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Abstract

Human actions in videos are three-dimensional (3D) sig-

nals. Recent attempts use 3D convolutional neural networks

(CNNs) to explore spatio-temporal information for human

action recognition. Though promising, 3D CNNs have not

achieved high performanceon on this task with respect to

their well-established two-dimensional (2D) counterparts

for visual recognition in still images. We argue that the high

training complexity of spatio-temporal fusion and the huge

memory cost of 3D convolution hinder current 3D CNNs,

which stack 3D convolutions layer by layer, by outputting

deeper feature maps that are crucial for high-level tasks. We

thus propose a Mixed Convolutional Tube (MiCT) that inte-

grates 2D CNNs with the 3D convolution module to gener-

ate deeper and more informative feature maps, while reduc-

ing training complexity in each round of spatio-temporal fu-

sion. A new end-to-end trainable deep 3D network, MiCT-

Net, is also proposed based on the MiCT to better explore

spatio-temporal information in human actions. Evaluations

on three well-known benchmark datasets (UCF101, Sport-

1M and HMDB-51) show that the proposed MiCT-Net sig-

nificantly outperforms the original 3D CNNs. Compared

with state-of-the-art approaches for action recognition on

UCF101 and HMDB51, our MiCT-Net yields the best per-

formance.

1. Introduction

Human action recognition is a fundamental yet chal-

lenging task with considerable efforts having been inves-

tigated for decades. Motivated by the notable-success of

convolutional neural networks (CNNs) for visual recogni-

tion in still images, many recent works take advantage of

deep models to train end-to-end networks for recognizing

actions in videos [25, 9, 18, 35, 40, 20, 30], which sig-

nificantly outperform hand-crafted representation learning

methods [33, 23, 32, 17].
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Figure 1. Illustration of our proposed MiCT that integrates 2D

CNNs with the 3D convolution for the spatio-temporal feature

learning.

Human actions in video sequences are three dimensional

(3D) spatio-temporal signals. Jointly modeling spatio-

temporal information via a 3D CNN in an end-to-end deep

network provides a natural and efficient approach for action

recognition. In spite of the large progress made by incorpo-

rating 3D CNN deep networks [30, 31, 11], the performance

of action recognition in videos is still far from satisfactory

compared with what has been achieved by 2D CNNs for

visual recognition in images. Furthermore, state-of-the-art

results for action recognition are obtained by a two-stream-

like framework leveraging 2D CNNs pre-trained on huge

image datasets [35, 7], though this approach does not pro-

vide systematic justification for its design choice [10].

Reconsidering current 3D CNN networks for action

recognition, we notice that most of these methods share

the same architecture that stacks 3D convolutions layer by

layer, as proposed in C3D [30]. Since the spatial and tem-

poral signals get coupled with each other through each 3D

convolution, it becomes much more difficult to optimize the

network with dozens of such 3D convolution layers because

of the exponential growth of the solution space with respect

to the case of 2D CNNs. Besides, the memory cost of 3D

convolution is too high to be afforded in practice when con-

structing a deep 3D CNN, which makes the features of the

current 3D CNNs usually not deep enough. For example, an

11-layer 3D CNN requires nearly 1.5 times as much mem-

ory as a 152-layer Residual Network. Based on the above

observations, we believe it is very beneficial for a 3D CNN

to limit the number of 3D convolution layers while increas-

ing the depth of the feature maps. There may seem to be
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a conflict between limiting the number of convolutions and

increasing the depth of feature maps. The efficiency of the

2D convolution makes this a possibility.

In this paper, we present a new deep architecture to

address this problem and improve the performance of 3D

CNNs for action recognition with our proposed Mixed

2D/3D Convolutional Tube (MiCT). The MiCT enables

the feature map at each spatio-temporal level to be much

deeper prior to the next spatio-temporal fusion, which in

turn makes it possible for the network to achieve better per-

formance with fewer spatio-temporal fusions, while reduc-

ing the complexity of each round of spatio-temporal fusion

by using the cross-domain residual connection. In contrast

to the 3D CNNs that stack the 3D convolution layer by

layer, the proposed MiCT, as shown in Fig.1, integrates 3D

CNNs with 2D CNNs to enhance the feature learning with

negligible increase in memory usage and complexity. Ex-

periment results show that our proposed deep framework

MiCT-Net with MiCT significantly enhances the perfor-

mance of 3D CNNs for spatio-temporal feature learning and

achieves state-of-the-art performance on three well-known

benchmark datasets for action recognition.

2. Related Work

There exists an extensive body of literature on human

action recognition. Here we outline work involving deep

features and classify the related work into two categories,

2D CNN and 3D CNN based approaches, according to the

convolutions used in feature learning.

2D CNN based. To explore the spatio-temporal informa-

tion in human actions, the two-stream architecture is first

proposed in [25] where two 2D CNNs are applied to the ap-

pearance (RGB frames) and motion (stacked optical flow)

domains, respectively. Based on this architecture, several

mechanisms are presented to fuse the two networks over

the appearance and motion [15, 11, 9]. Li et al. extend the

architecture via the multi-granular structure [18, 19]. A key

volume mining deep framework is designed by Zhu et al. to

identify key video clips and perform classification simul-

taneously [41]. Temporal segment networks is proposed

which adopts a sparse temporal sampling strategy to enable

long-range temporal observations [35].

On the other hand, early attempts to incorporate LSTM

with traditional features have shown the potential of the

LSTM-RNN network for modeling spatio-temporal infor-

mation in action recognition [1, 2]. LSTM networks are

employed to combine the frame-level features of 2D CNNs

to explicitly model spatio-temporal relationships [40, 8].

Srivastava et al. [27] make use of LSTMs in an encoder-

decoder framework for unsupervised video representation.

Attention models are also presented based on the recurrent

networks to weight the important frames [24] or highly rel-

evant spatio-temporal locations as well [20].

Among these approaches, state-of-the-art performance

is achieved in several large action databases. How-

ever, their success depends greatly on hand-crafted opti-

cal flow information, which is computationally expensive,

and pre-trained 2D CNN models with huge datasets. The

frame/optical flow based feature learning leaves the tempo-

ral evolution across consecutive frames not fully exploited

[22]. In contrast, our scheme integrates 2D CNNs with the

3D CNNs for feature learning so that it is able to better

exploit spatio-temporal information and benefit from pre-

trained 2D CNNs, while requiring no additional compli-

cated hand-crafted optical flows.

3D CNN based. The 3D CNN for action recognition

was first presented in [14] to learn discriminative features

along both spatial and temporal dimensions. Later, the C3D

feature along with the corresponding 3D CNN architectures

are presented in [30]. The out-of-the-box C3D feature has

since been widely employed in many subsequent works on

action recognition and detection [31, 21, 6, 39, 37, 4]. Varol

et al. observe that utilizing a C3D network with longer

temporal information can largely boost performance [31].

Wang et al. propose spatio-temporal pyramid pooling with

LSTM to deal with arbitrary spatial and temporal sizing

[37]. The performance of 3D CNNs is further improved by

employing more complex spatio-temporal fusion strategies

[7]. There are a few works that focus on ameliorating the

downside of the 3D convolution based framework. Regard-

ing 2D CNNs, 3D CNNs dramatically increase the number

of parameters by extending spatial filters to spatio-temporal

ones, thus greatly increasing both complexity and memory

usage. To mitigate this drawback, Sun et al. factorize the

3D convolution kernel into a combination of a 2D spatial

kernel and a 1D temporal kernel [28]. Similarly, Qiu et

al. replace spatio-temporal 3D convolution with spatial and

temporal convolutions in a residual connection style [22],

which means these schemes are no longer 3D CNNs.

As mentioned before, all these 3D CNNs for action

recognition follow the same structure - stacking the 3D con-

volutional module layer by layer. Frequent spatio-temporal

fusions in the structure drastically increase the difficulty of

optimizing the whole network and restrict the depth of fea-

ture maps in instances of limited memory resources. We ad-

dress this problem by proposing a Mixed Convolution Tube

(MiCT), which enables the 3D CNN to incorporate fewer

3D convolutions while also empowering feature learning

by taking advantage of 2D CNNs to achieve better perfor-

mance.

3. MiCT and Deep MiCT Network

In this section, we start with a brief introduction of the

3D convolution. We then give a detailed description of our

proposed MiCT. Lastly, our simple yet efficient deep net-

work, MiCT-Net, is presented for human action recognition.
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Figure 2. Illustration of a 3D convolution. The convolution kernels

slide along both the spatial and temporal dimensions of the input

3D signal and generate the 3D spatio-temporal feature maps.

3.1. 3D Convolution

A 3D spatio-temporal signal, e.g. a video clip, can be

represented as a tensor with a size of T×H×W×C, where

T,H,W,C denotes the temporal duration, height and width

in the spatial domain, and number of channels, respectively.

Kernels of a 3D convolution layer are then formulated as

a 4D tensor K ∈ R
nk×tk×hk×wk (we omit the channel di-

mension hereafter for simplicity), where lk, hk, wk are the

kernel size for the T,H , and w dimensions, and nk denotes

the number of kernels. As illustrated in Fig. 2, a 3D con-

volution layer takes the input 3D spatio-temporal features

V = {vt,h,w} and outputs the 3D dimensional feature map

O = {ot,h,w} by implementing convolution along both the

spatial and temporal dimensions of the inputs (the stride size

of the convolution is set to 1 for simplicity), which can be

formulated as

O = K ⊗V, where

ot0,h0,w0
= [q1t0,h0,w0

, q2t0,h0,w0
, ..., q

nk

t0,h0,w0
]T ,

qnt0,h0,w0
=

∑

t,w,h

Kn,t,w,h ·Vt0h0w0

t,w,h .

(1)

Here V
t0h0w0 is the sliced tensor that starts from the lo-

cation (t0, h0, w0) in V and has the same size as the kernel

Kn. qnt0,h0,w0
denotes the value at (t0, h0, w0) on the nth

feature map output by the nth 3D convolution kernel.

3.2. MiCT

A 3D convolution couples spatio-temporal signals in an

effort to effectively extract spatio-temporal features. How-

ever, when stacked together to form 3D CNNs, it also in-

creases the difficulty of optimization, hinders 3D CNNs

from generating deeper feature maps for high-level tasks

due to unaffordable memory usage and high computational

cost, and raises the demand on huge training sets. All

these facts together limit the performance of current exist-

ing 3D CNNs on action recognition. In order to address

Figure 3. Illustration of MiCT that integrates 2D CNNs into 3D

convolution for feature learning. In each MiCT, feature maps gen-

erated by the 3D convolutional module (green) are added to the

ones produced by the residual 2D convolutional module (orange)

on sampled 2D inputs. The combined feature maps are then fed

into the concatenated 2D convolutional module (blue) to obtain

the final feature maps.

these problems, we propose introducing 2D CNNs, which

can be trained effectively, constructed deeply, and learned

with huge datasets, to 3D convolution modules and form a

new 3D convolution unit MiCT to empower feature learn-

ing, as illustrated in Fig.3. It integrates 2D convolutions

with 3D convolutions to output much deeper feature maps

at each round of spatio-temporal fusion. We propose mix-

ing 3D and 2D convolutions in two ways, i.e. concatenating

connections and cross-domain residual connections.

3.2.1 Concatenating Connections

Fig. 4 illustrates the concatenated connection of 2D and 3D

convolutions in the MiCT. We use MiCTcon to represent

the MiCT with only the concatenate connection hereafter.

Denoting the feature map O at time t as Ot, we have

O
t = M(Vt)

= K ⊗V
t,

(2)

where V
t ∈ R

lk×h×w is the sliced tensor from time t to

time t+ lk. Since M(·) only outputs linearly fused spatio-

temporal feature maps based on Eq.(1) and (2), a 3D CNN

has to stack enough of M(·) for deep and high-level fea-

ture maps which requires dynamically increased memory

usage, training samples, and training complexity. We thus

propose enhancing M(·) by a deeper and capable alterna-

tive G(·) to extract much deeper features during every round

of spatio-temporal fusion. G(·) is supposed to meet three re-

quirements. It should be computationally efficient, support

end-to-end training, and be capable of feature learning for

2D and 3D signals. To meet these requirements, we design

the function G(·) by concatenating 2D CNNs after the 3D

convolution to provide a very efficient deep feature extrac-

tor, denoted as

G(·) = H(M(·)), (3)
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Figure 4. MiCT with concatenated connections. For an input 3D

signal, the 3D convolution fuses spatio-temporal information and

obtains intermediate feature maps which are fed into the 2D con-

volution block to generate the final feature maps.

where H(·) denotes the mapping function of a 2D convo-

lution block. In other words, feature maps of a 3D input

V using G(·) are achieved by coupling the 3D convolution

with the 2D convolution block serially in which the 3D con-

volution enables spatio-temporal information fusion while

the 2D convolution block deepens feature learning for each

2D output of the 3D convolution.

3.2.2 Cross-Domain Residual Connections

The MiCT with only a cross-domain residual connection,

denoted as MiCTres, is illustrated in Fig. 5. It introduces

a 2D convolution between the input and output of the 3D

convolution to further reduce spatio-temporal fusion com-

plexity and facilitate the optimization of the whole network.

Following the notations in Eq. (1), we have

o
′

t0,h0,w0
= ot0,h0,w0

+ S
t0
h0,w0

,

where S
t0 = H

′

(Vt0).
(4)

Here V
t0 ∈ R

h×w is the sliced tensor of input V at time

t0, St0
h0,w0

refers to the value at (h0, w0) on S
t0 obtained by

H
′

(·), and H
′

(·) denotes a 2D convolution block. Unlike

the residual connections in previous work [12, 9], the short-

cut in our scheme is cross-domain, where spatio-temporal

fusion is derived by both a 3D convolution mapping with re-

spect to the full 3D inputs and a 2D convolution block map-

ping with respect to the sampled 2D inputs. We propose

a cross-domain residual connection based on the observa-

tion that a video stream usually contains lots of redundant

information among consecutive frames, resulting in redun-

dant information in feature maps along the temporal dimen-

sion. By introducing a 2D convolution block to extract the

very informative but static 2D features, the 3D convolution

in MiCTres only needs to learn residual information along

the temporal dimension. Thus the cross-domain residual

connection largely reduces the complexity of MiCT in the

learning for 3D convolution kernels.

Figure 5. MiCT with a cross-domain residual connection. Spatio-

temporal fusion is achieved by both the 2D convolution block to

generate stationary features and 3D convolution to extract tempo-

ral residual information.

Our proposed MiCT combines the two connections as

shown in Fig. 3 and achieves the best performance among

the three configurations MiCTcon, MiCTres, and MiCT,

which will be demonstrated in Section 4.

3.3. Deep MiCT Network

We propose a simple yet efficient deep MiCT Network

(MiCT-Net in short) by stacking the MiCT together. The

MiCT-Net takes the RGB video sequences as inputs and is

end-to-end trainable. As shown in Fig. 6, it consists of four

MiCTs, which means only four 3D convolutions are em-

ployed. For the 2D convolution blocks in each MiCT block,

we partially follow the designs of BN-inception [29]. More

details of the network architecture are provided in Table 3.3.

The inception in the table refers to the architecture as shown

at the top-right corner of Fig. 6. The batch normalization

and ReLU layer after each convolution are omitted for sim-

plicity. We also employ global pooling along the temporal

dimension in the last layer of the network to enable the net-

work to accept arbitrary-length videos as inputs.

Regarding the baseline C3D architecture [30, 31], the

MiCT-Net contains fewer 3D convolutions for spatio-

temporal fusion while it produceing deeper feature maps

and limiting the complexity of the entire deep model. More-

over, unlike traditional 3D CNNs, our framework is able

to take advantage of 2D models pre-trained on large im-

age datasets. The pre-trained parameters on large image

datasets potentially provide MiCT with more advanced ini-

tialization in 2D convolution blocks for feature learning.

4. Experiments

In this section, we first introduce the evaluation datasets,

data augmentation, and training configuration used in our

tests. We then evaluate the performance of our scheme by

comparisons to both the baseline 3D CNN and state-of-the-

art approaches. Regarding the MiCT-Net, we perform eval-

uations with three configurations, MiCTcon, MiCTres, and

MiCT, respectively, which also provide an ablation study of

our MiCT for human action recognition.
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channel feature map at time t (n=192, 576, 1056 in MiCT Block-1/2/3, respectively). The architecture details of each Incept. block are

shown in the top-right area of the figure.

Type M(·) H(·) H
′

(·)
size / stride size / stride size / stride

block-1 3x7x7x64/(1,2) 1x1x64/1 7x7x64/2

Maxpool/(1,2) 3x3x192/1 Maxpool/2

block-2 3x3x3x256/(2,1) 2xInception 1xInception

block-3 3x3x3x576/(2,1) 4xInception 1xInception

block-4 3x3x3x1024/(2,1) 1xInception 1xInception

pooling global pooling on spatial dimension

fc 1024× num classes

pooling global pooling

Table 1. Architecture of MiCT-Net. The size and stride of M(·)
are denoted in time × height × width × number of kernels

and (stridetemporal, stridespatial), respectively. The sizes and

strides of both H(·) and H
′

(·) are shown in height × width ×
number of kernels and stridespatial, respectively.

4.1. Experiment Settings

Datasets. Three well-known benchmarks, UCF101[26],

Sport1M[15], and HMDB-51[16], are used in the evalua-

tions. UCF101 consists of 13,320 manually labeled videos

from 101 action categories. It has three train/test splits.

Each split has around 9,500 videos for training and 3,700

videos for testing. HMDB51 is collected from various

sources, e.g. web videos and movies, which proves to be

realistic and challenging. It consists of 6,766 manually la-

beled clips from 51 categories. Sport1M consists of 1.1

million automatically labeled sports videos from 487 cat-

egories.

Data augmentation. Our data augmentation includes

random clipping, brightness and contrast adjustment, and

temporal sampling. We resize each frame to 256 × 340
and crop 224 × 224 regions randomly. We also randomly

flip frames horizontally and subtract the mean values from

the R, G and B channels. Random brightness and contrast

adjustments are also applied to each frame. Moreover, we

adopt multiple down-sampling rates along the temporal di-

mension to generate training samples with multiple tempo-

ral resolutions to further diversify the pattern of an action.

All random operations are consistent across all frames in

one video sequence in training. During testing, we only use

central cropping and a fixed down-sampling rate along the

temporal dimension for simplicity.

Training configuration. We use the Adam Gradient De-

scent optimizer with an initial learning rate of 1e−4 to train

the MiCT-related networks from scratch. The drop out ratio

and weight decay rate are set to 0.5 and 5e−5, respectively,

for all datasets (except HMDB51 for which the dropout ra-

tio is 0.8). The gradient descent optimizer is adopted with

a momentum of 0.9 to train our MiCT-Net initialized with

the ImageNet pre-trained model. The initial learning rate is

1e−5. We employ the higher drop out ratio of 0.9 and the

weight decay rate of 5e−4 to prevent over-fitting.

4.2. Comparison with the Baseline 3D CNN

We first evaluate the performance of our MiCT-Net in

comparison with that of the baseline 3D CNN approach

called C3D [30]. C3D is a typical and popular 3D CNN for

action recognition which stacks the 3D convolutions layer

by layer. We choose C3D as our baseline since it is the

most direct way to show what has been improved by MiCT.

Table 2 exhibits the comparison results in terms of mean

accuracy. The performance is evaluated at both clip and

video levels. We also implement a C3D with batch normal-

ization (BN) [13] for fairness comparison as our MiCT con-

tains the BN module. Considering that long-term temporal

inputs can significantly boost the performance of C3D [31],

we evaluate the accuracy using inputs at the length of both

35 and 16 frames (except the test on Sports1M which only
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Method Aux-Data BN Test UCF101(16f / 35f) HMDB51(16f / 35f) Sport1M(16f) Model Size Speed

C3D - N Clip 44.0% / 47.9% 37.0% / 43.2% 44.9% 321MB -

Video - / 50.2% 43.9% / 46.6% 60.0%

C3D - Y Clip 45.8% / 49.6% 38.4% / 44.9% 45.4% - -

Video 49.3% / 51.7% 45.7% / 48.0% 60.8%

MiCTcon-Net - Y Clip 49.7% / 53.9% 41.2% / 48.6% 47.0% - -

Video 53.6% / 56.1% 48.3% / 51.9% 63.4%

MiCTres-Net - Y Clip 46.6% / 50.4% 38.9% / 45.5% 45.9% - -

Video 50.1% / 52.8% 46.5% / 48.4% 61.2%

MiCT-Net - Y Clip 50.9% / 56.5% 43.9% / 51.1% 47.6% 221MB -

Video 54.6% / 58.7% 50.4% / 54.3% 64.1%

MiCT-Net ImageNet Y Clip 81.4% / 85.1% 48.1% / 55.3% - 221MB -

Video 84.9% / 87.3% 55.2% / 58.0% -

C3D(1 Net) Sport1M N Clip - / - - / - - 321MB 323fps

+I380K Video 82.3% / - - / - -

MiCT-Net ImageNet Y Clip 84.3% / 87.8% - / - - 221MB 394fps

+Sport1M Video 88.6% / 89.1% - / - -

Table 2. Comparison with C3D on UCF101, HMDB51 and Sport1M. The performance of C3D with batch normalization and C3D with

35 frames for training are reported based on our experimental results. It can be observed that the 3D CNN with either the concatenated

connection (MiCTcon-Net) or the cross-domain residual connection (MiCTres-Net) outperforms the traditional 3D CNN. Leveraging the

ImageNet pre-trained model can further boost performance of the MiCT-Net.

involves 16-frame inputs). Experiment results shown in this

table demonstrate that MiCT-Net significantly outperforms

the baseline approach on all three benchmarks under differ-

ent test conditions. It is also worth noting that C3D uses

eight 3D convolutions while our model only uses four 3D

convolutions but achieves better performance, which indi-

cates that the MiCT can learn and represent spatio-temporal

features much more efficiently and accurately than 3D con-

volution.

UCF101. We show the mean accuracy of different mod-

els on UCF101 in Table 2. The official data splits (3 splits)

are used for both training and testing. We can observe that

all three MiCT-based networks outperform the C3D net-

work. Taking the test condition Video/35f/with BN as an

example, the MiCTcon-Net increases accuracy by up to 6%
and 4.4% compared with the C3D and C3D with BN, re-

spectively, which demonstrates the importance of employ-

ing the concatenated 2D convolution blocks for enhanced

spatio-temporal feature mapping. The MiCT-Net combin-

ing both MiCTres and MiCTcon can further improve per-

formance by 6.8%. The performance of our MiCT-Net can

be boosted to 89.1% by leveraging the ImageNet pre-trained

model, which leads to nearly 40% higher performance than

that of C3D. This makes the proposed MiCT-Net much

more practical when only a limited number of training sam-

ples is available. Moreover, given a larger training set, i.e.

Sport1M to MiCT and I380K to C3D, the MiCT-Net still

outperforms C3D with a 6.3% gain in accuracy.

HMDB51. Similar enhancements are achieved by the

MiCT on HMDB51. Results show that the improvements

brought by MiCTcon-Net vary from 4.2% to 5.4% and 2.8%

to 3.9% compared to C3D with and without BN at the video

level. The MiCTres contributes relatively less which may

partially be due to the complicated temporal variations in

this dataset. Putting these two together, the MiCT-Net ob-

tains an additional 2.7% gain on average, and achieves 58%
accuracy when using the ImageNet pre-trained model.

Sport1M. Sport1M is a very challenging dataset which

contains long, weakly annotated videos. As some URLs of

Sport1M are invalid, we can only access about 90% of the

whole dataset. Experiments are conducted on these avail-

able data using the official data split. Results in this table

show that our MiCT-Net can still outperform C3D with BN

with a 3.3% gain in accuracy.

In addition to accuracy, we also evaluate the model sizes

of both C3D and our MiCT. It is clear that the model size of

MiCT is much smaller. All these faces show that the pro-

posed MiCT-Net significantly outperforms the baseline ap-

proach C3D. It is more capable of handling spatio-temporal

signals than 3D convolution and each component of the

MiCT does help increase performance. It should be noted

that the design of the MiCT makes it possible to use pre-

trained models on very large image datasets, which brings

considerable benefits for training and final performance.

4.3. Comparison with the State­of­the­Art Methods

We further demonstrate the advances of the proposed

MiCT in comparison with state-of-the-art works for action

recognition. Related results on UCF101 and HMDB51 are

shown in Tables 3 and 4, respectively.

Our MiCT-Net is able to explore spatio-temporal infor-

mation by requiring only RGB frames as inputs. In Ta-
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Figure 7. Visualization of the feature maps in the first MiCT block. It can be observed that those feature maps are very sensitive to object

edges and regions containing large motions. Also, they are visually very similar to dynamic image [3] or motion blur, which records action

changes along the temporal dimension.

Method UCF101 HMDB51

Slow fusion [15] 65.4% -

C3D [30] 44.0%1 43.92%

LTC [31] 59.9% -

Two-stream [25] 73.0% 40.5%

Two-stream fusion [11] 82.6% 47.1%

Two-stream+LSTM [40] 82.6% 47.1%

Transformations [36] 81.9% 44.1%

TSN [35] 85.7% 54.6%3

FST CN [28] 71.3% 42.0%

ST-ResNet [9] 82.2% 43.4%

Key-volume mining CNN [41] 84.5% -

TLE(C3D CNN) [7] 86.3% 60.3%

TLE(BN-Inception) [7] 86.9% 63.2%

I3D [5] 84.5% 49.8%

P3D ResNet [22] 88.6% -

MiCT-Net 88.9% 63.8%

Table 3. Performance comparison with the state-of-the-art results

on UCF101 and HMDB51 with only RGB frames as inputs. The

results with 1 are read from the figure in [30], 2 is the results re-

ported in [31], and 3 is obtained from the released code of the

paper.

ble 3, we show the performance comparison with state-of-

the-art action recognition methods using only RGB inputs

reported by those works for a fair comparison. The re-

sult of MiCT-Net is achieved by using inputs at the length

of 75 frames. It can be observed that on both datasets,

our MiCT-Net achieves the best performance, 88.9% on

UCF101 and 63.8% on HMDB51, among all the compared

methods. Even some of these referred works adopt ad-

vanced spatio-temporal fusion methods to the feature maps

Method UCF101 HMDB51

C3D + IDT [30] 90.4% -

TDD + IDT [34] 91.5% 65.9%

LTC [31] 91.7% 64.8%

LTC + IDT [31] 92.7% 67.2%

ST-ResNet + IDT [9] 94.6% 70.3%

P3D ResNet + IDT [22] 93.7% -

Two-stream+LSTM [40] 88.6% -

Two-stream(conv. fuse) [11] 92.5% 65.4%

Transformations [36] 92.4% 62.0%

TLE [7] 95.6% 71.1%

TSN (3 modalities) [35] 94.2% 69.4%

Spatio-temporal Network [38] 94.6% 68.9%

Two-stream MiCT-Net 94.7% 70.5%

Table 4. Performance comparison with state-of-the-art results on

UCF101 and HMDB51.

of the 2D CNNs [7, 41, 40], or learn very deep spatio-

temporal features by either decomposing a 3D convolution

into a 2D convolution along the spatial dimension and a 1D

convolution along the temporal dimension to model spatio-

temporal information [22] or directly inflating the state-

of-the-art 2D CNN architecture into 3D CNN to take ad-

vantage of well-trained 2D models [5], the MiCT-Net still

performs the best. Regarding 3D convolution based meth-

ods with the best accuracy up to 59.9% on UCF101 and

52.9% on HMDB51, our proposed MiCT-Net significantly

enhances performance which indicates the large efficiency

and accuracy brought by the proposed MiCT.

Additional motion information has proven helpful for

action recognition in many previous works. Two-stream

based proposals explicitly employ motion features, e.g. op-
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tical flow, to boost performance. For example, the accu-

racy of using both RGB image and optical flow with LSTM

increases to 88.1% in two-stream+LSTM [40]. Even so,

our results are still comparable, which shows the efficiency

and potential of the MiCT-Net. But the performance of the

MiCT-Net with only RGB frames as inputs is still limited

when considering the very sophisticated and well-designed

frameworks that utilize hand-crafted motion features, such

as TSN [35], a two-stream based framework that achieves

94.2% accuracy.

However, the MiCT is primarily proposed to enhance 3D

CNNs. It can be applied to any framework that incorpo-

rates 3D convolutions. Some recent work use two-stream

3D CNNs for action recognition [37, 7]. Similar to the two-

stream 2D CNNs, both optical flow and RGB frames can be

employed as inputs. To better demonstrate the effectiveness

of our MiCT, we present a simple two-stream MiCT-Net,

where one stream takes as inputs the RGB frame and the

other stream takes as inputs the optical flow. The architec-

ture of the RGB stream is identical to the MiCT-Net, and

the flow stream is almost the same as the MiCT-Net, except

that we expand the channel dimension of the first convo-

lution layer from 3 to 10. This is because for each RGB

frame, we use 5 optical flow images around it and each flow

image consists of two channels (x and y). We separately

optimize the RGB stream and flow stream during training

and simply average the inferences of the two streams as the

final predictions during testing.

We compare the performance of the two-stream MiCT-

Net with state-of-the-art works on both UCF101 and

HMDB51. As shown in the Table 4, the performance of

the MiCT-Net becomes further improved by incorporating

the extra flow stream, which achieves state-of-the-art results

of 94.7% on UCF101 and 70.5% on HMDB51. We claim

that although 3D convolution is supposed to extract tem-

poral information without requiring hand-crafted features,

the optical flow still provides more detailed motion infor-

mation that is very beneficial for action recognition. Please

note that unlike many other two-stream solutions that em-

ploy lots of sophisticated designs, such as spatio-temporal

residual connection [9], fusing the mid-layer features [11]

or encoding the last layer features [7], we only employ a

naive two-stream architecture with the proposed MiCT-Net

to achieve state-of-the-art performance. Experiments and

evaluations for different two-stream architectures to boost

the performance are outside the scope of this paper.

4.4. Visualization

In order to better illustrate what MiCT has learned, we

provide some feature maps output by the first MiCT block

in Fig.7. Here we show two examples. The top one, Taichi,

has slow motion. The feature maps learned by MiCT fo-

cus more on contextual information, such as body parts and

background edges, which is very important for slow motion

recognition, while the bottom one, LongJump, contains fast

motion. Correspondingly, the feature maps learned with the

MiCT focus more on the motion area and are visually very

similar to motion blur, which indicates that the learned fea-

ture maps are trying to capture the time. Based on the above

observation, our MiCT seems to be adaptive to the content,

which is reasonable and consistent with human intuition.

5. Conclusion

In this paper, we propose the Mixed 2D/3D Convo-

lutional Tube (MiCT) which enables 3D CNNs to ex-

tract deeper spatio-temporal features with fewer 3D spatio-

temporal fusions and to reduce the complexity of the infor-

mation that a 3D convolution needs to encode at each round

of spatio-temporal fusion. We further present a deep net-

work MiCT-Net based on the MiCT which is end-to-end

trainable for human action recognition. Experiment results

demonstrate that our MiCT-Net significantly outperforms

traditional 3D CNNs for action recognition. Morever, the

MiCT-Net achieves the best performance on both UCF101

and HMDB51 in comparison to state-of-the-art approaches

with RGB input. We further show that the MiCT can be

applied to other 3D CNN architectures, e.g. two-stream 3D

CNNs, to achieve state-of-the-art performance, indicating

that the proposed MiCT is general and efficient.

One explanation of the performance improvement of the

MiCT-Net could be that a deep network generally benefits

by deepening the network. Another is based on the observa-

tion that there is stronger temporal redundancy than a spa-

tial one in videos. We therefore propose using additional

2D CNNs after each 3D convolution to further enhance the

abstraction ability on the spatial domain. We also leverage

the concept of ResNet to propose a cross-domain shortcut to

facilitate 3D feature learning. However, the current MiCT-

Net is very simple, without a comprehensive exploration of

architecture, which indicates that the potential enhancement

of MiCT-Net is very promising.
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