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Abstract

Weakly supervised instance segmentation with image-

level labels, instead of expensive pixel-level masks, remains

unexplored. In this paper, we tackle this challenging prob-

lem by exploiting class peak responses to enable a classi-

fication network for instance mask extraction. With image

labels supervision only, CNN classifiers in a fully convo-

lutional manner can produce class response maps, which

specify classification confidence at each image location. We

observed that local maximums, i.e., peaks, in a class re-

sponse map typically correspond to strong visual cues re-

siding inside each instance. Motivated by this, we first de-

sign a process to stimulate peaks to emerge from a class re-

sponse map. The emerged peaks are then back-propagated

and effectively mapped to highly informative regions of each

object instance, such as instance boundaries. We refer to

the above maps generated from class peak responses as

Peak Response Maps (PRMs). PRMs provide a fine-detailed

instance-level representation, which allows instance masks

to be extracted even with some off-the-shelf methods. To the

best of our knowledge, we for the first time report results for

the challenging image-level supervised instance segmenta-

tion task. Extensive experiments show that our method also

boosts weakly supervised pointwise localization as well as

semantic segmentation performance, and reports state-of-

the-art results on popular benchmarks, including PASCAL

VOC 2012 and MS COCO. 1

1. Introduction

Most contemporary methods of semantic segmentation

rely on large-scale dense annotations for training deep mod-

els; however, annotating pixel-level masks is expensive and

labor-intensive [18]. In contrast, image-level annotations,

i.e., presence or absence of object categories in an image,

are much cheaper and easier to define. This motivates the
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Figure 1: Class peak responses correspond to strong visual

cues residing inside each respective instance. Those peaks

can be back-propagated and effectively mapped to highly

informative regions of each object, which allow instance

masks to be extracted. Best viewed in color.

development of weakly supervised semantic segmentation

methods, which use image labels to learn convolutional

neural networks (CNNs) for class-aware segmentation.

Most existing weakly supervised semantic segmentation

methods consider convolutional filters in CNN as object

detectors and aggregate the deep feature maps to extract

class-aware visual evidence [47, 43]. Typically, pre-trained

classification networks are first converted to fully convo-

lutional networks (FCNs) to produce class response maps

in a single forward pass. Such class response maps indi-

cate essential image regions used by the network to identify

an image class; however, cannot distinguish different ob-

ject instances from the same category. Therefore, existing

weakly supervised semantic segmentation methods cannot

be simply generalized to instance-level semantic segmenta-

tion [16, 12], which aims to detect all objects in an image

as well as predicting precise masks for each instance.

In this paper, we explore the challenging problem

of training CNNs with image-level weak supervision for

instance-level semantic segmentation (instance segmenta-

tion for short). Specifically, we propose to exploit peaks

in a class response map to enable a classification network,
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e.g., VGGNet, ResNet, for instance mask extraction.

Local maximums, i.e., peaks, in a class response map

typically correspond to strong visual cues residing inside an

instance, Fig. 1. Motivated by such observation, we first de-

sign a process to stimulate, during the training stage, peaks

to emerge from a class response map. At the inference

stage, the emerged peaks are back-propagated and effec-

tively mapped to highly informative regions of each object

instance, such as instance boundaries. The above maps gen-

erated from class peak responses are referred to as Peak Re-

sponse Maps (PRMs). As shown in Fig. 1, PRMs serve as

an instance-level representation, which specifies both spa-

tial layouts and fine-detailed boundaries of each object; thus

allows instance masks to be extracted even with some off-

the-shelf methods [3, 38, 27].

Compared with many fully supervised approaches that

typically use complex frameworks including conditional

random fields (CRF) [46, 45], recurrent neural networks

(RNN) [30, 32], or template matching [37], to handle in-

stance extraction; our approach is simple yet effective. It

is compatible with any modern network architectures and

can be trained using standard classification settings, e.g.,

image class labels and cross entropy loss, with negligible

computational overhead. Thanks to its training efficiency,

our method is well suited for application to large-scale data.

To summarize, the main contributions of this paper are:

• We observe that peaks in class response maps typically

correspond to strong visual cues residing inside each

respective instance, and such simple observation leads

to an effective weakly supervised instance segmenta-

tion technique.

• We propose to exploit class peak responses to en-

able a classification network for instance mask extrac-

tion. We first stimulate peaks to emerge from a class

response map and then back-propagate them to map

to highly informative regions of each object instance,

such as instance boundaries.

• We implement the proposed method in popular CNNs,

e.g., VGG16 and ResNet50, and show top performance

on multiple benchmarks. To the best of our knowledge,

we for the first time report results for the challenging

image-level supervised instance segmentation task.

2. Related Work

Weakly supervised semantic segmentation. Seman-

tic segmentation approaches typically require dense annota-

tions in the training phase. Given the inefficiency of pixel-

level annotating, previous efforts have explored various al-

ternative weak annotations, e.g., points on instances [1],

object bounding boxes [5, 22], scribbles [17, 42], and hu-

man selected foreground [34]. Although effective, these
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Figure 2: Compared to existing weakly supervised methods

which aim to obtain a saliency map (middle) for each class,

the proposed approach extracts fine-detailed representation

(right), including both explicit layouts and boundaries, for

each instance (visualized with different colors).

approaches require significant more human efforts than

image-level supervised methods [24, 25, 41, 14, 33].

Some works leverage object cues in an unsupervised

manner. For examples, graphical models have been used to

infer labels for segments [44, 15], yet their object localiza-

tion capacity remains limited. External localization network

is therefore used to initialize object locations [26, 14, 23],

and refining low-resolution CNN planes with pre-generated

object segment proposal priors. Previous works usually in-

volve time-consuming training strategies, e.g., repeatedly

model learning [40] or online proposal selection [29, 39].

In this work, instead, we use the standard classification

networks to produce class-aware and instance-aware visual

cues born with convolutional responses.

Instance segmentation. Compared with semantic seg-

mentation that seeks to produce class-aware masks, in-

stance segmentation requires to produce, at the same time,

instance-aware region labels and fine-detailed segmentation

masks and thus is much more challenging. Even with su-

pervision from accurate pixel-level annotations, many in-

stance segmentation approaches resort to additional con-

straints from precise object bounding boxes. The FCIS ap-

proach [16] combines a segment proposal module [6] and an

object detection system [7]. Mask R-CNN [12] fully lever-

ages the precise object bounding boxes generated with a

proposal network [31] to aid the prediction of object masks.

With strong supervision from pixel-level GT masks, the

above approaches have greatly boosted the performance of

instance segmentation. However, the problem that how to

perform instance segmentation under weak supervision re-

mains open. Khoreva et al. [13] propose to obtain pseudo

ground truth masks from bounding box supervision to alle-

viate labeling cost. In contrast, we leverage instance-aware

visual cues naturally learned with classification networks;

thus only image-level annotations are required for training.

Object prior information. When accurate annota-
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Figure 3: The generation and utilization of Peak Response Maps (PRMs). A stimulation procedure selectively activates strong

visual cues residing inside each object into class peak responses. A back-propagation process further extracts fine details of

each instance from the resulting peaks. Finally, class-aware cues, instance-aware cues, and object priors from proposals are

considered together to predict instance masks. Best viewed in color.

tions are unavailable, visual recognition approaches lever-

age prior information typically to obtain additional visual

cues. Object proposal methods that hypothesize object loca-

tions and extent are often used in weakly supervised object

detection and segmentation to provide object priors. Selec-

tive Search [38] and Edge Boxes [49] use low-level features

like color and edges as cues to produce object candidate

windows. Multi-scale Combinatorial Grouping (MCG) [27]

uses low-level contour information, e.g., Structured Edge

[8] or Ultrametric Contour Map [20], to extract object pro-

posals, which contain fine-detailed object boundaries that is

valuable to instance segmentation. In this paper, we per-

form instance mask extraction with the help of object priors

from MCG proposals.

Image-level supervised deep activation. With image-

level supervision only, it is required to aggregate deep re-

sponses, i.e., feature maps, of CNNs into global class confi-

dences so that image labels can be used for training. Global

max pooling (GMP) [21] chooses the most discriminative

response for each class to generate classification confidence

scores, but many other informative regions are discarded.

Global average pooling (GAP) [47] assigns equal impor-

tance to all responses, which makes it hard to differenti-

ate foreground and background. The log-sum-exponential

(LSE) [35] provides a smooth combination of GMP and

GAP to constrain class-aware object regions. Global rank

max-min pooling (GRP) [9] selects a portion of high-scored

pixels as positives and low-scored pixels as negatives to en-

hance discrimination capacity.

Existing approaches usually activate deep responses

from a global perspective without considering local spatial

relevance, which makes it hard to discriminate object in-

stances in an image. Peaks in the convolution response im-

ply a maximal local match between the learned filters and

the informative receptive field. In our method, the peak

stimulation process aggregates responses from local max-

imums to enhance the network’s localization ability.

Based on the deep responses, top-down attention meth-

ods are proposed to generate refined class saliency maps

by exploring visual attention evidence [4, 43]. These class-

aware and instance-agnostic cues can be used in semantic

segmentation [14, 33] yet is insufficient for instance seg-

mentation, Fig. 2. In contrast, our methods provide fine-

detailed instance-aware cues that are suitable for weakly su-

pervised instance-level problems.

3. Method

In this section, we present an image-level supervised in-

stance segmentation technique that utilizes class peak re-

sponse. CNN classifiers in the fully convolutional manner

can produce class response maps, which specify classifica-

tion confidence at each image location [21]. Based on our

observation that local maximums, i.e., peaks, of class re-

sponse maps typically correspond to strong visual cues re-

siding inside an instance, we first design an process to stim-

ulate peaks to emerge from a class response map in the net-

work training phase. During the inference phase, emerged

peaks are back-propagated to generate maps that highlight

informative regions for each object, referred to as Peak Re-

sponse Maps (PRMs). PRMs provide a fine-detailed sepa-

rate representation for each instance, which are further ex-

ploited to retrieve instance masks from object segment pro-

posals off-the-shelf, Fig. 3.
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Figure 4: With peak stimulation, multiple instances can be

better distinguished on the class response map (middle).

The learned representations (right) are visualized by acti-

vation maximization [10]. Best viewed in color.

3.1. Fully Convolutional Architecture

By simply removing the global pooling layer and adapt-

ing fully connected layers to 1x1 convolution layers, mod-

ern CNN classifiers can be seamlessly converted to fully

convolutional networks (FCNs) [19] that naturally preserve

spatial information throughout the forwarding. The con-

verted network outputs class response maps with a single

forward pass; therefore are suitable for spatial predictions.

In this work, networks are converted to FCN first.

3.2. Peak Stimulation

To stimulate peaks to emerge from class response maps,

we construct a peak stimulation layer, to be inserted af-

ter the top layer, Fig. 3. Consider a standard network, let

M ∈ R
C×H×W denotes the class response maps of the top

convolutional layer, where C is the number of classes, and

H×W denotes the spatial size of the response maps. There-

fore, the input of the peak stimulation layer is M and the

output is class-wise confidence scores s ∈ R
C . Peaks of the

c-th response map M c are defined to be the local maximums

within a window size of r 2, and the location of peaks are

denoted as P c = {(i1, j1), (i2, j2), ..., (iNc , jNc)}, where

N c is the number of valid peaks for the c-th class. Dur-

ing the forwarding pass, a sampling kernel Gc ∈ R
H×W is

generated for computing the classification confidence score

of the c-th object category. Each kernel element at the lo-

cation (x, y) can be accessed with Gc
x,y . Without loss of

generality, the kernel is formed as

Gc
x,y =

Nc

∑

k=1

f(x− ik, y − jk), (1)

where 0 ≤ x < H, 0 ≤ y < W , (ik, jk) is the coordinate of

the k-th peak, and f is a sampling function. In our settings,

f is a Dirac delta function for aggregating features from

the peaks only; therefore the confidence score of the c-th

category sc is then computed by the convolution between

the class response map M c and sampling kernel Gc, as

2The region radius r for peak finding is set to 3 in all our experiments.

sc = M c ∗Gc =
1

N c

Nc

∑

k=1

M c
ik,jk

. (2)

It can be seen from Eq. 2 that the network uses peaks

only to make the final decision; naturally, during the back-

ward pass, the gradient is apportioned by Gc to all the peak

locations, as

δc =
1

N c
·
∂L

∂sc
·Gc, (3)

where δc is the gradient for the c-th channel of the top con-

volutional layer and L is the classification loss.

From the perspective of model learning, the class re-

sponse maps are computed by the dense sampling of all

receptive fields (RFs), in which most of RFs are negative

samples that do not contain valid instances. Eq. 3 indicates

that in contrast to conventional networks which uncondi-

tionally learn from the extreme foreground-background im-

balance set, peak stimulation forces the learning on a sparse

set of informative RFs (potential positives and hard neg-

atives) estimated via class peak responses, thus prevents

the vast number of easy negatives from overwhelming the

learned representation during training, Fig. 4 (right).

3.3. Peak Backpropagation

We propose a probability back-propagation process for

peaks to further generate the fine-detailed and instance-

aware representation, i.e., Peak Response Map. In contrast

to previous top-down attention models [43, 36], which seek

the most relevant neurons of an output category to generate

class-aware attention maps, our formulation explicitly con-

siders the receptive field and can extract instance-aware vi-

sual cues from the specific spatial locations, i.e., class peak

responses. The peak back-propagation can be interpreted as

a procedure that a walker starts from the peak (top layer)

and walk randomly to the bottom layer. The top-down rele-

vance of each location in the bottom layer is then formulated

as its probability of being visited by the walker.

Consider a convolution layer that has a single filter W ∈
R

kH×kW for mathematical simplification, the input and

output feature maps are denoted as U and V , where each

spatial locations can be accessed by Uij and Vpq respec-

tively. The visiting probability P (Uij) can be obtained by

P (Vpq) and the transition probability between two maps, as

P (Uij) =

i+ kH

2∑

p=i− kH

2

j+ kW

2∑

q=j− kW

2

P (Uij |Vpq)× P (Vpq), (4)

where the transition probability is defined as

P (Uij |Vpq) = Zpq × ÛijW
+
(i−p)(j−q). (5)

Ûij is the bottom-up activation (computed in the forward

pass) at the location (i, j) of U , W+ = ReLU(W ), which
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Figure 5: Peak back-propagation process maps class peak responses to fine detailed visual cues residing inside each object,

i.e., Peak Response Maps (PRMs), enabling the instance-level masks to be extracted. Best viewed in color.

discards negative connections, and Zpq is a normalization

factor to guarantee
∑

p,q P (Uij |Vpq) = 1. Note in most

modern CNNs that adopt ReLU as transfer function, nega-

tive weights have no positive effects in enhancing the output

response, thus are excluded from propagation.

Other commonly used intermediate layers, e.g., the av-

erage pooling and max-pooling layers, are regarded as the

same type of layers that perform an affine transform of the

input [43]; thus the corresponding back-propagation can be

modeled in the same way of convolution layers.

With the probability propagation defined by Eq. 4 and

Eq. 5, we can localize most relevant spatial locations for

each class peak response in a top-down fashion, to generate

fine-detailed instance-aware visual cues, referred to as Peak

Response Map, Fig. 5.

3.4. Weakly Supervised Instance Segmentation

We further leverage the instance-aware cues of PRMs to

perform challenging instance segmentation tasks. Specif-

ically, we propose a simple yet effective strategy to pre-

dict mask for each object instance by combining instance-

aware cues from PRMs, class-aware cues from class re-

sponse maps, and spatial continuity priors from object pro-

posals off-the-shelf [38, 27, 20].

We retrieve instance segmentation masks from a pro-

posal gallery, Fig. 3, with the metric,

Score = α ·R ∗ S
︸ ︷︷ ︸

instance-aware

+ R ∗ Ŝ
︸ ︷︷ ︸

boundary-aware

−β ·Q ∗ S
︸ ︷︷ ︸

class-aware

, (6)

where R is the PRM corresponds to a class peak response, Ŝ

is the contour mask of the proposal S computed by morpho-

logical gradient, and Q is the background mask obtained by

the class response map and a bias (based on the mean value

of the map). The class independent free parameters α and

β are selected on the validation set.

In Eq. 6, the instance-aware term encourages proposal

to maximize the overlap with PRM, while the boundary-

aware term leverages the fine-detailed boundary informa-

tion within the PRM to select proposal with a similar shape.

Furthermore, the class-aware term uses class response map

to suppress class-irrelevant regions. The effects of three

terms are ablation studied in Sec. 4.3.

Algorithm 1 Segment Instances via Class Peak Response

Input: A test image I , segment proposals S , and a network

trained with peak stimulation.

Output: Instance segmentation prediction set A
1: Initialize instance prediction set A = ∅;

2: Forward I to get class response maps M ;

3: for map Mk of the k-th class in M do

4: Detect peaks P k
i and add to P , Sec. 3.2;

5: end for

6: for peak P k
i in P do

7: Peak backprop at P k
i to get PRM R, Sec. 3.3;

8: for proposal Sj in S do

9: Compute score using R and Mk, Eq. 6;

10: end for

11: Add top-ranked proposal and label (S∗, k) to A;

12: end for

13: Do Non-Maximum Suppression (NMS) over A.

The overall algorithm for weakly supervised instance

segmentation is specified in Alg. 1.

4. Experiment

We implement the proposed method using state-of-the-

art CNN architectures, including VGG16 and ResNet50,

and evaluate it on several benchmarks. In Sec. 4.1, we per-

form a detailed analysis of the peak stimulation and back-

propagation process, to show that the proposed technique

can generate accurate object localization and high-quality

instance-aware cues. In Sec. 4.2, on weakly supervised se-

mantic segmentation, the ability of PRMs to extract class-

aware masks with the help of segment proposals is shown.

In Sec. 4.3, we for the first time report results for challeng-

ing image-level supervised instance segmentation. Ablation

study and upper bound analysis are further performed to

demonstrate the effectiveness and potential of our method.

4.1. Peak Response Analysis

Pointwise localization. A pointwise object localization

metric [21] is used to evaluate the localization ability of

class peak responses and effectiveness of peak stimulation.

We first upsample the class response maps to the size of the

image via bilinear interpolation. For each predicted class,
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Method VOC 2012 MS COCO

DeepMIL [21] 74.5 41.2

WSLoc [2] 79.7 49.2

WILDCAT [9] 82.9 53.5

SPN [48] 82.9 55.3

Ours (w/o Peak Stimulation) 81.5 53.1

Ours (full approach) 85.5 57.5

Table 1: Mean Average Precision (mAP%) of pointwise lo-

calization on VOC2012 and COCO2014 val. set.

if the coordinate of the maximum class peak response falls

into a ground truth bounding box of the same category, we

count a true positive.

We fine-tune ResNet50 equipped with/without peak

stimulation on the training set of PASCAL VOC 2012 [11]

as well as MS COCO 2014 [18], and report performances

on the validation set, Tab. 1. The results show that class

peak responses correspond to visual cues of objects and can

be used to localize objects. Our full approach shows top

performance against state-of-the-arts and outperforms the

baseline (w/o stimulation) by a large margin, which indi-

cates the stimulation process can lead the network to dis-

cover better visual cues correspond to valid instances.

Quality of peak response maps. To evaluate the qual-

ity of extracted instance-aware cues, we measure the corre-

lation between a Peak Response Map (PRM) R and a GT

mask G with
∑

R⊙G∑
R

, which indicates the ability of the

PRM to discover visual cues residing inside the instance.

For each PRM, we define its score to be the largest corre-

lation with GT masks of the same class. Thus, a score of

0 indicates that the corresponding PRM does not locate any

valid object region, while a score of 1 implies the PRM per-

fectly distinguishes the visual cues of an instance from the

background. PRMs with a score higher than 0.5 are consid-

ered as true positives. On VOC 2012, we use classification

data to train ResNet50 equipped with response aggregation

strategies from different methods, and evaluate the quality

of resulting PRMs on the validation set of the segmentation

data in terms of mAP, Tab. 2. Peak stimulation forces net-

works to learn an explicit representation from informative

receptive fields; thus obtaining higher quality of PRMs.

We perform statistical analysis on the relationship be-

tween the PRM quality and the crowding level of images,

Fig. 6 (left). On average, the energy of PRMs that falls into

an instance reaches 78% for images with a single object,

and 67% for images with 2-5 objects. Surprisingly, even for

crowded scenes with more than six objects, the instances

collect more energy than the background on average, which

shows that the instance-aware visual cues from PRMs are

of high quality. We further analyze the impact of object

size, Fig. 6 (right), and results show that PRMs can localize

fine-detailed evidence from common size objects.

Method Response Aggregation Strategy mAP

CAM [47] Global Average Pooling 55.7

DeepMIL [21] Global Max Pooling 60.9

WILDCAT [9] Global Max-Min Pooling 62.4

PRM (Ours) Peak Stimulation 64.0

Table 2: Comparison of the effect of different response ag-

gregation strategies on the quality of Peak Response Maps.
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Figure 6: Statistical analysis of the effect of the number and

size of objects on the quality of Peak Response Maps.

Method mIoU Comments

MIL+ILP+SP-seg † [26] 42.0 Object segment proposals

WILDCAT † [9] 43.7 CRF post-processing

SEC [14] 50.7 CRF as boundary loss

Check mask [34] 51.5 CRF & Human in the loop

Combining [33] 52.8 CRF as RNN

PRM (Ours) † 53.4 Object segment proposals

Table 3: Weakly supervised semantic segmentation results

on VOC 2012 val. set in terms of the mean IoU (%). Mark

† indicates methods that introduce negligible training costs.

4.2. Weakly Supervised Semantic Segmentation

Experiments above shows that the PRMs correspond to

accurate instance “seeds” while another challenging thing is

to expand each seed into full object segmentation. We eval-

uate the ResNet50 model equipped with peak stimulation on

the weakly supervised semantic segmentation task, which

requires assigning objects from the same categories as the

same segmentation labels. On the validation set of VOC

2012 segmentation data, We merge the instance segmenta-

tion masks of the same class to produce semantic segmen-

tation predictions. The performance is measured regarding

pixel intersection-over-union averaged across 20+1 classes

(20 object categories and background).

Instead of using time-consuming training strategies [33],

or additional supervisions [1, 34], our method trains models

using image-level labels and standard classification settings,

and reports competitive results, on weakly supervised se-

mantic segmentation without CRF post-processing, Tab. 3.

Fig. 7 shows examples of predictions in different scenarios.
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Figure 7: Examples of predicted semantic segmentations.

Different colors indicate different classes.

4.3. Weakly Supervised Instance Segmentation

With the proposed technique, we perform instance seg-

mentation on the PASCAL VOC 2012 segmentation set

with ResNet50 and VGG16 models trained on the classi-

fication set. To the best of our knowledge, this is the first

work reporting results for image-level supervised instance

segmentation. We construct several baselines based on ob-

ject bounding boxes obtained from ground truth and weakly

supervised localization methods [39, 47, 48], Tab. 4. With

the localized bounding boxes, we set three reasonable mask

extraction strategies: (1) Rect. Simply filling in the object

boxes with instance labels, (2) Ellipse. Fitting a maximum

ellipse inside each box, and (3) MCG. Retrieving an MCG

segment proposal of maximum IoU with the bounding box.

Numerical results. The instance segmentation is eval-

uated with the mAP r at IoU threshold 0.25, 0.5 and 0.75,

and the Average Best Overlap (ABO) [28] metric is also em-

ployed for evaluation to give a different perspective. Tab. 4

shows that our approach significantly outperforms weakly

supervised localization techniques that use the same setting,

i.e., using image-level labels only for model training. The

performance improvement at lower IoU thresholds, e.g.,

0.25 and 0.5, shows the effectiveness of peak stimulation

for object location, while the improvement at higher IoU

threshold, e.g., 0.75, indicates the validity of peak back-

propagation for capturing fine-detailed instance cues.

Compare with the latest state-of-the-art MELM [39],

which is trained with multi-scale augmentation, online pro-

posal selection, and a specially designed loss, our method is

simple yet effective and shows a competitive performance.

Ablation study. To investigate the contribution of peak

stimulation as well as each term in our proposal retrieval

metric, we perform instance segmentation based on differ-

ent backbones in which different factors were omitted. The

results are presented in Tab. 5. From the ablation study,

we can draw the following conclusions: 1). Peak stimula-

tion process, which stimulates peaks during network train-

Method mAP r
0.25 mAP r

0.5 mAP r
0.75 ABO

Ground

Truth

Rect. 78.3 30.2 4.5 47.4

Ellipse 81.6 41.1 6.6 51.9

MCG 69.7 38.0 12.3 53.3

Training requires image-level labels and object proposals

MELM [39]

Rect. 36.0 14.6 1.9 26.4

Ellipse 36.8 19.3 2.4 27.5

MCG 36.9 22.9 8.4 32.9

Training requires only image-level labels

CAM [47]

Rect. 18.7 2.5 0.1 18.9

Ellipse 22.8 3.9 0.1 20.8

MCG 20.4 7.8 2.5 23.0

SPN [48]

Rect. 29.2 5.2 0.3 23.0

Ellipse 32.0 6.1 0.3 24.0

MCG 26.4 12.7 4.4 27.1

PRM (Ours) 44.3 26.8 9.0 37.6

Table 4: Weakly supervised instance segmentation results

on the PASCAL VOC 2012 val. set in terms of mean aver-

age precision (mAP%) and Average Best Overlap (ABO).

ResNet50 VGG16

Peak Stimulation X X X X X

Instance-aware term X X X X X X

Class-aware term X X X X X X

Boundary-aware term X X X X X X

mAP r
0.5 22.8 13.3 16.5 24.3 26.8 11.9 22.0

Table 5: Ablation study on the PASCAL VOC2012 val. set

based on different network backbones.

ing, is crucial to the instance segmentation performance of

our method. 2). The mAP r
0.5 dramatically drops from

26.8% to 13.3% when omitting the instance-aware term,

which demonstrates the effectiveness of the well-isolated

instance-aware representation generated by our method.

3). Boundary-aware term significantly improves the perfor-

mance by 2.5% shows our method does extract fine-detailed

boundary information of instances. 4). Class-aware cues

depress class-irrelevant regions; thus substantially improve

the instance segmentation performance of our method.

Qualitative results. In Fig. 8, we illustrate some in-

stance segmentation examples including successful cases

and typical failure cases. It can be seen that our approach

can produce high quality visual cues and obtain decent in-

stance segmentation results in many challenging scenarios.

In the first and second columns, it can distinguish instances

when they are closed or occluded with each other. Ex-

amples in the third and fourth columns show that it per-

forms well with objects from different scales. In the fifth

column, objects from different class are well segmented,

which shows that the proposed method can extract both

class-discriminative and instance-aware visual cues from

classification networks. As is typical for weakly-supervised

systems, PRMs can be misled by noisy co-occurrence pat-

terns and sometimes have problems telling the difference

between object parts and multiple objects. We address this
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Figure 8: Instance segmentation examples on the PASCAL VOC 2012 val. set. It can be seen that the Peak Response Maps

(second row) incorporate fine-detailed instance-aware information, which can be exploited to produce instance-level masks

(third row). The last row shows typical failure cases. Best viewed in color.

Proposal gallery GT mask GT bbox SPN [48] PRM (Ours)

MCG 26.0 12.3 4.4 9.0

MCG + GT mask 100.0 29.2 10.4 26.9

GT mask 100.0 93.0 50.0 73.3

Table 6: Comparison of instance segmentation results

(mAP r
0.75) on the PASCAL VOC 2012 val. set.

problem with a proposal retrieval step; nevertheless, the per-

formance remains limited by proposal quality.

Upper bound analysis. To explore the upper bound

of our method, we construct different proposal galleries,

Tab. 6. First, we mix GT masks into MCG proposals to get

a gallery with 100% recall, and the results show that the ca-

pability of our method (image-level supervised) to retrieve

proposals is comparable to GT bbox (26.9% vs. 29.2%).

Next, we use GT masks as a perfect proposal gallery (note

that GT bbox still fails in highly occlusion cases) to evaluate

the instance localization ability of PRMs. Our result further

boosts to 73.3% and outperforms SPN by a large margin,

demonstrating the potential of the proposed technique on

video/RGB-D applications where rich information can be

exploited to generate proposals of high quality.

5. Conclusions

In this paper, we propose a simple yet effective technique

to enable classification networks for instance mask extrac-

tion. Based on class peak responses, the peak stimulation

shows effective to reinforce object localization, while the

peak back-propagation extracts fine-detailed visual cues for

each instance. We show top results for pointwise localiza-

tion as well as weakly supervised semantic segmentation

and, to the best of our knowledge, for the first time report

results for image-level supervised instance segmentation.

The underlying fact is that instance-aware cues are naturally

learned by convolutional filters and encoded in hierarchical

response maps. To discover these cues provides fresh in-

sights for weakly supervised instance-level problems.

Acknowledgements

The authors are very grateful for support by the NSFC

grant 61771447 / 61671427, BMSTC, and NSF.

3798



References

[1] A. Bearman, O. Russakovsky, V. Ferrari, and L. FeiFei.

Whats the point: Semantic segmentation with point supervi-

sion. In European Conference on Computer Vision (ECCV),

pages 543–559, 2016. 2, 6

[2] A. J. Bency, H. Kwon, H. Lee, S. Karthikeyan, and B. S.

Manjunath. Weakly supervised localization using deep fea-

ture maps. In European Conference on Computer Vision

(ECCV), pages 714–731, 2016. 6

[3] Y. Y. Boykov and M.-P. Jolly. Interactive graph cuts for op-

timal boundary & region segmentation of objects in nd im-

ages. In IEEE International Conference on Computer Vision

(ICCV), pages 105–112. IEEE, 2001. 2

[4] C. Cao, X. Liu, Y. Yang, Y. Yu, J. Wang, Z. Wang, Y. Huang,

L. Wang, C. Huang, W. Xu, et al. Look and think twice:

Capturing top-down visual attention with feedback convolu-

tional neural networks. In IEEE International Conference on

Computer Vision (ICCV), pages 2956–2964, 2015. 3

[5] J. Dai, K. He, and J. Sun. Boxsup: Exploiting bounding

boxes to supervise convolutional networks for semantic seg-

mentation. In IEEE International Conference on Computer

Vision (ICCV), pages 1635–1643, 2015. 2

[6] J. Dai, K. He, and J. Sun. Instance-aware semantic segmen-

tation via multi-task network cascades. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

3150–3158, 2016. 2

[7] J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via

region-based fully convolutional networks. In Advances in

Neural Information Processing Systems (NIPS), pages 379–

387, 2016. 2

[8] P. Dollár and C. L. Zitnick. Fast edge detection using struc-

tured forests. IEEE Transactions on Pattern Analysis and

Machine Intelligence (TPAMI), 37(8):1558–1570, 2015. 3

[9] T. Durand, T. Mordan, N. Thome, and M. Cord. Wild-

cat: Weakly supervised learning of deep convnets for image

classification, pointwise localization and segmentation. In

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2017. 3, 6

[10] D. Erhan, Y. Bengio, A. Courville, and P. Vincent. Visual-

izing higher-layer features of a deep network. University of

Montreal, 1341(3):1, 2009. 4

[11] M. Everingham, S. M. A. Eslami, L. J. V. Gool, C. K. I.

Williams, J. M. Winn, and A. Zisserman. The pascal vi-

sual object classes challenge: A retrospective. International

Journal of Computer Vision (IJCV), 111(1):98–136, 2015. 6

[12] K. He, G. Gkioxari, P. Dollár, and R. B. Girshick. Mask

R-CNN. CoRR, abs/1703.06870, 2017. 1, 2

[13] A. Khoreva, R. Benenson, J. Hosang, M. Hein, and

B. Schiele. Simple does it: Weakly supervised instance and

semantic segmentation. In IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2017. 2

[14] A. Kolesnikov and C. H. Lampert. Seed, expand and con-

strain: Three principles for weakly-supervised image seg-

mentation. In European Conference on Computer Vision

(ECCV), pages 695–711. Springer, 2016. 2, 3, 6

[15] B. Lai and X. Gong. Saliency guided dictionary learning

for weakly-supervised image parsing. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

3630–3639, 2016. 2

[16] Y. Li, H. Qi, J. Dai, X. Ji, and Y. Wei. Fully convolutional

instance-aware semantic segmentation. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2017.

1, 2

[17] D. Lin, J. Dai, J. Jia, K. He, and J. Sun. Scribble-

sup: Scribble-supervised convolutional networks for seman-

tic segmentation. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 3159–3167, 2016. 2

[18] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ra-

manan, P. Dollár, and C. L. Zitnick. Microsoft COCO: com-

mon objects in context. In European Conference on Com-

puter Vision (ECCV), pages 740–755, 2014. 1, 6

[19] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pages

3431–3440, 2015. 4

[20] K. Maninis, J. Pont-Tuset, P. A. Arbeláez, and L. V. Gool.
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