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Abstract

Cross-spectral imaging provides strong benefits for

recognition and detection tasks. Often, multiple cameras

are used for cross-spectral imaging, thus requiring image

alignment, or disparity estimation in a stereo setting. In-

creasingly, multi-camera cross-spectral systems are embed-

ded in active RGBD devices (e.g. RGB-NIR cameras in

Kinect and iPhone X). Hence, stereo matching also provides

an opportunity to obtain depth without an active projector

source. However, matching images from different spectral

bands is challenging because of large appearance varia-

tions. We develop a novel deep learning framework to si-

multaneously transform images across spectral bands and

estimate disparity. A material-aware loss function is in-

corporated within the disparity prediction network to han-

dle regions with unreliable matching such as light sources,

glass windshields and glossy surfaces. No depth supervi-

sion is required by our method. To evaluate our method,

we used a vehicle-mounted RGB-NIR stereo system to col-

lect 13.7 hours of video data across a range of areas in and

around a city. Experiments show that our method achieves

strong performance and reaches real-time speed.

1. Introduction

Cross-spectral imaging is broadly used in computer vi-

sion and image processing. Near infrared (NIR), short-wave

infrared (SWIR) and mid-wave infrared (MWIR) images

assist RGB images in face recognition [1, 16, 23, 29]. RGB-

NIR pairs are utilized for shadow detection [35], scene

recognition [2] and scene parsing [5]. NIR images also help

color image enhancement [42] and dehazing [11]. Blue

fluorescence and ultraviolet images assist skin appearance

modeling [24]. Color-thermal images help pedestrian de-

tection [19, 40].

As multi-camera multi-spectral systems become more

common in modern devices (e.g. RGB-NIR cameras in

iPhone X and Kinect), the cross-spectral alignment problem

is becoming critical since most cross-spectral algorithms re-

quire aligned images as input. Aligning images in hardware

(a) Left RGB (b) Right NIR

(c) Difficult regions for matching (d) Predicted disparity

Figure 1. A challenging case for RGB-NIR stereo match-

ing and our result. Red box: The light source is visible in

RGB but not in NIR. Yellow box: The transmittance and

reflectance of the windshield are different in RGB and NIR.

Cyan box (brightened): Some light sources reflected by the

specular car surface are only visible in RGB. Our approach

uses a deep learning based simultaneous disparity predic-

tion and spectral translation technique with material-aware

confidence assessment to perform this challenging task.

with a beam splitter is often impractical as it leads to sig-

nificant light loss and thus needs longer exposure, resulting

in motion blur. Stereo matching handles this problem by

estimating disparity from a rectified image pair. Aligned

images are obtained by image warping according to dispar-

ity. Stereo matching also provides an opportunity to obtain

depth without an active projector source (as is done in the

Kinect), helping tasks like detection [14] and tracking [37].

Cross-spectral stereo matching is challenging because of

large appearance changes in different spectra. Figure 1 is an

example of RGB-NIR stereo. Headlights have different ap-

parent sizes or intensities in RGB and NIR. LED tail-lights

are not visible in NIR. Glass often shows different light

transmittance and reflectance in RGB and NIR. Glossy sur-

faces have different specular reflectance. Additionally, veg-
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etation and clothing often show large spectral difference.

In this paper, we propose a deep learning based RGB-

NIR stereo matching method without depth supervision. We

use two networks to simultaneously predict disparity and

remove the spectral difference. A disparity prediction net-

work (DPN) estimates disparity maps based on a RGB-NIR

stereo pair, and a spectral translation network (STN) con-

verts a RGB image into a pseudo-NIR image. The losses are

constructed by reprojecting and matching the NIR and the

pseudo-NIR images, thus both the geometric and spectral

differences are encoded. To make sure the disparity is only

learned by the DPN, we use a symmetric network design to

prevent the STN from learning geometric differences.

Though the DPN and STN work well in many cases,

certain materials cannot be handled correctly due to unre-

liable matching. ‘Unreliable’ means it is hard to find good

matches due to large spectral difference, or the matches

found correspond to incorrect disparities (e.g. matches on

reflections). As shown in Figure 1 and 4, light sources in

RGB may be absent in NIR, or show different apparent

sizes resulting in incorrect matches. The transmitted and

reflected scenes on glass and specular reflection on glossy

surfaces may be matched but do not represent the real dis-

parity. These are fundamental problems occurring often and

cannot be ignored. We address the problems by using a ma-

terial recognition network to identify unreliable regions and

inferring their disparities from the context. The DPN loss

assesses pixel confidence according to the material proba-

bility and the predicted disparity, and utilizes a confidence-

weighted smoothing technique to backpropagate more gra-

dients to lower confidence pixels. This method significantly

improves results in unreliable regions.

We have collected 13.7 hours of RGB-NIR stereo frames

covering different scenes, lighting conditions and materi-

als. The images were captured from a vehicle driven in and

around a city. Challenging cases for matching appear very

frequently, including lights, windshields, glossy surfaces,

clothing and vegetation. We labeled material segments on

a subset of the images to train the aforementioned mate-

rial recognition network. Additionally, we labeled sparse

disparities on a test subset for evaluation. To our knowl-

edge, this is the first outdoor RGB-NIR stereo dataset with

a large range of challenging materials at this scale. We ex-

perimented on this specific but important domain of driv-

ing in an urban environment and will extend it to indoor or

other outdoor domains in the future. Experimental results

show that the proposed method outperforms other compa-

rable methods and reaches real-time speed. This method

could be extended to other spectra like SWIR or thermal.

2. Related Work

Cross-modal Stereo Matching: The key to cross-modal

stereo matching is to compute an invariant between different

imaging modalities. Chiu et al. [4] proposed a cross-modal

adaptation method via linear channel combination. Heo

et al. [17] presented a similarity measure robust to vary-

ing illumination and color. Heo et al. [18] also proposed

a method to jointly produce color consistent stereo images

and disparity under radiometric variation. Pinggera et al.

[34] showed that the HOG [7] feature helps visible-thermal

matching. Shen et al. [36] proposed a two-phase scheme

with robust selective normalized cross correlation. Kim et

al. [25] designed a descriptor based on self-similarity and

extended it into a deep learning version [26]. Jeon et al.

[22] presented a color-monochrome matching method in

low-light conditions by compensating for the radiometric

differences. These methods are based on feature or region

matching without material awareness and are unreliable for

materials such as lights, glass or glossy surfaces.

Unsupervised Deep Depth Estimation: Unsupervised

depth estimation CNNs are usually trained with a smooth-

ness prior and reprojection error. Garg et al. [12] proposed

a monocular method with Taylor expansion and coarse-

to-fine training. Godard et al. [13] presented a monocu-

lar depth network with left-right consistency. Zhou et al.

[44] proposed a structure from motion network to predict

depth and camera pose. Zhou et al. [43] presented a stereo

matching method by selecting confident matches and train-

ing data. Tonioni et al. [38] showed that deep stereo match-

ing models can be fine-tuned with the output of conven-

tional stereo algorithms. All these methods deal with only

RGB images rather than cross-spectral images, with no con-

sideration for difficult non-Lambertian materials.

3. Simultaneous Disparity Prediction and

Spectral Translation

To compensate for appearance differences between RGB

and NIR and extract disparity, we present an unsupervised

scheme that trains two networks simultaneously to respec-

tively learn disparity and spectral translation with reprojec-

tion error (Figure 2).

3.1. Model Overview

Our approach consists of a disparity prediction network

(DPN) and a spectral translation network (STN). The DPN

design follows Godard et al. [13] but the input is replaced

with a RGB-NIR stereo pair {I lC , I
r
N}, where superscripts

l and r refer to left and right images. Left-right disparity

maps {dl, dr} are predicted by DPN. STN translates a RGB

image I lC into a pseudo-NIR image I lpN . Translation from

NIR to RGB is not used because it is hard to add informa-

tion to a 1-channel image to create a 3-channel image.

Both networks use reprojection error as main loss. Given

the right NIR image IrN and the left disparity dl, we re-

project the left NIR image Ĩ lN via differentiable warp-

ing [21], similar to previous works [13, 28, 44]. Let
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Figure 2. Model overview. The disparity prediction network (DPN) predicts left-right disparity for a RGB-NIR stereo input.

The spectral translation network (STN) converts the left RGB image into a pseudo-NIR image. The two networks are trained

simultaneously with reprojection error. The symmetric CNN in (b) prevents the STN learning disparity.

ω(I, d) be the operator warping I according to disparity

d, i.e., ω(I, d)(x, y) = I(x + d(x, y), y). Then Ĩ lN =
ω(IrN ,−dl). Symmetrically, the warped pseudo-NIR im-

age ĨrpN = ω(I lpN , dr). Error is calculated between the

warped NIR image Ĩ lN and the pseudo-NIR image I lpN , and

the warped pseudo-NIR image ĨrpN and the NIR image IrN .

3.2. Disparity Prediction Network

The DPN predicts left-right disparities {dl, dr} based on

a RGB-NIR stereo pair {I lC , I
r
N}. The network structure

proposed by Godard et al. [13] is adopted. Convolutional

layers are followed by batch normalization [20] (except for

output layers) and ELU [6] activation. The output disparity

is scaled by factor η for a good initialization. The loss has

a view consistency term Lv , an alignment term La and a

smoothness term Ls following Godard et al. [13].

LDPN = λv(L
l
v+Lr

v)+λa(L
l
a+Lr

a)+λs(L
l
s+Lr

s) (1)

For simplicity, only the left terms are described below and

the right ones can be derived similarly. Multi-scale predic-

tion is done by adding similar loss functions at four scales.

The view consistency term Ll
v describes the consistency

of left-right disparity maps. Let N be the number of the

pixels in one image, and Ω be the pixel coordinate space.

Ll
v =

1

N

∑

p∈Ω

|dl(p)− ω(dr,−dl)(p)| (2)

The alignment term Ll
a compares intensity and structure

between aligned NIR and pseudo-NIR images. Let δ(I1, I2)
be the structural dissimilarity function [39]. Then,

Ll
a =

1

N

∑

p∈Ω

(αδ(I lpN , Ĩ lN )(p)+(1−α)|I lpN (p)− Ĩ lN (p)|)

(3)

where α is set to be 0.85 as suggested by Godard et al. [13].

The smoothness term Ll
s is edge-aware to allow noncon-

tinuous disparity at image edges:

Ll
s =

1

N

∑

p∈Ω

((

∣

∣

∣

∣

∂dl

∂x

∣

∣

∣

∣

e−|Sx∗I
l
C | +

∣

∣

∣

∣

∂dl

∂y

∣

∣

∣

∣

e−|Sy∗I
l
C |)(p))

(4)

where Sx and Sy are Sobel operators and the filtered RGB

channels are averaged into one channel.

3.3. Spectral Translation Network

The RGB-NIR cameras are radiometrically calibrated

and their varying white balancing gains (gR for red and gB
for blue) and exposure times ∆tC and ∆tN are known. The

spectral translation network (STN) converts a RGB image

I lC into a pseudo-NIR image I lpN via local filtering, white

balancing, and exposure correction (Figure 2). Let Gθ1
be

the white balancing operator with learnable parameter θ1,

and F
(p)
θ2

be the filtering operation with predicted parame-

ter θ2 for each position p. The pseudo-NIR image is:

I lpN (p) =
∆tN
∆tC

Gθ1
(gR, gB)F

(p)
θ2

(I lC(p)) (5)

Gθ1
is a one-layer neural network learning parameters

θ1 = (θ11, θ12, θ13) with a sigmoid activation h,

Gθ1
(gR, gB) = βh

(

θ11
gR

+
θ12
gB

+ θ13

)

(6)

where, β = 2 is the maximum white balancing gain.

F
(p)
θ2

calculates a weighted sum of R,G,B channels. The

weights are different for each position p. Formally,

F
(p)
θ2

(I lC(p)) =

θ21(p)I
l
R(p) + θ22(p)I

l
G(p) + θ23(p)I

l
B(p)

(7)

where I lR, I lG, I lB are the three channels of I lC , and the

weights θ2(p) = (θ21(p), θ22(p), θ23(p)) are predicted by

a filter generating network (FGN) [8].
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(a) Left RGB (b) Predicted material (c) RGB-to-NIR filter (d) Right NIR (e) Warped pseudo-NIR (f) Error b/t (d) and (e)

Common BagClothingSkinVegetationGlossyGlassLight

Figure 3. Intermediate results. (b) is the material recognition result from DeepLab [3] (explained in Section 4.2). (c)

shows the RGB-to-NIR filters corrected by exposure and white balancing. The R,G,B values represent the weights of R,G,B

channels. Some clothing fails in spectral translation because the relationship between its RGB and NIR intensities is low. The

structural similarity term in alignment loss (Equation 3) can partially solve this problem as long as the structure is preserved.

To prevent the STN from learning disparity, we use a

CNN with left-right symmetric filtering kernels (symmetric

CNN) as the FGN. Thus the FGN treats the left and right

parts around each pixel equally and does not shift the input

and therefore learns no disparity. The structure of the FGN

is the same as the DPN. The FGN accepts a RGB image and

predicts a RGB-to-NIR filter (Figure 3 (c)). Yeh et al. [41]

also proposed a symmetric filter CNN for recognition but

their filters are radial symmetric while ours are reflection

symmetric.

The STN loss matches the NIR and pseudo-NIR images:

LSTN =
1

N

∑

p∈Ω

(|I lpN (p)− Ĩ lN (p)|+ |IrN (p)− ĨrpN (p)|)

(8)

where I lpN , Ĩ lN , IrN and ĨrpN are, respectively, the pseudo-

NIR image, the warped NIR image, the NIR image, and the

warped pseudo-NIR image as defined in Section 3.1.

4. Incorporating Material-aware Confidence

into Disparity Prediction Network

Though the DPN and STN work well in many cases, they

cannot handle certain materials including lights, glass and

glossy surfaces due to unreliable matching. Matching on

these materials is hard due to large spectral change (Fig-

ure 1) and not trustworthy because it does not represent the

correct disparity (Figure 4). Such materials are common

but difficult to identify without external knowledge. As-

sessing reliability by matching score or view consistency

[32, 43] fails because unreliable regions may show high

matching scores (Figure 4) and strong view consistency. A

light source may show a different size in RGB and NIR and

thus match at its edge instead of the center. Transmitted or

reflected scenes may match perfectly but the predicted dis-

parities do not correspond to the physical surfaces.

(a) RGB patch (b) NIR patch (c) Wrong disparity

Figure 4. Unreliable matching with high matching score.

(c) is predicted by DPN without material awareness. Row 1:

the light sources showing different sizes in RGB and NIR,

and incorrectly match at the edges instead of the centers.

Row 2: matching of transmitted scene does not represent

the correct windshield disparity. Row 3: disparity of the

reflected scene does not correspond to the car surface.

Our goal is to incorporate material-aware confidence into

DPN loss (Equation 1) to solve this problem. We propose

two novel techniques: (1) Propagate the disparity from the

reliable to the unreliable regions using a new confidence-

weighted smoothing technique (Section 4.1) and (2) Ex-

tend the DPN loss function to be material-aware by creating

material-specific alignment and smoothness losses (Section

4.2). Section 4.3 discusses how to combine those two tech-

niques to solve specific unreliable materials.

4.1. Confidence­weighted Disparity Smoothing

Smoothing is a common technique to infer disparity in

unreliable regions. However, a smoothness loss allows un-

reliable regions to mislead the reliable parts by forcing them

to share similar disparity. As shown in Figure 5 (c), this re-
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sults in the disparity at the side of the car to be misled by

the wrong prediction on the windshield.

Confidence-weighted disparity smoothing uses confident

disparities to “supervise” non-confident ones. Instead of

fine-tuning [38] or bootstrapping [43], we change the back-

propagation behavior of the smoothness loss so that it can

be embedded in the DPN loss (Equation 12). Consider two

neighbor pixels p1 and p2 with predicted disparities d1 and

d2. A L1 smoothness loss is L = |d1 − d2|. Let W be all

the parameters in the DPN, then ∂L
∂W

= ∂L
∂d1

∂d1

∂W
+ ∂L

∂d2

∂d2

∂W
.

Assume that p1 is confident while p2 is unreliable. We

want d2 to follow d1 without harming d1. Let χ(·) be

the stopping gradient operator (a.k.a. ‘detach’ in PyTorch

[33]) that acts as an identity mapping in the forward pass

but stops gradients from being backpropagated through it

in the backward pass. A confidence-aware loss is L =
|χ(d1) − d2|, preventing gradients being backpropagated

through d1. ∂L
∂d1

is set to be zero during backpropaga-

tion, i.e., ∂L
∂W

= ∂L
∂d2

∂d2

∂W
. This can be extended into a

“soft” version. Generally, let p1 and p2 have confidences

c1 and c2. We define relative confidences as r1 = c1
c1+c2

and r2 = 1 − r1, and the confidence-weighted loss as

L = r1|χ(d1)− d2|+ r2|d1 − χ(d2)|.
In practice, we consider a disparity map d(x, y) and its

known confidence c(x, y) (defined in Section 4.3 using ma-

terial). We present detailed expressions for the confidences

by defining pixel neighborhood in x and y directions. The

relative confidences r+ and r− in x−direction are:

r+(x, y) = χ

(

c(x+ 1, y)

c(x+ 1, y) + c(x− 1, y)

)

(9)

and r− = 1 − r+, where the χ(·) prevents gradients to be

backpropagted to the confidence. The confidence-weighted

L1 smoothness loss along x−direction is:

Lx(d, c)(x, y) =r+(x, y)

∣

∣

∣

∣

χ(d(x+ 1, y))− d(x− 1, y)

2

∣

∣

∣

∣

+r−(x, y)

∣

∣

∣

∣

d(x+ 1, y)− χ(d(x− 1, y))

2

∣

∣

∣

∣

(10)

Ly(d, c) is defined similarly for the y−direction. Then the

complete confidence-weighted smoothness loss is:

Lcs(d, c) = Lx(d, c) + Ly(d, c) (11)

As shown in Figure 5, the use of the confidence-weighted

loss leads to better results than traditional smoothing.

4.2. Material­aware Loss Function

A DeepLab [3] network is used to identify unreliable re-

gions. It is trained separately and before the training of

the DPN and STN networks. A set of 8 material classes

(a) RGB (b) No material awareness

(c) Smoothing w/o confidence (d) Smoothing w/ confidence

Figure 5. Comparison of smoothing with and without con-

fidence. Smoothing without confidence makes the reliable

matching around the car sides be misled by the unreliable

matching on glass, which causes the predicted disparity (or-

ange) to be smaller than the correct one (red). Introducing

confidence addresses this issue.

M = {‘light’, ‘glass’, ‘glossy’, ‘vegetation’, ‘skin’, ‘cloth-

ing’, ‘bag’, ‘common’} are predicted (Figure 3). ‘Common’

refers to any material not in the other classes. Let MU be

the subset of unreliable materials in M. The DeepLab net-

work takes a stereo pair as input and predicts left-right prob-

abilities {µl
m(p), µr

m(p)} of each pixel p being material m.

To make the original DPN loss in Equation 1 material-

aware, we introduce material-specific alignment and

smoothness losses Ll
a,m and Ll

s,m respectively (similarly

for the right terms). Thus, we re-write Equation 1 as:

LDPN =λv(L
l
v + Lr

v)

+
∑

m∈M

λa,m(
1

N

∑

p∈Ω

(µl
m(p)Ll

a,m(p) + µr
m(p)Lr

a,m(p)))

+
∑

m∈M

λs,m(
1

N

∑

p∈Ω

(µl
m(p)Ll

s,m(p) + µr
m(p)Lr

s,m(p)))

(12)

For the reliable materials we use the same alignment and

smoothness terms as in Equation 3 and 4, where the def-

inition of confidence c is not required. For the unreliable

materials, we use the confidence-weighted smoothness loss

proposed in Section 4.1. We next describe how µl
m and µr

m

are used to compute the confidence c in Equation 11.

4.3. Example Loss Terms of Unreliable Materials

Here we define the unreliable materials MU = {‘light’,

‘glass’, ‘glossy’} and present their loss terms.

Light Sources: Light sources like tail-lights, brake lights,

bus route indicators and headlights result in unreliable

matching. Thus the alignment term is Ll
a,light = 0. We

assume that the light source shares the same disparity with
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Method Common Light Glass Glossy Vegetation Skin Clothing Bag Mean Time (s)

CMA [4] 1.60 5.17 2.55 3.86 4.42 3.39 6.42 4.63 4.00 227

ANCC [17] 1.36 2.43 2.27 2.41 4.82 2.32 2.85 2.57 2.63 119

DASC [25] 0.82 1.24 1.50 1.82 1.09 1.59 0.80 1.33 1.28 44.7

Proposed 0.53 0.69 0.65 0.70 0.72 1.15 1.15 0.80 0.80 0.0152

Table 1. Quantitative results. Disparity RMSE in pixels is reported for each material. CMA [4] with searching step 0.01,

ANCC [17] and DASC [25] with guided filtering [15] are tested on an Intel Core i7 6700HQ CPU. The proposed method is

tested on a single NVIDIA TITAN X (Pascal) GPU. Our method outperforms the others and reaches real-time speed.

Real Depth

Transmitted Depth

Reflected Depth

Glass CameraImage

A’
Object

B

Object

A

Figure 6. Transmitted and reflected scenes look farther than

the real glass position.

non-light neighbors. The confidence cl is computed using

1− µl
light. Then Equation 11 (smoothness term) becomes:

Ll
s,light = Lcs(d

l, 1− µl
light) (13)

Glass: Glass surfaces reflect and transmit light. We define

the alignment loss Ll
a,glass = 0 considering its unreliable

matching. But the dominated alignment term of common

materials still forces DPN to match the appearance on glass.

As illustrated in Figure 6, both the reflected and transmitted

scenes appear farther than the real position of glass. There-

fore, we assign higher confidence to closer scenes with

larger disparities. Assuming that glass can only be physi-

cally supported by ‘common’, ‘glass’, and ‘glossy’ materi-

als, we define the confidence cl = (µl
common + µl

glass +

µl
glossy)e

dl

σ . Thus the smoothness loss Ll
s,glass is:

Ll
s,glass = Lcs(d

l, (µl
common+µl

glass+µl
glossy)e

dl

σ ) (14)

where, σ is a constant parameter (details in Section 6).

Glossy Surfaces: Glossy surfaces exhibit complex specular

reflection. We adopt the alignment term of common materi-

als (Equation 3), considering that it still contains some reli-

able matching, and the smoothness term of glass (Equation

14), because the reflected scene has smaller disparity.

5. RGB-NIR Stereo Dataset

The dataset was captured by a RGB camera and a NIR

camera mounted with 56mm baseline on a vehicle, alter-

nating among short, middle and long exposures adapted

by an auto-exposure algorithm at 20Hz. Close to 1 mil-

lion 1164×858 rectified stereo frames equally distributed

amongst the three exposure levels were collected. They

were split into 12 videos, with total length of 13.7 hours.

The dataset covers campus roads, highways, downtown,

parks and residential areas captured under sunny, overcast

and dark conditions and includes materials such as lights,

glass, glossy surfaces, vegetation, skin, clothing and bags.

Reliable GPS and vehicle states (speed, vehicle pose, steer-

ing radius and traveled distance) are available for 70% of the

data. Images are resized into 582×429 in all experiments.

Material and disparity labels are added to a subset of the

middle-exposure images. The videos are split into two sets

for training (8 videos) and testing (4 videos). 3600 frames

are labeled with material segments in 8 classes (common,

light, glass, glossy, vegetation, skin, clothing, bag). 5030

sparse points on 2000 testing images across the 8 materials

are annotated with disparity. Depth sensors are not used

because they often fail on glass and light sources.

6. Experimental Results

Parameters: DPN predicts the ratio between disparity and

image width. The scaling factor η is 0.008 for the DPN

and 1/3 for the STN. The view consistency and alignment

weights are λv = 2 and λa = 1 for all materials. The

smoothness weights λs are 3000, 1000, and 80 for lights,

glass and glossy surfaces, and 25 for other materials. The

parameter in glass and glossy smoothness loss is σ = 0.005.

Training and Testing: The DeepLab [3] net is fine-tuned

from a model pre-trained on ImageNet [9], COCO [30]

and Pascal VOC [10]. DPN and STN are trained on

40, 000 sampled middle-exposure images with Adam op-

timizer [27] (batch size=16, learning rate=0.00005). They

are trained with material awareness for at least 12 epochs

after 4 warmup epochs without it, taking about 18 hours

on two TITAN X GPUs with PyTorch [33] implementation.

Only the DPN is required for testing. Negative disparities

are clamped to zero.

Comparison: We have compared with Cross-Modal Adap-

tation (CMA) [4], ANCC [17] and DASC [25]. SIFT flow

[31] search is constrained by epipolar geometry to obtain

whole image disparity in DASC. Disparity RMSE (Table

1), execution times (Table 1) and qualitative results (Figure

7) are presented. Our method outperforms the others, espe-

cially on lights, glass and glossy surfaces. Our method also

provides cleaner disparity maps and clearer object contours.
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(a) Left RGB (b) Right NIR (c) CMA [4] (d) ANCC [17] (e) DASC [25] (f) Proposed

Figure 7. Qualitative results on our dataset. Image contrast is adjusted for visualization. The proposed method provides less

noisy disparity maps and performs better on lights (row 3, 5, 6, 7, 10), glass (row 3, 5, 7) and glossy surfaces (row 5, 7, 10).
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Method Common Light Glass Glossy Vegetation Skin Clothing Bag Mean

Only RGB as DPN input 0.66 1.12 0.89 1.10 0.92 1.61 1.24 0.95 1.06

Averaging RGB as STN 0.52 0.80 0.74 0.78 0.76 1.30 1.21 1.04 0.89

Asymmetric CNN in STN 0.53 0.88 0.82 0.88 0.77 1.13 1.17 0.94 0.89

No material awareness 0.51 1.08 1.05 1.57 0.69 1.01 1.22 0.90 1.00

Ignore light sources 0.54 0.81 0.74 0.71 0.76 1.37 1.17 1.10 0.90

Ignore glass 0.56 0.74 0.97 1.08 0.75 1.06 1.02 0.86 0.88

Ignore glossy surfaces 0.63 0.71 0.71 1.23 0.79 1.12 1.09 0.94 0.90

Smoothing w/o confidence 0.53 0.69 0.71 1.20 0.85 1.06 1.12 0.81 0.87

Full proposed method 0.53 0.69 0.65 0.70 0.72 1.15 1.15 0.80 0.80

Table 2. Ablation study. Network structure changes (row 1-3) result in the increase of error generally. Removing material

awareness (row 4-7) leads to failure on corresponding materials. Smoothing without confidence (row 8) results in perfor-

mance drop. There are small fluctuations but the full method performs better in general.

(a) Left RGB (b) Right NIR (c) No material (d) Ignore lights (e) Ignore glass (f) Ignore glossy (g) Full method

Figure 8. Qualitative material ablation study. Ignoring lights results in artifacts at light sources. Ignoring glass leads to wrong

disparity predictions at windshields. Ignoring glossy surfaces causes failure at the specular top surfaces of cars.

DASC performs better on clothing, possibly due to the weak

relationship between its RGB and NIR appearances. Addi-

tionally, our real-time method is much faster than the others.

Ablation Study: We have tested three network structure

choices: “Only RGB as DPN input”, “Averaging RGB as

STN” averaging R, G and B channels as pseudo-NIR, and

“Asymmetric CNN in STN”. Table 2 shows that overall

the full method outperforms the other choices. We have

also studied fully or partially removing material awareness.

Table 2 and Figure 8 show that ignoring lights, glass or

glossy surfaces fails on corresponding materials with small

fluctuations on other materials. It means that the proposed

material-specific loss functions as designed. Table 2 also

shows that smoothing with confidence is useful.

7. Conclusion and Discussion

We presented a deep learning based cross-spectral stereo

matching method without depth supervision. The proposed

method simultaneously predicts disparity and translates a

RGB image to a NIR image. A symmetric CNN is utilized

to separate geometric and spectral differences. Material-

awareness and confidence-weighted smoothness are intro-

duced to handle problems caused by lights, glass and glossy

surfaces. We build a large RGB-NIR stereo dataset with

challenging cases for evaluation.

Our method outperforms compared methods, especially

on challenging materials, although it fails on some clothing

(a) Left RGB (b) Right NIR (c) Predicted disparity

Figure 9. Failure cases. Row 1-3: failing to handle large

spectral difference of clothing, treating shadow edge as ob-

ject edge, and mismatching noise.

with large spectral difference, shadow edges and dark noisy

regions (Figure 9). Redesigning the loss function might

help address those problems. In the future, we will extend

our work to other spectra (SWIR, MWIR, thermal) and to

data obtained from mobile consumer devices.
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rich features from rgb-d images for object detection and seg-

mentation. In ECCV, 2014. 1

[15] K. He, J. Sun, and X. Tang. Guided image filtering. In ECCV,

2010. 6

[16] R. He, X. Wu, Z. Sun, and T. Tan. Learning invariant deep

representation for nir-vis face recognition. In AAAI, 2017. 1

[17] Y. S. Heo, K. M. Lee, and S. U. Lee. Robust stereo matching

using adaptive normalized cross-correlation. TPAMI, 2011.

2, 6, 7

[18] Y. S. Heo, K. M. Lee, and S. U. Lee. Joint depth map and

color consistency estimation for stereo images with different

illuminations and cameras. TPAMI, 2013. 2

[19] S. Hwang, J. Park, N. Kim, Y. Choi, and I. So Kweon. Mul-

tispectral pedestrian detection: Benchmark dataset and base-

line. In CVPR, 2015. 1

[20] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift. In

ICML, 2015. 3

[21] M. Jaderberg, K. Simonyan, A. Zisserman, and

K. Kavukcuoglu. Spatial transformer networks. In

NIPS, 2015. 2

[22] H.-G. Jeon, J.-Y. Lee, S. Im, H. Ha, and I. So Kweon. Stereo

matching with color and monochrome cameras in low-light

conditions. In CVPR, 2016. 2

[23] N. D. Kalka, T. Bourlai, B. Cukic, and L. Hornak. Cross-

spectral face recognition in heterogeneous environments: A

case study on matching visible to short-wave infrared im-

agery. In IJCB, 2011. 1

[24] P. Kaur, K. J. Dana, and G. Oana Cula. From photography to

microbiology: Eigenbiome models for skin appearance. In

CVPR Workshops, 2015. 1

[25] S. Kim, D. Min, B. Ham, S. Ryu, M. N. Do, and K. Sohn.

Dasc: Dense adaptive self-correlation descriptor for multi-

modal and multi-spectral correspondence. In CVPR, 2015.

2, 6, 7

[26] S. Kim, D. Min, S. Lin, and K. Sohn. Deep self-correlation

descriptor for dense cross-modal correspondence. In ECCV,

2016. 2

[27] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In ICLR, 2015. 6

[28] Y. Kuznietsov, J. Stückler, and B. Leibe. Semi-supervised

deep learning for monocular depth map prediction. In CVPR,

2017. 2

[29] J. Lezama, Q. Qiu, and G. Sapiro. Not afraid of the dark:

Nir-vis face recognition via cross-spectral hallucination and

low-rank embedding. In CVPR, 2017. 1

[30] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft coco: Com-

mon objects in context. In ECCV, 2014. 6

[31] C. Liu, J. Yuen, and A. Torralba. Sift flow: Dense corre-

spondence across scenes and its applications. TPAMI, 2011.

6

[32] C. Mostegel, M. Rumpler, F. Fraundorfer, and H. Bischof.

Using self-contradiction to learn confidence measures in

stereo vision. In CVPR, 2016. 4

[33] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-

Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-

matic differentiation in pytorch. In NIPS Workshops, 2017.

5, 6

[34] P. Pinggera, T. P. Breckon, and H. Bischof. On cross-spectral

stereo matching using dense gradient features. In BMVC,

2012. 2
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