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Abstract

Weakly supervised instance segmentation with image-

level labels, instead of expensive pixel-level masks, remains

unexplored. In this paper, we tackle this challenging prob-

lem by exploiting class peak responses to enable a classi-

fication network for instance mask extraction. With image

labels supervision only, CNN classifiers in a fully convo-

lutional manner can produce class response maps, which

specify classification confidence at each image location. We

observed that local maximums, i.e., peaks, in a class re-

sponse map typically correspond to strong visual cues re-

siding inside each instance. Motivated by this, we first de-

sign a process to stimulate peaks to emerge from a class re-

sponse map. The emerged peaks are then back-propagated

and effectively mapped to highly informative regions of each

object instance, such as instance boundaries. We refer to

the above maps generated from class peak responses as

Peak Response Maps (PRMs). PRMs provide a fine-detailed

instance-level representation, which allows instance masks

to be extracted even with some off-the-shelf methods. To the

best of our knowledge, we for the first time report results for

the challenging image-level supervised instance segmenta-

tion task. Extensive experiments show that our method also

boosts weakly supervised pointwise localization as well as

semantic segmentation performance, and reports state-of-

the-art results on popular benchmarks, including PASCAL

VOC 2012 and MS COCO. 1

1. Introduction

Most contemporary methods of semantic segmentation

rely on large-scale dense annotations for training deep mod-

els; however, annotating pixel-level masks is expensive and

labor-intensive [18]. In contrast, image-level annotations,

i.e., presence or absence of object categories in an image,

are much cheaper and easier to define. This motivates the
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Figure 1: Class peak responses correspond to strong visual

cues residing inside each respective instance. Those peaks

can be back-propagated and effectively mapped to highly

informative regions of each object, which allow instance

masks to be extracted. Best viewed in color.

development of weakly supervised semantic segmentation

methods, which use image labels to learn convolutional

neural networks (CNNs) for class-aware segmentation.

Most existing weakly supervised semantic segmentation

methods consider convolutional filters in CNN as object

detectors and aggregate the deep feature maps to extract

class-aware visual evidence [47, 43]. Typically, pre-trained

classification networks are first converted to fully convo-

lutional networks (FCNs) to produce class response maps

in a single forward pass. Such class response maps indi-

cate essential image regions used by the network to identify

an image class; however, cannot distinguish different ob-

ject instances from the same category. Therefore, existing

weakly supervised semantic segmentation methods cannot

be simply generalized to instance-level semantic segmenta-

tion [16, 12], which aims to detect all objects in an image

as well as predicting precise masks for each instance.

In this paper, we explore the challenging problem

of training CNNs with image-level weak supervision for

instance-level semantic segmentation (instance segmenta-

tion for short). Specifically, we propose to exploit peaks

in a class response map to enable a classification network,
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e.g., VGGNet, ResNet, for instance mask extraction.

Local maximums, i.e., peaks, in a class response map

typically correspond to strong visual cues residing inside an

instance, Fig. 1. Motivated by such observation, we first de-

sign a process to stimulate, during the training stage, peaks

to emerge from a class response map. At the inference

stage, the emerged peaks are back-propagated and effec-

tively mapped to highly informative regions of each object

instance, such as instance boundaries. The above maps gen-

erated from class peak responses are referred to as Peak Re-

sponse Maps (PRMs). As shown in Fig. 1, PRMs serve as

an instance-level representation, which specifies both spa-

tial layouts and fine-detailed boundaries of each object; thus

allows instance masks to be extracted even with some off-

the-shelf methods [3, 38, 27].

Compared with many fully supervised approaches that

typically use complex frameworks including conditional

random fields (CRF) [46, 45], recurrent neural networks

(RNN) [30, 32], or template matching [37], to handle in-

stance extraction; our approach is simple yet effective. It

is compatible with any modern network architectures and

can be trained using standard classification settings, e.g.,

image class labels and cross entropy loss, with negligible

computational overhead. Thanks to its training efficiency,

our method is well suited for application to large-scale data.

To summarize, the main contributions of this paper are:

• We observe that peaks in class response maps typically

correspond to strong visual cues residing inside each

respective instance, and such simple observation leads

to an effective weakly supervised instance segmenta-

tion technique.

• We propose to exploit class peak responses to en-

able a classification network for instance mask extrac-

tion. We first stimulate peaks to emerge from a class

response map and then back-propagate them to map

to highly informative regions of each object instance,

such as instance boundaries.

• We implement the proposed method in popular CNNs,

e.g., VGG16 and ResNet50, and show top performance

on multiple benchmarks. To the best of our knowledge,

we for the first time report results for the challenging

image-level supervised instance segmentation task.

2. Related Work

Weakly supervised semantic segmentation. Seman-

tic segmentation approaches typically require dense annota-

tions in the training phase. Given the inefficiency of pixel-

level annotating, previous efforts have explored various al-

ternative weak annotations, e.g., points on instances [1],

object bounding boxes [5, 22], scribbles [17, 42], and hu-

man selected foreground [34]. Although effective, these
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Figure 2: Compared to existing weakly supervised methods

which aim to obtain a saliency map (middle) for each class,

the proposed approach extracts fine-detailed representation

(right), including both explicit layouts and boundaries, for

each instance (visualized with different colors).

approaches require significant more human efforts than

image-level supervised methods [24, 25, 41, 14, 33].

Some works leverage object cues in an unsupervised

manner. For examples, graphical models have been used to

infer labels for segments [44, 15], yet their object localiza-

tion capacity remains limited. External localization network

is therefore used to initialize object locations [26, 14, 23],

and refining low-resolution CNN planes with pre-generated

object segment proposal priors. Previous works usually in-

volve time-consuming training strategies, e.g., repeatedly

model learning [40] or online proposal selection [29, 39].

In this work, instead, we use the standard classification

networks to produce class-aware and instance-aware visual

cues born with convolutional responses.

Instance segmentation. Compared with semantic seg-

mentation that seeks to produce class-aware masks, in-

stance segmentation requires to produce, at the same time,

instance-aware region labels and fine-detailed segmentation

masks and thus is much more challenging. Even with su-

pervision from accurate pixel-level annotations, many in-

stance segmentation approaches resort to additional con-

straints from precise object bounding boxes. The FCIS ap-

proach [16] combines a segment proposal module [6] and an

object detection system [7]. Mask R-CNN [12] fully lever-

ages the precise object bounding boxes generated with a

proposal network [31] to aid the prediction of object masks.

With strong supervision from pixel-level GT masks, the

above approaches have greatly boosted the performance of

instance segmentation. However, the problem that how to

perform instance segmentation under weak supervision re-

mains open. Khoreva et al. [13] propose to obtain pseudo

ground truth masks from bounding box supervision to alle-

viate labeling cost. In contrast, we leverage instance-aware

visual cues naturally learned with classification networks;

thus only image-level annotations are required for training.

Object prior information. When accurate annota-
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Figure 3: The generation and utilization of Peak Response Maps (PRMs). A stimulation procedure selectively activates strong

visual cues residing inside each object into class peak responses. A back-propagation process further extracts fine details of

each instance from the resulting peaks. Finally, class-aware cues, instance-aware cues, and object priors from proposals are

considered together to predict instance masks. Best viewed in color.

tions are unavailable, visual recognition approaches lever-

age prior information typically to obtain additional visual

cues. Object proposal methods that hypothesize object loca-

tions and extent are often used in weakly supervised object

detection and segmentation to provide object priors. Selec-

tive Search [38] and Edge Boxes [49] use low-level features

like color and edges as cues to produce object candidate

windows. Multi-scale Combinatorial Grouping (MCG) [27]

uses low-level contour information, e.g., Structured Edge

[8] or Ultrametric Contour Map [20], to extract object pro-

posals, which contain fine-detailed object boundaries that is

valuable to instance segmentation. In this paper, we per-

form instance mask extraction with the help of object priors

from MCG proposals.

Image-level supervised deep activation. With image-

level supervision only, it is required to aggregate deep re-

sponses, i.e., feature maps, of CNNs into global class confi-

dences so that image labels can be used for training. Global

max pooling (GMP) [21] chooses the most discriminative

response for each class to generate classification confidence

scores, but many other informative regions are discarded.

Global average pooling (GAP) [47] assigns equal impor-

tance to all responses, which makes it hard to differenti-

ate foreground and background. The log-sum-exponential

(LSE) [35] provides a smooth combination of GMP and

GAP to constrain class-aware object regions. Global rank

max-min pooling (GRP) [9] selects a portion of high-scored

pixels as positives and low-scored pixels as negatives to en-

hance discrimination capacity.

Existing approaches usually activate deep responses

from a global perspective without considering local spatial

relevance, which makes it hard to discriminate object in-

stances in an image. Peaks in the convolution response im-

ply a maximal local match between the learned filters and

the informative receptive field. In our method, the peak

stimulation process aggregates responses from local max-

imums to enhance the network’s localization ability.

Based on the deep responses, top-down attention meth-

ods are proposed to generate refined class saliency maps

by exploring visual attention evidence [4, 43]. These class-

aware and instance-agnostic cues can be used in semantic

segmentation [14, 33] yet is insufficient for instance seg-

mentation, Fig. 2. In contrast, our methods provide fine-

detailed instance-aware cues that are suitable for weakly su-

pervised instance-level problems.

3. Method

In this section, we present an image-level supervised in-

stance segmentation technique that utilizes class peak re-

sponse. CNN classifiers in the fully convolutional manner

can produce class response maps, which specify classifica-

tion confidence at each image location [21]. Based on our

observation that local maximums, i.e., peaks, of class re-

sponse maps typically correspond to strong visual cues re-

siding inside an instance, we first design an process to stim-

ulate peaks to emerge from a class response map in the net-

work training phase. During the inference phase, emerged

peaks are back-propagated to generate maps that highlight

informative regions for each object, referred to as Peak Re-

sponse Maps (PRMs). PRMs provide a fine-detailed sepa-

rate representation for each instance, which are further ex-

ploited to retrieve instance masks from object segment pro-

posals off-the-shelf, Fig. 3.
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Figure 4: With peak stimulation, multiple instances can be

better distinguished on the class response map (middle).

The learned representations (right) are visualized by acti-

vation maximization [10]. Best viewed in color.

3.1. Fully Convolutional Architecture

By simply removing the global pooling layer and adapt-

ing fully connected layers to 1x1 convolution layers, mod-

ern CNN classifiers can be seamlessly converted to fully

convolutional networks (FCNs) [19] that naturally preserve

spatial information throughout the forwarding. The con-

verted network outputs class response maps with a single

forward pass; therefore are suitable for spatial predictions.

In this work, networks are converted to FCN first.

3.2. Peak Stimulation

To stimulate peaks to emerge from class response maps,

we construct a peak stimulation layer, to be inserted af-

ter the top layer, Fig. 3. Consider a standard network, let

M ∈ R
C×H×W denotes the class response maps of the top

convolutional layer, where C is the number of classes, and

H×W denotes the spatial size of the response maps. There-

fore, the input of the peak stimulation layer is M and the

output is class-wise confidence scores s ∈ R
C . Peaks of the

c-th response map M c are defined to be the local maximums

within a window size of r 2, and the location of peaks are

denoted as P c = {(i1, j1), (i2, j2), ..., (iNc , jNc)}, where

N c is the number of valid peaks for the c-th class. Dur-

ing the forwarding pass, a sampling kernel Gc ∈ R
H×W is

generated for computing the classification confidence score

of the c-th object category. Each kernel element at the lo-

cation (x, y) can be accessed with Gc
x,y . Without loss of

generality, the kernel is formed as

Gc
x,y =

Nc

∑

k=1

f(x− ik, y − jk), (1)

where 0 ≤ x < H, 0 ≤ y < W , (ik, jk) is the coordinate of

the k-th peak, and f is a sampling function. In our settings,

f is a Dirac delta function for aggregating features from

the peaks only; therefore the confidence score of the c-th

category sc is then computed by the convolution between

the class response map M c and sampling kernel Gc, as

2The region radius r for peak finding is set to 3 in all our experiments.

sc = M c ∗Gc =
1

N c

Nc

∑

k=1

M c
ik,jk

. (2)

It can be seen from Eq. 2 that the network uses peaks

only to make the final decision; naturally, during the back-

ward pass, the gradient is apportioned by Gc to all the peak

locations, as

δc =
1

N c
·
∂L

∂sc
·Gc, (3)

where δc is the gradient for the c-th channel of the top con-

volutional layer and L is the classification loss.

From the perspective of model learning, the class re-

sponse maps are computed by the dense sampling of all

receptive fields (RFs), in which most of RFs are negative

samples that do not contain valid instances. Eq. 3 indicates

that in contrast to conventional networks which uncondi-

tionally learn from the extreme foreground-background im-

balance set, peak stimulation forces the learning on a sparse

set of informative RFs (potential positives and hard neg-

atives) estimated via class peak responses, thus prevents

the vast number of easy negatives from overwhelming the

learned representation during training, Fig. 4 (right).

3.3. Peak Back­propagation

We propose a probability back-propagation process for

peaks to further generate the fine-detailed and instance-

aware representation, i.e., Peak Response Map. In contrast

to previous top-down attention models [43, 36], which seek

the most relevant neurons of an output category to generate

class-aware attention maps, our formulation explicitly con-

siders the receptive field and can extract instance-aware vi-

sual cues from the specific spatial locations, i.e., class peak

responses. The peak back-propagation can be interpreted as

a procedure that a walker starts from the peak (top layer)

and walk randomly to the bottom layer. The top-down rele-

vance of each location in the bottom layer is then formulated

as its probability of being visited by the walker.

Consider a convolution layer that has a single filter W ∈
R

kH×kW for mathematical simplification, the input and

output feature maps are denoted as U and V , where each

spatial locations can be accessed by Uij and Vpq respec-

tively. The visiting probability P (Uij) can be obtained by

P (Vpq) and the transition probability between two maps, as

P (Uij) =

i+ kH

2∑

p=i− kH

2

j+ kW

2∑

q=j− kW

2

P (Uij |Vpq)× P (Vpq), (4)

where the transition probability is defined as

P (Uij |Vpq) = Zpq × ÛijW
+
(i−p)(j−q). (5)

Ûij is the bottom-up activation (computed in the forward

pass) at the location (i, j) of U , W+ = ReLU(W ), which
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