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Abstract

Scale problem lies in the heart of object detection. In this

work, we develop a novel Scale-Transferrable Detection

Network (STDN) for detecting multi-scale objects in im-

ages. In contrast to previous methods that simply combine

object predictions from multiple feature maps from differ-

ent network depths, the proposed network is equipped with

embedded super-resolution layers (named as scale-transfer

layer/module in this work) to explicitly explore the inter-

scale consistency nature across multiple detection scales.

Scale-transfer module naturally fits the base network with

little computational cost. This module is further integrated

with a dense convolutional network (DenseNet) to yield a

one-stage object detector. We evaluate our proposed archi-

tecture on PASCAL VOC 2007 and MS COCO benchmark

tasks and STDN obtains significant improvements over the

comparable state-of-the-art detection models.

1. Introduction

Scale problem lies in the heart of object detection. In

order to detect objects of different scales, a basic strategy

is to use image pyramids [1] to obtain features at differ-

ent scales. However, this will greatly increase memory and

computational complexity, which will reduce the real-time

performance of object detectors.

In recent years, convolutional neural networks(CNN)

[18] have achieved great success in computer vision tasks,

such as image classification [17], semantic segmentation

[23], and object detection [10]. The hand-engineered fea-

tures are replaced with features computed by convolutional

neural networks, which greatly improves the performance

of object detectors. Faster R-CNN [25] uses convolutional

feature maps computed by one layer to predict candidate re-

gion proposals with different scales and aspect ratios (Fig-
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Figure 1. (a) Using only single scale features for prediction. (b) In-

tegrating information from high-level and low-level feature maps.

(c) Producing predictions from feature maps of different scales.

(d) Our Scale-Transfer Module. It can be embedded directly into

a DenseNet to obtain feature maps at different scales.

ure 1(a)). Because the receptive field of each layer in CNN

is fixed, there exists inconsistency between the fixed recep-

tive field and the objects at different scales in natural im-

ages. This may compromise object detection performance.

SSD [22] and MS-CNN [3] use feature maps from differ-

ent layers within CNN to predict objects at different scales

(See Figure 1(c)). Shallow feature maps have small recep-

tive fields that are used to detect small objects, and deep

feature maps have large receptive fields that are used to

detect large objects. Nevertheless, shallow features have

less semantic information, which may impair the perfor-

mance of small object detection. FPN [20], ZIP [19] and

DSSD [7] integrate semantic information on feature maps

at all scales. As shown in Figure 1(b), a top-down architec-

ture combines high-level semantic feature maps with low-

level feature maps to yield more semantic feature maps at

all scales. However, in order to improve detection perfor-

mance, feature pyramids must be carefully constructed, and
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Figure 2. Scale-Transferrable Detection Network (STDN) for detecting multi-scale objects in images. We use DenseNet-169 [14] as

the base network. The figure shows several layers in the last dense block of DenseNet-169. The output of each layer in dense block has the

same height and width. We use scale-transfer layer to obtain high-resolution feature maps for detecting small objects, and use pooling layer

to obtain feature maps with large receptive field for detecting large objects. These layers can be directly embedded into the base network

with little computational overhead. The real-time performance of the detector is guaranteed by the scale-transfer module.

adding extra layers to build the feature pyramids brings ad-

ditional computational cost.

In order to obtain high-level semantic multi-scale feature

maps, and also without impairing the speed of the detec-

tor, we develop a Scale-Transfer Module (STM) and em-

bed this module directly into a DenseNet [14]. The role

of DenseNet is to integrate low-level and high-level fea-

tures within a CNN to get more powerful features. Because

of the densely connected network structure, the features of

DenseNet are naturally more powerful than the ordinary

convolutional features. STM consists of pooling and scale-

transfer layers. Pooling layer is used to obtain small scale

feature maps, and scale-transfer layer is used to obtain large

scale feature maps. Scale-transfer layer is first proposed to

do image super-resolution [28] because of its simplicity and

efficiency, and some people also use it to do semantic seg-

mentation [30]. We use this layer to efficiently expand the

resolution of the feature map for object detection.

We construct a one-stage object detector named Scale-

Transferrable Detection Network (STDN) using scale-

transfer module. Figure 2 shows the architecture of our

detector. Since the feature map of the last layer of the

last dense block in DenseNet has most number of chan-

nels, scale-transfer layer expand the width and height of the

feature map by compressing the number of channels (Fig-

ure 1(d)). This can effectively reduce the number of param-

eters of the next convolution layer.

STM naturally fits the base network and enable end-to-

end training. We believe that the STM has two distinct ad-

vantages. First of all, combining DenseNet [14] the feature

maps own both low-level object detail features and high-

level semantic features naturally. We will prove that this

will improve the accuracy of object detection. Second, STM

is made up of pooling and super-resolution layers with no

additional parameters and computation. The results of the

experiment demonstrate that the proposed framework in this

paper can detect objects accurately and meet the real-time

requirements.

2. Related Work

State-of-the-art methods of object detection are based

on convolutional neural networks. For example, SPPnet

[11], Fast R-CNN [9], Faster R-CNN [25], R-FCN [5], and

YOLO [24] use features from the top layer of the convolu-

tional neural network to detect objects of different scales.

However, since each layer of the convolutional neural net-

work has a fixed receptive field, it is not optimal to predict

objects of different scales with only features of one layer.

There are generally three main types of methods to fur-

ther improve the accuracy of multi-scale object detection.

One is to detect objects using the combinations of multi-

layer features. The other is to use different layer features to

predict objects at different scales. The last is a combination

of the above two methods.

For the first type of method, ION [2] uses skip pooling
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to extract information at multiple layers, and then the ob-

ject is detected by using the combined features. HyperNet

[16] incorporates deep, intermediate and shallow features

of the image for generating proposals and detecting objects.

YOLOv2 [24] concatenates the higher resolution features

with the low-resolution features by passthrough layer and

runs detection on top of this expanded feature map. The ba-

sic idea of these methods is to enhance the power of features

by combining low-level and high-level features.

For the second type of method, SSD [22], MS-CNN [3]

and DSOD [27] combine predictions from multiple feature

maps to handle objects of various sizes. For example, for

small objects, shallow features are used, and for large ob-

jects, deep features are used. There exists a problem that

shallow features may impair the performance of small ob-

ject detection due to the lack of semantic information.

The last type of method is to use the above two methods

simultaneously. There are multiple prediction layers to pre-

dict objects at different scales, and the feature of each pre-

diction layer is obtained by combining features at different

depths. FPN [20] and TDM [29] use a top-down architec-

ture for building high-level semantic feature maps. DSSD

[7] uses an hourglass structure to pass context information

for prediction. These methods have to add additional layers

to obtain multi-scale features, introducing cost that can not

be neglected.

Our proposed method falls into the third class approach.

We use DenseNet [14] to combine features of different lay-

ers and use scale-transfer module to obtain feature maps

with different resolutions. Our module can be directly em-

bedded into the DenseNet network with little additional

cost.

3. Scale-Transferrable Detection Network

In this section, we first introduce the base network which

is our feature extraction network component. We use

DenseNet [14] as our base network. In each dense block

of DenseNet, for each layer, its feature map is used as in-

puts for all subsequent layers. The output of the last layer

of the dense block has highest number of channels and is

suitable as input for our scale-transfer layer which expands

the width and height of the feature map by compressing the

number of channels. Then we describe the scale-transfer

module that produces feature maps at different scales. Next,

we describe the entire object detection/location prediction

network architecture and the network training details.

3.1. Base Network : DenseNet

We use DenseNet-169 [14] as our base network for fea-

ture extraction and do pre-training on the ILSVRC CLS-

LOC dataset [26]. DenseNet is a network with deep su-

pervision. In each dense block of DenseNet, the output of

each layer contains the output of all previous layers, and

thus incorporates low-level and high-level features of the

input image, which is suitable for object detection. Inspired

by DSOD [27], we replace the input layers (7 × 7 convo-

lution layer, stride = 2 followed by a 3 × 3 max pooling

layer, stride = 2) into three 3×3 convolution layers and one

2×2 mean pooling layer. The stride of the first convolution

layer is 2 and the others are 1. The output channels for all

three convolution layers are 64. We call these layers “stem

block”. Table 1 depicts our network architecture in detail.

Experiments show that this simple substitution can signifi-

cantly improve the accuracy of object detection (see Table 3

in ablation study). One explanation could be that the input

layers in the original DenseNet-169 have lost much infor-

mation due to two consecutive down sampling. This will

impair the performance of object detection, especially for

small objects.

3.2. High Efficiency Scale­Transfer Module

    
 
 

   
  

 
   
  

 
    

Figure 3. Scale-transfer layer

Scale problem lies in the heart of object detection. Com-

bining predictions from multiple feature maps with different

resolutions are beneficial for detecting multi-scale objects.

However, as shown in Figure 2, in the last dense block of

DenseNet, all outputs of layers have the same width and

height, except for the number of channels. For example,

when the input image is 300× 300, the last dense block di-

mension of DenseNet-169 is 9× 9. A simple approach is to

predict directly using high-resolution feature maps of low

layers, similar to SSD [22]. However, the low-level feature

map lacks semantic information about objects, which may

cause low performance on object detection. Ablation stud-

ies are shown in Table 3.

In order to obtain different resolution feature maps, in-

spired by the super-resolution approach [28], we develop

a module dubbed as scale-transfer module. Scale-transfer

module is very efficient and can be directly embedded into

the dense block in DenseNet. To get strong semantic feature

maps, we make use of the network structure of DenseNet to

transfer the low-level features directly to the top of the net-

work through the concat operation. The feature map at the

top of the network has both low-level detail information and

high-level semantic information so as to improve the perfor-

mance of object localization and classification.
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Layers Output Size (Input 3× 300× 300) STDN

BatchNorm(BN), Convolution 64× 150× 150 3× 3 conv, stride 2
BN, Relu, Convolution 64× 150× 150 3× 3 conv, stride 1
BN, Relu, Convolution 64× 150× 150 3× 3 conv, stride 1

Pooling 64× 75× 75 2× 2 average pool, stride 2
Dense Block

(1)
256× 75× 75

[

1× 1 conv

3× 3 conv

]

× 6

Transition Layer 128× 75× 75 1× 1 conv

(1) 128× 37× 37 2× 2 average pool, stride 2
Dense Block

(2)
512× 37× 37

[

1× 1 conv

3× 3 conv

]

× 12

Transition Layer 256× 37× 37 1× 1 conv

(2) 256× 18× 18 2× 2 average pool, stride 2
Dense Block

(3)
1280× 18× 18

[

1× 1 conv

3× 3 conv

]

× 32

Transition Layer 640× 18× 18 1× 1 conv

(3) 640× 9× 9 2× 2 average pool, stride 2
Dense Block

(4)
1664× 9× 9

[

1× 1 conv

3× 3 conv

]

× 32

800× 1× 1 9× 9 average pool, stride 9 (Input DBstage4 concat5)

960× 3× 3 3× 3 average pool, stride 3 (Input DBstage4 concat10)

Scale-transfer 1120× 5× 5 2× 2 average pool, stride 2 (Input DBstage4 concat15)

module 1280× 9× 9 Identity layer (Input DBstage4 concat20)

360× 18× 18 2× scale-transfer layer (Input DBstage4 concat25)

104× 36× 36 4× scale-transfer layer (Input DBstage4 concat32)

Table 1. STDN architecture (growth rate = 32 in each dense block)

We get feature maps of different scales from the last

dense block of DenseNet. In scale-transfer module, we

use the mean pooling layer to obtain low-resolution feature

maps. For high-resolution feature maps, we use a technique

called scale-transfer layer.

Suppose that the dimensions of the input tensor of the

scale-transfer layer are H × W × C · r2, where r is the

up sampling factor. The scale-transfer layer is an opera-

tion of periodic rearrangement of elements. As you can see

from the Figure 3, scale-transfer layer expands the width

and height by compressing the number of channels in the

feature map. A mathematical formula can be expressed as

the following form

ISR
x,y,c = ILR

⌊x/r⌋,⌊y/r⌋,r·mod(y,r)+mod(x,r)+c·r2 (1)

where ISR are high resolution feature maps and ILR are

low resolution feature maps. Instead of using deconvolu-

tion layer, in which zeros have to be padded in the unpool-

ing step before the convolution operation, the scale-transfer

layer has no additional parameters and computational over-

head. We call the mean pooling and scale-transfer layers as

scale-transfer module. We embed the scale-transfer module

directly into DenseNet to obtain six feature maps at differ-

ent scales. And then we use these feature maps to construct

a one-stage object detector named scale-transferrable detec-

tion network (STDN). Figure 2 shows the size of the six

feature maps for the input image of 300× 300.

Scale-transfer layer can effectively reduce the number of

channels in the last layer of the dense block in DenseNet,

and reduce the parameters and computation of the next con-

volutional prediction layer. This improves the speed of the

detector.

Using the advantages of DenseNet, the feature maps

have both low-level detail information and high-level se-

mantic information. The experimental results show that our

scale-transferrable detector performs well both in accuracy

and speed of object detection (Table 5).

3.3. Object Localization Module

The Scale-Transferrable Detection Network (STDN)

consists of a base network and two task specific prediction

subnetworks. The role of the base network is to do feature

extraction. The first subnet is used for object classification,

and the second subnet is used for bounding box position

regression. We have described the base network in detail

above. Next we will detail two prediction subnetworks and

training objective.
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3.3.1 Anchor Boxes.

We associate a set of default anchor boxes with each feature

map which is got by our scale-transfer module. The scale

of anchor boxes is the same as that of SSD [22]. Following

DSSD [7], we use [1.6, 2.0, 3.0] aspect ratios at every pre-

diction layer. Anchors are matched to any ground truth with

intersection-over-union (IoU) higher than a threshold (0.5).

The remaining anchors are treated as background. After the

matching step, most of the default anchor boxes are nega-

tives (no matched). We use hard negative mining so that the

ratio between the negatives and positives is at most 3 : 1.

3.3.2 Classification Subnet.

The role of the classification subnet is to predict the prob-

ability of each anchor belonging to a category. It contains

a 1 × 1 convolution layer and two 3 × 3 convolution lay-

ers. Each convolution layer has a batchnorm layer [15] and

a relu layer in front of it. The last convolution layer has KA
filters, where K is the number of object classes and A is the

number of anchors per spatial location. The classification

loss is the softmax loss over multiple classes confidences.

3.3.3 Box Regression Subnet.

The purpose of this subnet is to regress the offset from each

anchor box to the matched ground-truth object. The box

regression subnet has the same structure as the classification

subnet except that its last convolution layer has 4A filters.

Smooth L1 loss [9] is used for the localization loss and the

bounding box loss is only used for positive samples

3.3.4 Training Objective.

The training objective is to minimize a combined classifica-

tion and localization loss:

L(a, I, θ) =Lcls(ya, pcls(I, a, θ))

+ λ · 1[ya > 0] · Lloc(φ(ba, a)− ploc(I, a, θ))

(2)

where a is the anchor, I is the image and θ is our opti-

mized parameter. Lcls is the classification loss and Lloc

is the localization loss. ya ∈ {0, 1, · · · ,K} is the class la-

bel, ya = 0 when anchor a is not matched. ploc(I, a, θ) and

pcls(I, a, θ) are predicted box encoding and corresponding

class. φ(ba, a) is an encoding of ground-truth box with re-

spect to the matched anchor a. λ is a trade-off coefficient.

3.3.5 Training Settings.

Our detector is based on the MXNet [4] framework. All our

models are trained with SGD solver on NVIDIA TITAN Xp

GPU. We follow almost the same training strategy as SSD

[22], including a random expansion data augmentation trick

which is helpful for detecting small objects.

4. Experiments

4.1. Experiment Setup and Implementation

We evaluate our method on the PASCAL VOC [6] and

MS COCO [21] datasets that have 20 and 80 object cate-

gories respectively. For PASCAL VOC, following the pro-

tocol in [9], we perform training on the union of VOC 2007

trainval and VOC 2012 trainval and test on the VOC 2007

test set. For COCO, following the standard protocol, train-

ing and evaluation are performed on the 120k images in the

trainval and the 20k images in the test-dev, respectively.

For evaluation, we use the standard mean average pre-

cision (mAP) scores. For PASCAL VOC, we report mAP

scores using IoU thresholds at 0.5. For COCO, we use the

standard COCO metric.

For the model with 300× 300 inputs on PASCAL VOC,

we train the model with a mini-batch size 80 due to GPU

memory constraints. We start the learning rate at 0.001 for

the first 500 epochs. We decrease it to 10−4 at 600 epochs

and 10−5 at 700 epochs. We take this well-trained model as

pre-trained models for STDN321 and STDN513 on PAS-

CAL VOC.

4.2. PASCAL VOC 2007

Table 2 shows our results on the PASCAL VOC2007 test

detection. Among them, SSD uses only feature maps at

different depths for prediction without fusing low-level and

high-level features. We use it as our baseline. DSSD is an

upgraded version of SSD, which replaces the base network

of SSD from VGG to a deep residual network. Moreover,

DSSD adds additional layers to fuse features at different

depths. This will yield features with strong semantic infor-

mation. DSSD321 and DSSD513 are about 1.1%-2% bet-

ter than SSD300 and SSD512 respectively by adding these

operations. Although DSSD improves accuracy compared

to SSD, the speed of the object detector has been greatly

damaged due to the extremely deep base network and inef-

ficient feature fusion. The comparison of speed and accu-

racy will be discussed in Table 5. It is exciting that STDN

embeds the efficient scale-transfer module into DenseNet,

which improves the accuracy of object detection and hardly

increases the running time. For input images of the same

size, the accuracy of STDN300 is 0.6% higher than that of

SSD300. STDN513 is 1.4% higher than SSD512. These

results demonstrate the effectiveness of our approach. We

also compare the results of STDN with DSSD. STDN321 is

0.7% higher than DSSD321, but STDN513 is 0.6% lower

than DSSD513. We think the reason may be that Residual-

101 has more network parameters than DenseNet169 (42M
vs 14M ), and thus has greater capacity. However, this slows
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Method network mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

Faster [25] VGG 73.2 76.5 79 70.9 65.5 52.1 83.1 84.7 86.4 52 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83 72.6

ION [2] VGG 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4

Faster [12] Residual-101 76.4 79.8 80.7 76.2 68.3 55.9 85.1 85.3 89.8 56.7 87.8 69.4 88.3 88.9 80.9 78.4 41.7 78.6 79.8 85.3 72

MR-CNN [8] VGG 78.2 80.3 84.1 78.5 70.8 68.5 88 85.9 87.8 60.3 85.2 73.7 87.2 86.5 85 76.4 48.5 76.3 75.5 85 81

R-FCN [5] Residual-101 80.5 79.9 87.2 81.5 72 69.8 86.8 88.5 89.8 67 88.1 74.5 89.8 90.6 79.9 81.2 53.7 81.8 81.5 85.9 79.9

SSD300 [22] VGG 77.5 79.5 83.9 76 69.6 50.5 87 85.7 88.1 60.3 81.5 77 86.1 87.5 83.9 79.4 52.3 77.9 79.5 87.6 76.8

SSD512 [22] VGG 79.5 84.8 85.1 81.5 73 57.8 87.8 88.3 87.4 63.5 85.4 73.2 86.2 86.7 83.9 82.5 55.6 81.7 79 86.6 80

DSSD321 [7] Residual-101 78.6 81.9 84.9 80.5 68.4 53.9 85.6 86.2 88.9 61.1 83.5 78.7 86.7 88.7 86.7 79.7 51.7 78 80.9 87.2 79.4

DSSD513 [7] Residual-101 81.5 86.6 86.2 82.6 74.9 62.5 89 88.7 88.8 65.2 87 78.7 88.2 89 87.5 83.7 51.1 86.3 81.6 85.7 83.7

STDN300 DenseNet-169 78.1 81.1 86.9 76.4 69.2 52.4 87.7 84.2 88.3 60.2 81.3 77.6 86.6 88.9 87.8 76.8 51.8 78.4 81.3 87.5 77.8

STDN321 DenseNet-169 79.3 81.2 88.3 78.1 72.2 54.3 87.6 86.5 88.8 63.5 83.2 79.4 86.1 89.3 88.0 77.3 52.5 80.3 80.8 86.3 82.1

STDN513 DenseNet-169 80.9 86.1 89.3 79.5 74.3 61.9 88.5 88.3 89.4 67.4 86.5 79.5 86.4 89.2 88.5 79.3 53.0 77.9 81.4 86.6 85.5

Table 2. PASCAL VOC2007 test detection results. Note that the minimum dimension of the input image for Faster and R-FCN is 600,

and the speed is less than 10 frames per second. SSD300 indicates the input image dimension of SSD is 300× 300. Large input sizes can

give good results, but more running time is needed. All models is trained with the combined training set from VOC 2007 trainval and 2012

trainval, and is tested on the voc 2007 test set.

down the speed of the object detector at the same time.

4.3. Ablation Study on VOC2007

In order to verify the effectiveness of each component in

STDN, we design ablation experiments on VOC2007. The

results are summarized in Table 3.

4.3.1 Effect of Scale-transfer Module (STM).

In Table 3, DenseNet-169 + SSD indicates that we use

DenseNet as the base network to extract features, and use

feature maps at different depths to do object detection. This

is similar to the SSD approach, but instead switches the

base network from VGG to DenseNet-169. DenseNet-169

+ STM indicates that we use scale-transfer module to obtain

multi-scale feature maps for object detection. Under the

same base network, the STM is 76.6% mAP, 2.8% higher

than that of SSD. This verifies the effectiveness of the STM

method.

4.3.2 Effect of Stem Block.

The third and fourth rows of Table 3 show that stem block

can significantly improve object detection accuracy from

76.6% to 78.1%. We think the reason is that the original

input layers in DenseNet-169 have two consecutive down

sampling operations (conv and max pooling with stride 2).

This results in too much loss of information, which impairs

the performance of the detector.

4.3.3 Effect of Dense Convolutional Network.

DenseNet is a network with deep supervision, which con-

nects each layer to every other layer in a feed-forward fash-

ion. We compare the performance between deep super-

vised and non-deep supervised networks. We use Inception-

v3 in comparison test, which has also been pre-trained on

ILSVRC CLS-LOC dataset. We remove layers after the

global pooling layer in Inception-v3, and then add the same

structure as the last dense block in DenseNet-169. Multi-

scale feature maps are obtained using STM. The results of

the experiment show that the performance of DenseNet-169

exceeds that of Inception-v3 with a large margin. Using

DenseNet-169 (with stem block) combined with STM, we

have excellent performance on VOC2007 for images with

only 300× 300 input size.

Method mAP Anchor boxes Input resolution

DenseNet-169 + SSD 73.8 14472 300× 300
DenseNet-169 + STM 76.6 13888 300× 300
DenseNet-169 + STM 76.6 13888 300× 300

DenseNet-169 + stem block + STM 78.1 13888 300× 300
Inception-v3 + STM 74.9 13888 332× 332

DenseNet-169 + stem block + STM 78.1 13888 300× 300

Table 3. Ablation study on PASCAL VOC 2007 test set. Note

that DenseNet-169+SSD means replacing the base network of

SSD from VGG to DenseNet-169. STM is the scale-transfer mod-

ule. Stem block is explained in the above. For fair comparison, the

input of Inception-v3 is resized to 332 × 332 so that the number

of anchor box is consistent with the comparison test.

4.4. COCO

To further validate our approach, we train STDN300 and

STDN513 on the COCO dataset [21]. We use trainval for

training and test on the test-dev2015. Results are summa-

rized in Table 4. STDN300 achieves 28.0%/45.6% on the

test-dev set, which outperforms the baseline SSD300. The

accuracy of SSD300 is the same as that of DSSD321, but

has smaller input images and faster speed. We observe

that the accuracy of STDN300 with 0.5 IoU is lower than

DSSD321, but the [0.5:0.95] result is comparable. This in-

dicates that STDN300 is more accurate under the large over-

lap. The accuracy of STDN513 is higher than SSD512, but

lower than DSSD513. The reason may be that our base net-

work has less parameters than Residual-101. Notably, the

STDN513 is about 5 times as fast as DSSD513.
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Method Data Network
Avg. Precision, IoU: Avg. Precision, Area: Avg. Recall, #Dets: Avg. Recall, Area:

0.5:0.95 0.5 0.75 S M L 1 10 100 S M L

Faster RCNN [25] trainval VGGNet 21.9 42.7 - - - - - - - - - -

ION [2] train VGGNet 23.6 43.2 23.6 6.4 24.1 38.3 23.2 32.7 33.5 10.1 37.7 53.6

R-FCN [5] trainval ResNet-101 29.2 51.5 - 10.3 32.4 43.3 - - - - - -

R-FCNmulti-sc [5] trainval ResNet-101 29.9 51.9 - 10.8 32.8 45 - - - - - -

DSOD300 [27] trainval DS/64-192-48-1 29.3 47.3 30.6 9.4 31.5 47 27.3 40.7 43 16.7 47.1 65

SSD300 [22] trainval35k VGG 25.1 43.1 25.8 6.6 25.9 41.4 23.7 35.1 37.2 11.2 40.4 58.4

SSD512 [22] trainval35k VGG 28.8 48.5 30.3 10.9 31.8 43.5 26.1 39.5 42 16.5 46.6 60.8

DSSD321 [7] trainval35k Residual-101 28.0 46.1 29.2 7.4 28.1 47.6 25.5 37.1 39.4 12.7 42 62.6

DSSD513 [7] trainval35k Residual-101 33.2 53.3 35.2 13 35.4 51.1 28.9 43.5 46.2 21.8 49.1 66.4

STDN300 trainval DenseNet-169 28.0 45.6 29.4 7.9 29.7 45.1 24.4 36.1 38.7 12.5 42.7 60.1

STDN513 trainval DenseNet-169 31.8 51.0 33.6 14.4 36.1 43.4 27.0 40.1 41.9 18.3 48.3 57.2

Table 4. COCO test-dev2015 detection results.

Method Base network mAP Speed(fps) Anchor boxes GPU Input resolution

Faster [25] VGG16 73.2 7 6000 Titan X ≈ 1000× 600

Faster [12] Residual-101 76.4 2.4 300 K40 ≈ 1000× 600

R-FCN [5] Residual-101 80.5 9 300 Titan X ≈ 1000× 600

DSOD300 [27] DS/64-192-48-1 77.7 17.4 - Titan X 300× 300

YOLOv2 [24] Darknet-19 78.6 40 - - 544× 544

SSD300 [22] VGG16 77.5 46 8732 Titan X 300× 300

SSD512 [22] VGG16 79.5 19 24564 Titan X 512× 512

DSSD321 [7] Residual-101 78.6 9.5 17080 Titan X 321× 321

DSSD513 [7] Residual-101 81.5 5.5 43688 Titan X 513× 513

STDN300 DenseNet-169 78.1 41.5 13888 Titan Xp 300× 300

STDN321 DenseNet-169 79.2 40.1 17080 Titan Xp 321× 321

STDN513 DenseNet-169 80.9 28.6 43680 Titan Xp 513× 513

Table 5. Comparison of Speed and Accuracy on PASCAL VOC2007 test set. Training data is the union of VOC2007 and VOC2012

trainval. Faster R-CNN and R-FCN use input images whose minimum dimension is 600. The speed of STDN is measured with batch size

1.

4.5. Comparison of Speed and Accuracy

To test the speed of STDN, we test the total detection

time for 2000 images sampled from PASCAL VOC2007

test set, and then calculate the frames per second (fps). We

test speed with batch size 1 using Titan Xp with Intel Xeon

CPU E5-2620v4@2.10GHz.

See Table 5 for a comparison of STDN with other frame-

works on VOC 2007 test set. Compared to the SSD, DSSD

combines low-level and high-level features. Although the

accuracy has been improved, the speed has been greatly im-

paired (less than 10 frames per second). This is mainly due

to the fact that the base network of DSSD is too deep and its

feature fusion method is inefficient. However, our proposed

method has a great advantage in speed and accuracy due to

our efficient scale-transfer module.

In order to see the advantages and disadvantages of each

method intuitively, we draw a scatter diagram of accu-

racy and speed. An excellent detector should be located

in the upper right corner of the diagram. As shown in

Figure 5, STDN performs well both in speed and accu-

racy. STDN300 and STDN513 are consistently superior in

accuracy to SSD300 and SSD512. STDN321 are higher

than YOLOv2 in accuracy and speed. At high resolution

STDN513 achieves 80.9% mAP on VOC 2007 while still

operating in real-time speeds.

5. Discussion

The original idea of scale-transfer layer is used to make

image super resolution [28], and some people also use it to

do semantic segmentation [30]. We apply this idea to object

detection. Because of the multiple max (or mean) pooling

layers in CNN, the size of the feature map on the top of the

CNN is much smaller than the size of the input image. For

example, for DenseNet-169 network, if the input image size

is 300 × 300 × 3, the size of the feature map on the top of

the network will be 9×9×1664, where 1664 is the number
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Figure 4. Example of object detection results on the MS COCO test-dev set. The training data is COCO trainval. Each output box is

associated with a category label and a softmax score in [0, 1]. A score threshold of 0.4 is used for displaying.
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Figure 5. Accuracy and speed on PASCAL VOC2007

of channels. This means that one pixel in the feature map

is related to about 33 pixels in the input image in the width

and height space plane. It means that the CNN compresses

the 33 × 33 × 3 image information into the 1 × 1 × 1664
feature map. If we use 4x scale-transfer layer, 1× 1× 1664
feature map will be converted to 4 × 4 × 104. This will

increase the number of anchor boxes by 16 times, and fully

explore the information contained in channels. Compared

with other upscaling operation (deconvolution), there is no

increase in parameters and computation. In addition, due

to the reduction of the number of channels, this will effec-

tively reduce the parameters of the next classification and

box regression subnets, which is beneficial for efficiency of

object detector. Because of these merits, the scale-transfer

layer can be naturally embedded into DenseNet to obtain

multi-scale feature maps, almost without increasing com-

putational complexity and model size.

6. Conclusion

In this work, we propose a novel scale-transfer layer for

efficient and compact object detection. We further develop

scale-transferrable detection network based on this layer

and extensive experiments show that STDN can produce

markedly superior detection performance in terms of both

accuracy and speed. At 41 FPS, STDN300 gets 78.1 mAP

on VOC 2007. At 28 FPS, STDN513 gets 80.9 mAP, ob-

taining significant improvements over the comparable state-

of-the-art detection methods.
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