog”, ”cat”, etc.) as the supervised informa-

tion. Building a training dataset with only image-level an-
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notations is much easier than compiling one with accurate

bounding-box annotations, since these image-level annota-

tions are easily obtained online in many cases (e.g. tags or

keywords of an image). However, to the best of our knowl-

edge, the performance of weakly-supervised detectors re-

mains far behind fully-supervised detectors. Given a com-

plex image that contains multiple instances of objects espe-

cially in the presence of partial occlusion, using only image-

level annotations for object detection may not be adequate

due to the lack of location annotations.

Main idea: Can we design an architecture that inherits

the advantages of both fully-supervised (regression ability)

and weakly-supervised detection (inexpensive training an-

notation) and avoids their shortcomings (i.e. expensive an-

notations and poor detection performance)? To this end, we

propose our weakly-supervised to fully-supervised frame-

work for object detection (W2F). Given an image collec-

tion with only image-level labels, we first employ Multi-

ple Instance Learning (MIL) to train a weakly-supervised

detector, and then we propose a pseudo ground-truth exca-

vation algorithm to seek pseudo ground-truth boxes, which

are in turn refined using our pseudo ground-truth adaptation

algorithm and used to train a supervised detector. Figure 1

illustrates the pipeline of our weakly-supervised to fully-

supervised framework.

In practice, there are two issues in the W2F. (1) How

to train an actuate weakly-supervised detector. (2) How to

mine the tight pseudo ground-truth (i.e. the bounding-box

surrounding the whole body of object tightly) for each in-

stance in the image.

As for training a weakly-supervised object detector, most

existing methods [13, 31, 23, 16, 29, 35] treat it as a Mul-

tiple Instance Learning (MIL) problem, and the result is

only discriminative object parts are highlighted instead of

the whole object, which is detrimental when a tight pseudo

ground truth box is required to span the whole object in-

stance. To alleviate this issue, we follow [32] and combine

MIL with online instance classifier refinement (OICR) [32]

to implement our weakly-supervised object detector.

In term of mining the tight pseudo ground-truths, a nat-

ural way is selecting the highest score proposal from a

weakly-supervised detector. However, this procedure has

two drawbacks. First, they only seek one ground-truth box

per class even though many instances are existing in this

category. Second, the most representative parts (like head)

of an object rather than the whole body of objects are usu-

ally highlighted, as shown in Figure 2(a). To solve these

problems, we put forward a pseudo ground-truth mining

method which includes two components: pseudo ground-

truth excavation (PGE) and pseudo ground-truth adaptation

(PGA). In the PGE, we propose a iterative algorithm to re-

trieve the more accurate pseudo ground truth of each object

instances, as shown in Figure 2(b). Moreover, we further

design PGA algorithm to refine the pseudo ground truths

generated by PGE, as shown in figure 2(c).

To sum up, we make the following three contributions

for weakly-supervised object detection in this work: (1) We

propose a novel framework for weakly-supervised object

detection that combines the weakly-supervised detector and

the fully-supervised detector by our pseudo ground-truth

mining algorithm. This framework inherits the advantages

of both fully-supervised and weakly-supervised learning,

while avoiding their shortcomings. (2) Our pseudo ground-

truth excavation (PGE) algorithm can mine more accurate

and tighter pseudo ground-truth boxes, instead of only one

box of the discriminative part of an object per class is found.

After that, we propose the pseudo ground-truth adaption

(PGA) algorithm to further refine pseudo ground-truths.

(3) Our W2F framework surpasses state-of-the-art weakly

supervised detection methods by a large margin on two

challenging benchmarks: an absolute mAP improvement of

5.4% on PASCAL VOC 2007 and 5.3% on PASCAL VOC

2012. Interestingly, our method works particularly well in

detecting non-rigid objects, such as “cat”, “dog” and “per-

son”, where the performance gain ranges from 15% to 49%.

2. Related Work

Weakly-supervised detection. Most existing methods

formulate weakly-supervised detection as an MIL problem

[1, 31, 23, 16, 29, 18]. These approaches divided training

images into positive and negative parts, where each image is

considered as a bag of candidate object instances. The main

task MIL-based detectors is to learn the discriminative rep-

resentation of the object instances and then select them from

positive images to train a detector. However, positive object

instances often focus on the most discriminative parts of an

object (e.g. the head of a cat, etc.) and not the whole object,

which leads to inferior performance of weakly-supervised

detectors. Moreover, this underlying MIL optimization is

non-convex, it is sensitive to positive instance initialization,

and tends to get trapped in local optima.

Some works try to solve these problems via finding bet-

ter initialization methods. For instance, Jie et al. [18] pro-

pose a self-taught learning approach to progressively har-

vest high-quality positive samples. Li et al. [23] propose

classification adaptation to fine-tune the network, so that

it can collect class specific object proposals, and detection

adaptation is used to optimize the representations for the tar-

get domain by the confident object candidates. Bilen etc. [2]

present a two-stream CNN weakly supervised deep detec-

tion network (WSDDN), which selects the positive samples

by multiplying the score of recognition and detection.

In addition, many efforts have been made to improve the

optimization strategy. In [18], relative improvement of out-

put CNN scores are used instead of relying on the static ab-

solute CNN score at training iterations. Cinbis et al. [4] pro-
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Figure 2. An illustration of the proposed pseudo ground-truth min-

ing method. (a) Only one representative part of an object (i.e.

head) is found, even though there are three persons in the image

[32]. (b) Our method retrieves the pseudo ground-truth boxes of

all instances using our pseudo ground-truth excavation (PGE) al-

gorithm, where b1 is the NMS process, b2 is the procedure of re-

moving discriminative boxes and b3 is the procedure of merging

boxes. (c) These rough boxes are further fine-tuned by our pseudo

ground-truth adaptation (PGA) algorithm, where c1 is the process

of training RPN and c2 is the procedure of calculating final pseudo

ground truths. Best seen on the computer, in color and zoomed in.

pose a multi-fold MIL strategy to prevent the detector from

being locked into erroneous object locations. Tang et al.

[32] design an online instance classifier refinement (OICR)

algorithm to alleviate the local optimum problem.

In this paper, we consider the initialization and optimiza-

tion problems simultaneously. We follow the MIL pipeline

and combine the two-stream WSDDN [2] and OICR algo-

rithms [32] to implement our basic weakly-supervised de-

tector (i.e. the first part of our framework).

Pseudo ground-truth mining. Due to the strong regres-

sion ability of fully-supervised learning, here we cast the

weakly-supervised problem to the supervised one. The key

problem is how to mine accurate pseudo ground-truths from

predicted boxes of a weakly-supervised detector to train a

supervised detector. A framework [21] is proposed that ex-

ploits tracked object boxes from videos to serve as pseudo

ground-truths to train an object detector. However, an extra

video dataset is required and it must share the same cate-

gories with the image dataset, making this method not effi-

cient. We would like to emphasize that our framework does

not need an extra dataset, and the only training data needed

is images with image-level labels (possibly crawled from

online sources as in [36, 3, 10, 9], or from a standard object

detection dataset [8, 6]).

The most similar approach to our framework is the work

of Tang et al. [32]. In their method, the highest scoring

predicted box from weakly-supervised detector (WSD) is

selected as the pseudo ground-truth, thus, leading to some

shortcomings. For instance, they only seek one ground-truth

box per class in an image even though many same-class in-

stances may exist. Moreover, the most representative parts

of objects are usually found instead of the tight object pre-

diction boxes. In contrast, more accurate and tighter pseudo

ground-truth boxes can be generated by our PGE and PGA

algorithms (Section 3.2 will have a detailed explanation).

Fully-supervised detection. With the development of

deep learning, many methods have been proposed, such as

the Fast RCNN [11], faster RCNN [28] and its other variants

[5, 14, 24]. Specifically, Faster RCNN [28] has achieved

a balance between detection performance and computa-

tional efficiency. And it becomes the de facto framework for

fully-supervised object detection. Though great improve-

ments have been achieved, fully-supervised methods re-

quire instance-level bounding-box annotations, which are

expensive and time-consuming. In this paper, we focus on

weakly-supervised object detection, and we generate the

pseudo ground-truths for training a fully-supervised detec-

tor, which can be any general off-the-shelf detectors.

3. Proposed Method

In this section, we introduce our framework in details.

Figure 1 shows the architecture of the proposed method.

We first describe the weakly-supervised detector. Then,

pseudo ground-truth mining methods (PGE and PGA) are

presented, which greatly improve the quality of the pseudo

ground-truths. Finally, we simply summarize our fully-

supervised detector.

3.1. Weakly­Supervised Detector(WSD)

Given an image I, we denote the image-level labels

y=[y1, y2, . . . , yC ] ∈ R
n×1, where C denotes different ob-

ject classes, and yc=1 or yc=0 indicates the image with or

without class c. In this paper, we employ MIL to imple-

ment the weakly-supervised detector, where the instance-

level annotations (i.e. bounding box and label) are required.

However, only image-level (i.e. label) annotations are avail-

able in the training dataset, and there are many works

[1, 34, 23, 2], which can capture the instance-level anno-

tations. Here, we follow [2] to achieve them, in which the

WSDNN model branches into two data streams: the classi-

fication and detection data streams.

For each input image Ii, object proposals

R = (r1, . . . , rn) are generated by the selective search

method [33]. The features of each proposal are extracted

by a VGG16 model pre-trained on ImageNet [6], and the
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last fully convolution layer fc7 is followed by two streams

as described above. The first stream performs classification

by mapping each proposal feature to a C-dimensional

score vector. This is achieved by evaluating a linear map

φfc8c, and the results are a matrix xc ∈ R
C×|R|, where |R|

denotes the number of proposals, which then goes through

a softmax layer and the output is: [σclass(x
c)]ij= e

xc
ij

∑
C
k=1

e
xc
kj

.

The second stream performs instead detection by using

a second linear map φfc8d, and also resulting a matrix

xd ∈ R
C×|R|. It then passes through another softmax

layer and the output is: [σdet(x
d)]ij= e

xd
ij

∑|R|
k=1

e
xd
ik

. After that,

the score of each proposal is generated by element-wise

product xR=σclass(x
c) ⊙ σdet(x

d). Finally, the cth class

prediction score at the image-level can be obtained by

summation over all proposals: pc=
∑|R|

r=1
xR
cr. During the

training stage, the loss function can be formulated as

following:

Lossw = −

C∑

c=1

{yc log pc + (1− yc) log(1− pc)} (1)

Since WSDNN tends to converge to the discriminative

part of an object and the performance is unsatisfactory,

we adopt the online instance classifier refinement (OICR)

method [32] to refine the WSDNN. Specifically, refining

branches are added in the training network, and they are par-

allel to the two data steams as mentioned above. Different

from the classification and detection data streams, the out-

put of the refining branch is a {C + 1}-dimensional score

vector xRk
j for proposal j, where {C + 1} denotes C dif-

ferent classes and background and k denotes the kth time

refinement. The label ykcr of proposals in the kth branch

comes from the {k − 1}th branch. For more details about

how to get the label ykcr, please refer to [32]. Based on the

achieved supervision, we train the refining instance classi-

fier by considering the loss function Lossr in Eq.(2).

Lossr = −
1

|R|

|R|∑

r=1

C+1∑

c=1

wk
r y

k
cr log(x

Rk
cr ) (2)

where wk
r is the loss weight of each refinement step.

Finally, we train the weakly-supervised detector end-to-

end by combining the loss functions of WSDNN (Lossw)

and OICR (Lossr), as in Eq.(3).

Loss = Lossw +

K∑

k=1

Losskr (3)

where K represents the total number of refinement times.

3.2. Pseudo Ground­truth Mining

After training the weakly-supervised detector, we find

that the weakly-supervised detector can indeed find tight

boxes of an object, and it is just that the scores of these

tight boxes are lower than the discriminative ones. While

these tight boxes with lower score boxes are discarded dur-

ing selecting the pseudo ground-truth by previous weakly-

supervised detectors, as shown in Figure 2 (a). In this pa-

per, We exploit them through our proposed pseudo ground-

truth mining algorithm, which comprises pseudo ground-

truth excavation (PGE) followed by pseudo ground-truth

adaptation (PGA).

Pseudo ground-truth excavation (PGE). Let G=f(P )
denotes the set of pseudo ground-truth boxes, where P is

the prediction boxes generated by the WSD and f is the ex-

cavation function. PGE includes three components: (i) The

first component selects the candidate pseudo ground-truth

boxes, in which NMS operates on all the predictions P and

only boxes whose score larger than a pre-defined thresh-

old Tscore are maintained. In doing so, key discriminative

boxes with a high score as well as tight boxes with a low

score are retained, as shown in the second image of Fig-

ure 2(b). (ii) Since the key discriminative boxes are usually

completely surrounded by the tight boxes, we delete these

discriminative boxes in this step. We propose an iterative

algorithm to remove all these smaller boxes. Specifically,

we first choose the biggest prediction box generated by the

weakly supervised detector, delete all the smaller discrimi-

native boxes that are completely surrounded by this biggest

box, and save the biggest box. Then, we choose the sec-

ond biggest prediction box and do the same process, and

so on. This step prevents the tiny discriminative part of an

object from being chosen as a ground-truth. (iii) In some

times, some object instances may not have a tight box. For

this case, the result of step ii is some bigger discriminative

detection boxes are reserved as shown in the third image

of Figure 2(b). The detection performance is not satisfac-

tory while using these bigger discriminative boxes as the

pseudo ground-truths to train a fully-supervised detector. To

further improve the performance, we leverage those bigger

discriminative boxes of each object parts to generate a tight

box. The procedure is that we choose the biggest discrim-

inative boxes from step ii and merge all the discriminative

boxes whose intersection-over-union (IoU) is larger than a

threshold Tfusionwith this biggest discriminative boxes (i.e.

choosing the minimum left-top coordinate and the maxi-

mum right-bottom coordinate), and save the merged box.

Then, we choose the second biggest one among the rest of

the discriminative boxes and do the same process, and so

on. These three steps define our PGE algorithm, which is

detailed in Algorithm 1 and visualized in Figure 2(b).

Pseudo ground-truth adaptation (PGA). After obtain-

ing the pseudo ground-truth boxes from PGE, we seek to

improve them by taking advantage of a region proposal net-

work (RPN) as used in [28]. Since only image-level labels

are available during training, the pseudo ground-truths se-
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Algorithm 1 Pseudo Ground-truth Excavation (PGE)

Input: P, Tnms, Tscore, Tfusion

while i < n, n is the number training data do

for j in C, C is the list of training data class do

keep = nms(Pi, Tnms)
Gnms = Pi[keep, :]
score index = Gnms[:,−1] > Tscore

Gnms = Gnms[score index, :]
Gdel = h(Gnms), where h is the function of step(ii)

iou = IoU(Gdel,max(Gdel))
if iou > Tfusion then

Gfusion = f(Gdel), where f is the function of step(iii)

Gij = Gfusion

else

Gij = Gdel

end if

end for

end while

Output: Pseudo ground-truth boxes G

lected by PGE may inaccurate or contain too much context

compared with the instance-level annotations labeled by hu-

mans. To address this issue, we propose a pseudo ground-

truth adaptation (PGA) algorithm. Our motivation is that the

proposals generated by RPN usually have a closer outline

than those retrieved pseudo ground-truth bounding boxes.

In particular, we train an RPN using the pseudo ground-

truth boxes from PGE. For each pseudo grounding-truth

box, we choose all the proposals Pro generated by RPN,

whose IoU with this pseudo grounding-truth box are larger

than a pre-defined threshold Tiou, and then average the pixel

coordinates of these proposals as the final pseudo ground-

truth, as shown in Figure 2(c). The procedure is detailed in

Algorithm 2.

In Figure 3, we illustrate examples of the pseudo ground-

truth mining by our method and the baseline. (i.e. selecting

the top proposal with the highest predicted score).

3.3. Fully­Supervised Detector(FSD)

After generating the refined ground-truths, weakly-

supervised detection can be cast as a supervised prob-

lem, where the advantages (i.e. regression ability) of fully-

supervised learning are employed to further improve over-

all detection performance. In this paper, we choose Fast-

RCNN and Faster-RCNN based on VGG16 as our fully-

supervised detector. In Faster-RCNN, we train a region pro-

posal network based on the pseudo grounding-truths from

PGE, in which we further fine-tune the pseudo ground-

truths using the PGA algorithm, and then train it by using

these higher-quality pseudo ground-truths. We would like

to note that our fully-supervised detector is not specific and

any off-the-shelf detectors can be used here, such as YOLO

[27], SSD [26], R-FCN [5], etc..

Algorithm 2 Pseudo Ground-truth Adaptation (PGA)

Input: G from PGE algorithm, Tiou, Pro

while i < n , n is the number training data do

for j in C, C is the list of training data class do

iou = IoU(Gij , Proi)
keep = iou > Tiou

Gadaij
= mean(Proi [keep, :])

G∗
ij = Gadaij

end for

end while

Output: Final pseudo ground-truth boxes G∗

4. Experiments

In this section, we experimentally validate our W2F

framework and analyze each of its components for weakly-

supervised object detection.

4.1. Datasets and Evaluation Metrics

Datasets. We evaluate our framework on two challeng-

ing and widely used benchmarks in weakly-supervised ob-

ject detection: PASCAL VOC 2007 and 2012, which have

9,963 and 22,531 images from 20 object categories, respec-

tively. For VOC 2007, we use the trainval set for training

and use the test set for testing. For VOC 2012, we choose

the trainval set to train our network and evaluate on the

test set. We stress that we only use image-level labels dur-

ing training (no bounding-box annotations are used).

Evaluation metrics. We follow the standard metrics for

weakly-supervised object detection. We use mean average

precision (mAP) [8] as the evaluation metric for evaluating

our model on the testing set. Also, the correct location (Cor-

Loc) [7] metric is used to evaluate the localization accuracy

of our model on the training set. Both metrics comply with

the PASCAL criterion, where a positive detection has an

IoU>0.5 with the ground-truth.

4.2. Implementation Details

Our framework utilizes VGG16 as the backbone net-

work, which is pre-trained on the ImageNet dataset [30]. In

the weakly-supervised detector, we refine the instance clas-

sifier three times (i.e. K=3). During training, the total num-

ber of iterations is 70K, and the learning rate is 0.001 for the

first 40K iterations and then divided by 10 in the last 30K

iterations. The mini-batch size is 2, and the momentum and

weight decay are 0.9 and 0.0005, respectively. In the PGE,

the threshold Tnms for NMS is set to 0.3, while Tscore and

Tfusion are set to 0.2 and 0.4 respectively. In the PGA, the

IoU threshold Tiou is set to 0.5. For the fully-supervised de-

tector (i.e. Fast-RCNN and Faster-RCNN) training, all the

hyper-parameters are the same as [11, 28]. NMS with 30%

IoU threshold is used to calculate mAP and CorLoc.

For data augmentation, we fix the original aspect ratio of
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Figure 3. Some examples of pseudo ground-truth boxes generated by different weakly supervised detection methods. The top row shows

the results of baseline [32] (i.e. selecting the top proposal with the highest predicted score as the pseudo ground-truth). The bottom row

shows some pseudo ground-truth boxes mined by our method (i.e. PGE and PGA).

images and resize the shortest side to one of these five scales

{480, 576, 688, 864, 1,200} for both training and testing,

and ensure the longest side is not larger than 2,000 simulta-

neously. Furthermore, we randomly flip images in the hori-

zontal direction during training. In all our experiments, we

run the publicly available deep learning framework Caffe

[17] on an NVIDIA GTX TITAN X GPU.

4.3. Ablation Studies

We first conduct an ablation experiment to prove the

effectiveness of our W2F framework. And then, to vali-

date the contribution of each component including PGE

and PGA, we also perform ablation studies by cumulatively

adding each of them to the baseline (WSD+FSD), which se-

lecting the highest score of predicted boxes from WSD as

the pseudo ground-truths to train an FSD.

Influence of the W2F framework. From Table 1

(specifically the 1st and 2nd rows of the bottom part), we

see that our baseline (WSD+FSD1) improves mAP by 4.2%

compared to the performance of WSD. Almost all of the

categories including rigid objects (e.g. “car”, “train”, “tv”,

etc.) and non-rigid objects (e.g. “cat”, “dog”, “person”, etc.)

have a better performance. We attribute this to the effect of

the pseudo ground-truth and the regression ability of fully-

supervised learning. Table 2 shows that the Corloc met-

ric undergoes a similar trend as mAP, where WSD+FSD1

boosts the performance from 61.4% to 65.0%, which fur-

ther confirms the effectiveness of our framework.

Influence of the PGE. To validate the effect of PGE,

we conduct an ablation experiment between WSD+FSD1

and WSD+PGE+FSD1. From Table 1 (the 2nd and 3rd row

of the bottom part), we observe that PGE brings about 6%

improvement in mAP. Interestingly, our PGE algorithm is

more effective for non-rigid objects (e.g. 24.5% vs. 73.7%

mAP for “cat”, 21.6% vs. 65.9% mAP for “dog”, 12.6%

vs. 27.6% mAP for “person”, etc.), the reason is that the

baseline WSD+FSD1 chooses the topmost scoring detected

boxes from the WSD as the ground-truths and only one

pseudo ground-truth is found per class even though multiple

instances of this class are existing. However, PGE retrieves

the pseudo ground-truth box for each instance, and more

accurate and tighter pseudo ground-truth boxes are mined

than the baseline (i.e. WSD + FSD1). In Table 2, we show

that Corloc has a similar trend as mAP, whereby PGE brings

about 4.4% improvement. Again, we see that Corloc of all

non-rigid objects experience a huge boost, and the perfor-

mance of each class can been found in Table 1 of supple-

mentary material. Figure 4 illustrates the improvement in

mAP of each category by the PGE algorithm.

Influence of the PGA. We also validate the contribu-

tion of the PGA algorithm in the RPN of Faster-RCNN

(i.e. WSD+PGE+PGA+FSD2). From Table 1 (the 3rd and

4th row of the bottom part) and Figure 4, PGA further im-

proves the mAP from 51.7% to 52.4%, because propos-

als generated by RPN are usually closer to the outline of

the object than pseudo ground-truths mined by PGE, espe-

cially for those pseudo ground-truth boxes including exces-

sive background. Similarly, PGA improves the performance

from 69.4% to 70.3% in Corloc as shown in Table 2.

4.4. Comparison with State­of­the­Art

We compare the proposed method to other state-of-the-

art methods for weakly-supervised object detection, includ-

ing MIL-based methods [4, 1, 34, 19, 2, 23, 18] and pseudo

ground-truth based methods [32, 21].

Table 1 shows mAP performance on the VOC 2007 test

set. Our method achieves the highest performance (52.4%),

outperforming the state-of-the-art MIL-based method [18]

and the state-of-the-art pseudo ground-truth based method

[32] by 10.7% and 5.4% respectively. Compared to MIL-

based methods, our performance boost mainly comes from

two contributions: (1) The combination of the WSDNN [2]

and OICR [32] to train a WSD, in which the refinement

network guide the weakly-supervised detector to learn the
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike personplant sheep sofa train tv mAP

Cinbis et al. 2017 [4] 38.1 47.6 28.2 13.9 13.2 45.2 48.0 19.3 17.1 27.7 17.3 19.0 30.1 45.4 13.5 17.0 28.8 24.8 38.2 15.0 27.4

Bilen et al. 2015 [1] 46.2 46.9 24.1 16.4 12.2 42.2 47.1 35.2 7.8 28.3 12.7 21.5 30.1 42.4 7.8 20.0 26.8 20.8 35.8 29.6 27.7

Wang et al. 2014 [34] 48.9 42.3 26.1 11.3 11.9 41.3 40.9 34.7 10.8 34.7 18.8 34.4 35.4 52.7 19.1 17.4 35.9 33.3 34.8 46.5 31.6

Kantorov et al. 2016 [19] 57.1 52.0 31.5 7.6 11.5 55.0 53.1 34.1 1.7 33.1 49.2 42.0 47.3 56.6 15.3 12.8 24.8 48.9 44.4 47.8 36.3

Bilen et al. 2016† [2] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3

Li et al. 2016 [23] 54.5 47.4 41.3 20.8 17.7 51.9 63.5 46.1 21.8 57.1 22.1 34.4 50.5 61.8 16.2 29.9 40.7 15.9 55.3 40.2 39.5

Tang et al. 2017(OICR) [32] 58.0 62.4 31.1 19.4 13.0 65.1 62.2 28.4 24.8 44.7 30.6 25.3 37.8 65.5 15.7 24.1 41.7 46.9 64.3 62.6 41.2

Jie et al. 2017 [18] 52.2 47.1 35.0 26.7 15.4 61.3 66.0 54.3 3.0 53.6 24.7 43.6 48.4 65.8 6.6 18.8 51.9 43.6 53.6 62.4 41.7

Krishna et al. 2016 [21] 53.9 - 37.7 13.7 - - 56.6 51.3 - 24.0 - 38.5 47.9 47.0 - - - - 48.4 - 41.9

Tang et al. 2017† [32] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

WSD 61.4 65.6 35.3 27.7 10.1 67.0 60.9 27.3 24.7 41.4 35.0 21.6 37.6 64.1 12.6 23.8 40.0 50.9 62.6 62.7 41.6

WSD+FSD1 60.9 68.7 47.1 31.7 14.2 71.2 68.9 24.5 23.5 57.6 43.6 20.9 47.9 66.0 11.3 22.3 56.4 57.7 61.1 60.1 45.8

WSD+PGE+FSD1 64.0 67.4 49.9 32.8 15.0 71.8 69.2 70.6 24.2 55.2 49.2 64.9 54.3 65.3 24.3 23.0 49.6 60.1 60.0 62.8 51.7

WSD+PGE+PGA+FSD2 63.5 70.1 50.5 31.9 14.4 72.0 67.8 73.7 23.3 53.4 49.4 65.9 57.2 67.2 27.6 23.8 51.8 58.7 64.0 62.3 52.4

Table 1. Average precision(AP) (%) of our method and other state-of-the-art methods on the PASCAL VOC 2007 test set. The † denotes

the results of combining multiple models, others are the results of using single model. FSD1 means Fast-RCNN, and FSD2 represents

Faster-RCNN. The weakly-supervised detectors in the top part are based on MIL learning, and the methods in the middle part are similar

to our framework (i.e. using pseudo ground-truths to train a fully-supervised detector).

Figure 4. The mAP of each class in different ablation versions of

our framework on VOC 2007 test set.

more accurate detection bounding-boxes. (2) The regression

ability of the fully-supervised detector trained by the pseudo

ground-truths. Compared to the pseudo ground-truth based

methods, the reason for improvement is that our pseudo

ground-truth mining algorithm can retrieve more accurate

and tighter pseudo ground-truths. We would like to note

that it is unfair to compare our performance with the meth-

ods [32] and [21], because the result of [32] (47.0%) is ob-

tained by combining multiple different models. However,

our model is trained using a single model. For fair compar-

ison, we compare our method with the baseline, which uses

the single model, and the mAP improves by 6.6%. As for

the method in [21], their reported mAP is averaged across

only ten categories that do not include some difficult cat-

egories such as “bottle”, “person”, etc. On the other hand,

our method includes all 20 categories. In this case, the per-

formance of their method is 41.9%, which is lower than our

result by 10.5%. Under such unfair conditions, our method

is still able to outperform previous state-of-the-art by a large

margin, which confirms the effectiveness of our framework.

Table 2 shows the Corloc performance on the VOC 2007

Method CorLoc(%)

Cinbis et al. 2017 [4] 47.3

Bilen et al. [1] 43.7

Wang et al. 2014 [34] 48.5

Kantorov et al. 2016 [19] 55.1

Bilen et al. 2016† [1] 39.3

Li et al. 2016 [23] 52.4

Tang et al. 2017(OICR) [32] 60.6

ie et al. 2017 [18] 56.1

Krishna et al. 2016 [21] 64.3

Tang et al. 2017† [32] 64.3

WSD 61.4

WSD+FSD1 65.0

WSD+PGE+FSD1 69.4

WSD+PGE+PGA+FSD2 70.3

Table 2. Correct localization (CorLoc)(%) of our method and other

state-of-the-art methods on the PASCAL VOC 2007 trainval set.
†, FSD1 and FSD2 have the same meanings as Table1.

trainval set. Our method achieves 70.3% of average Cor-

loc, outperforming all the state-of-the-art methods. The per-

formance of each class are presented in Table1 in the sup-

plementary material. We can observe that all the classes

have a better performance than other methods. All the pre-

vious state-of-the-art methods [2, 32] encounter a dilemma

that the detector inclines to highlight the discriminative

parts of an object instead of the whole object leading to poor

performance. To the best of our knowledge, our proposed

framework is the first to avoid and address these pitfalls.

Table 4 shows our performance in terms of mAP and

Corloc on the PASCAL VOC 2012 test and trainval sets,

respectively. Using our framework and the pseudo ground-

truth mining algorithm, we achieve state-of-the-art perfor-

mance. The proposed approach outperforms the second

highest performance by 5.3% and 3.8% in mAP and Cor-

loc respectively. For the performance of each class, please

refer to Table 2 and Table 3 in the supplementary material.

4.5. Run­time of inference

The baseline methods [2, 32] adopt multi-scale testing

without horizontal flip. We follow this same setting for fair

comparison. In Table 3, we report the inference run-time
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Figure 5. Qualitative detection results of our method (WSD+PGE+PGA+FSD2) and the baseline (WSD+FSD). Green bounding boxes

indicate objects detected by our method, while red ones correspond to those detected by the baseline.

(Fast-RCNN run on Pascal TITAN X) and the detection per-

formance under different settings on PASCAL VOC 2007.

Table 3 shows that the run-time is similar to the baseline

methods, as well as, the fully-supervised Fast-RCNN.

Training scales Testing scales mAP Run-time (s/img)

multi

(480∼1200)

multi (480∼1200) 52.4 0.80

single (600) 50.0 0.14

single

(600)

multi (480∼1200) 51.6 0.80

single (600) 49.0 0.14

Table 3. The performance and the run-time of inference under dif-

ferent settings on PASCAL VOC 2007.

4.6. Qualitative Results

In Figure 5, we illustrate some detection results gener-

ated by our framework as compared to those generated from

the baseline methods. It can been found that the bounding

boxes detected by our method surround the object tightly,

while the baseline only highlights the most discriminative

object parts. This is due to the high quality pseudo ground-

truths mined by our PGE and PGA algorithms. Moreover,

we visualize some failure results as the last three images in

the last row. In these cases, a single retrieved bounding box

includes not only one object instance, but it contains mul-

tiple adjacent similar instances. So, there is still room for

improvement.

5. Conclusions

In this paper, we present a novel weakly-supervised

to fully-supervised framework (W2F) for object detection.

Method mAP(%) CorLoc(%)

Kantorov et al. 2016 [19] 35.3 54.8

Tang et al. 2017(OICR) [32] 37.9 62.1

Jie et al. 2017 [18] 38.3 58.8

Tang et al. 2017† [32] 42.5 65.6

WSD 39.6 63.0

WSD+FSD1 42.4 65.5

WSD+PGE+FSD1 47.3 69.0

WSD+PGE+PGA+FSD2 47.8 69.4

Table 4. Performance of our method and other state-of-the-art

methods on the PASCAL VOC 2012. †, FSD1 and FSD2 have the

same meanings as Table 1.

Different from previous work, our framework combines

the advantages of fully-supervised and weakly-supervised

learning. We first use WSDNN and OICR to train a weakly-

supervised detector (WSD) end-to-end. And then by the

virtue of pseudo ground-truth excavation (PGE) and pseudo

ground-truth adaption (PGA), our approach finds high qual-

ity pseudo ground-truths from the WSD. Finally, those

pseudo ground-truths are fed into a fully-supervised detec-

tor to produce the final detection results. Extensive exper-

iments on PASCAL VOC 2007 and 2012 demonstrate the

substantial improvements (5.4% and 5.3% in mAP respec-

tively) of our method compared with previous state-of-the-

art weakly-supervised detectors.
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