
Very Large-Scale Global SfM by Distributed Motion Averaging

Siyu Zhu∗1, Runze Zhang ∗1, Lei Zhou1, Tianwei Shen1, Tian Fang†2, Ping Tan3, and Long Quan1

1The Hong Kong University of Science and Technology 2Altizure.com 3Simon Fraser University

Abstract

Global Structure-from-Motion (SfM) techniques have

demonstrated superior efficiency and accuracy than the

conventional incremental approach in many recent stud-

ies. This work proposes a divide-and-conquer framework

to solve very large global SfM at the scale of millions of im-

ages. Specifically, we first divide all images into multiple

partitions that preserve strong data association for well-

posed and parallel local motion averaging. Then, we solve

a global motion averaging that determines cameras at par-

tition boundaries and a similarity transformation per par-

tition to register all cameras in a single coordinate frame.

Finally, local and global motion averaging are iterated un-

til convergence. Since local camera poses are fixed during

the global motion average, we can avoid caching the whole

reconstruction in memory at once. This distributed frame-

work significantly enhances the efficiency and robustness of

large-scale motion averaging.

1. Introduction
Structure-from-Motion (SfM) has been intensively in-

vestigated in computer vision. Earlier methods are mostly

incremental, where images are reconstructed one by one [1,

34, 35, 37, 42, 50] . Recent studies [3, 5, 6, 7, 17, 18, 20, 27,

33] suggest that a global approach, reconstructing all im-

ages together, leads to better accuracy and efficiency. How-

ever, global SfM has so far only been demonstrated with

relatively small-scale data-sets at the order of a few thou-

sand images [9, 11, 21, 33, 49]. This work is the first to

push global SfM to the scale of millions of input images,

larger than all previous works.

The key to the global SfM methods is motion averag-

ing. The time and spatial complexity of state-of-the-art

motion averaging methods [3, 5, 6, 7, 17, 18, 20, 27, 33]

following the gradient and Hessian-based optimization ap-

proach is cubic and square respectively in the number of in-

put images [2]. Therefore, global motion averaging quickly

reaches the memory and efficiency bottleneck as the num-

ber of input images drastically increases.

∗Siyu Zhu and Runze Zhang equally contribute to the work as the first

authors. Siyu Zhu is with Alibaba A.I. Labs since 2017.
†Tian Fang is with Shenzhen Zhuke Innovation Technology since 2017.

To conquer the problems above, we propose a distributed

and robust motion averaging method which is inspired by

the nested dissection algorithm [25]. We formulate the

large-scale motion averaging problem on a camera graph,

where each camera is a vertex and cameras with relative

motion constraints are linked by edges. By dividing the

original camera graph into multiple small-scale sub-graphs,

we group the variables of each sub-graph and order them

first in the Hessian matrix, while variables called separa-

tors [25] which connect multiple sub-graphs are ordered

second. Since sub-graphs excluding separators are inde-

pendent with each other, we can first solve the Cholesky

factorization of each sub-graph excluding separators in a

distributed manner and then the factorization of separators.

To further reduce the communication overhead among sub-

graphs, we iterate each sub-graph till convergence before

solving the separators. In this paper, we call the opti-

mization process of each sub-graph as local motion aver-

aging and that of separators as global motion averaging.

We also introduce a similarity transformation to parame-

terize the camera poses of each sub-graph, so that the lin-

earization stays the same in global motion averaging. Since

only the separators, namely the cameras connecting multi-

ple sub-graphs, and the similarity transformations are con-

sidered in global motion averaging, the entire reconstruc-

tion is avoided to be cached in core memory at once.

Dividing the camera-graph into strongly associated sub-

graphs also improves the robustness of global SfM. Previ-

ous motion averaging methods often assume uniform ac-

curacy of relative poses, which degrades reconstruction ac-

curacy when there are both strong and weak associations

among cameras. Our framework clusters strong affiliated

cameras together and fixes their relative motions in the

global motion averaging, which can be applied to many pre-

vious motion averaging algorithms, like [11, 28, 33, 45,

48], to further improve their performance.

In experiments, we demonstrate our framework on se-

quential, Internet, and challenging city-scale data-sets. Re-

markably, we are even able to average the camera poses

of a city-scale data-set with more than one million high-

resolution images in parallel. We further apply our frame-

work to enhance the previous prestigious motion averaging

works [33, 45, 48] on both efficiency and robustness.

14568

2. Related Works

Thanks to the massive image data, city-scale 3D recon-

struction [1, 16, 15, 39, 38, 47, 51, 53, 54, 55, 56, 57, 58]

has been a hot research topic in computer vision, in which

Structure-from-Motion (SfM) is the pivotal point. The in-

cremental SfM methods [1, 34, 35, 37, 43, 50] progressively

recover the camera pose of the next-best-view [13, 19].

However, the redundant intermediate bundle adjustment

leads to low efficiency and drifting errors. In comparison,

the global SfM methods compute all the camera poses si-

multaneously from the available epipolar geometry [3, 5, 6,

7, 17, 18, 20, 27, 33] or trifocal tensor [8, 21, 28, 41]. Such

global methods are highly efficient and can compensate for

severe drifting errors. A hybrid formulation [4, 44, 58]

exploiting incremental SfM to initialize partitions of accu-

rate and robust local camera poses and motion averaging to

globally merge them together is naturally presented.

Most of global SfM methods solve camera rotations and

translations separately. Govindu et al. [17] simultaneously

compute all the camera rotations while this work is limited

by the fact that the rotation manifold has a non-trivial topol-

ogy [20]. Martinec et al. [27] ignore the manifold constraint

and obtain a linear algorithm. On the other hand, the trans-

lation averaging method is divided into two types. The es-

sential matrix based methods [3, 5, 17, 33] suffers from the

fact that essential matrices can only determine the direc-

tions of relative translations and is limited to a parallel rigid

graph [33]. The trifocal tensor based methods [8, 21, 28, 40]

require strong association among images. To address this

issue, some other methods optimize camera poses together

with scene points [9, 23, 27, 36, 41, 49].

However, a standard motion averaging problem that con-

siders all the relative poses at once gradually becomes both

memory and time consuming as the number of relative

motions rises sharply. This problem becomes more obvi-

ous in translation averaging [10, 11, 21, 28, 49] that con-

siders the relative translations between cameras and 3D

points as well. To address the large scale motion averaging

problem in a distributed manner, we propose a divide-and-

conquer framework similar to nested dissection [25]. Some

works [14, 29, 54] also try to solve the large scale bundle

adjustment problem in an out-of-core or distributed manner.

To guarantee robust motion averaging, the work in [18]

adopts a ℓ1 optimization [7] and follows the Lie-algebra

rotation representation to achieve better rotation averaging

results. The works in [11, 33] also apply a ℓ1 solver to

translation averaging. Meanwhile, other works focus on

the filters [11, 22, 49, 52] to effectively discard erroneous

epipolar geometry and feature correspondences and provide

well-posed initialization for motion averaging. In contrast,

we first solve the well-conditioned sub-problems of strongly

affiliated images and then globally merge them together to

obtain a robust system.

0

30

60

90

120

150

180

0.1K 0.4K 1.6K 6.4K 25.6K 102.4K 409.6K 1.6M

1 partition
2 partitions
4 partitions
16 partitions
64 partitions
128 partitions

Number of cameras

Pe
ak

 m
em

or
y

(G
B

)

T
im

e
co

st
 (

ho
ur

s)

0

20

40

60

80

100

120

140

0.1K 0.4K 1.6K 6.4K 25.6K 102.4K 409.6K 1.6M

1 partition
2 partitions
4 partitions
16 partitions
64 partitions
128 partitions

Number of cameras

Figure 1: The comparisons of the estimated peak memory

and time cost of motion averaging given different numbers

of partitions. The line chart is estimated on the city-scale

data-set. If all the cameras are in one partition, our approach

degenerates to the traditional motion averaging.

3. Motion Averaging Review

We first give the notations and definitions of this paper.

We specify the absolute pose of a camera Ci as Pi=[Ri|ti],
where Ri ∈ R

3×3 is a 3D rotation matrix denoting the cam-

era orientation, ti =−Rici specifies a 3D translation vec-

tor, and ci ∈ R
3×1 is the position of the camera optical

center. For each pair of cameras Ci and Cj , there are two

relative motion constraints:

Rij = RjR
⊤
i , (1)

λij t̂ij = Rj(ci − cj), (2)

where Rij ∈R
3×3 denotes a relative rotation matrix, t̂ij ∈

R
3×1 represents a unit vector of the relative translation di-

rection, and λij is a scale factor. We also denote the sparse

3D points as X ={xi}, where xi∈R
3×1 is the 3D position

of a scene point.

Given a reference frame and a set of relative rotations

Rrel = {Rij}, a global rotation averaging algorithm obtains

the camera rotations R = {Ri} by solving the following

minimization problem:

argmin
R

∑

Rij∈Rrel

dR(Rij ,RjR
⊤
i)

p, (3)

where the variable p= 1, 2 chooses ℓ1 or ℓ2 norm and the

distance measure dR(S,R) is defined on SO(3), e.g. angu-

lar distance, chordal distance, quaternion distance etc. [20].

Given the fixed global orientations R= {Ri} and some

known camera-to-camera relative translations Trel = {tij}
and camera-to-point relative translations Urel = {uij}, a

translation averaging problem computes global camera po-

sitions T ={ci} by minimizing the following function,

argmin
T

∑

tij∈Trel

dT(tij ,Rj(ci − cj))
p

+
∑

uij∈Urel

dT(uij ,R
⊤
i (xj − ci))

p,
(4)

where the dissimilarity measure dT(u,v) can be a

Euclidean distance, angular distance, chordal distance

4569

(a) Camera partitions (b) Intra and inter-variables

Camera 3D point Relative pose

Figure 2: An illustration of intra and inter variables (cam-

eras, relative poses, and 3D points), where (b) shows the in-

tra and inter variables corresponding to the camera partition

in (a). The blue and red dots in (b) represent intra-cameras,

and the green dots are inter-cameras. The blue and red tri-

angles represent intra-3D-points, and the green triangles are

inter-3D-points. The solid and dashed lines represent intra-

relative-poses and inter-relative-poses respectively.

etc. [49], and different norms p = 1, 2 can be considered.

The relative translations between cameras and 3D points are

also introduced to avoid generating disconnected models in

less photographed scenes [10, 49].

The above two minimization problems are often solved

by gradient and Hessian-based optimization methods,

which have a computational complexity of O((m + n)3)
for each iteration and a memory requirement of O(mn(m+
n)) [2], where m is the number of cameras and n is the

number of scene points in translation averaging. The com-

putational complexity and memory requirement gradually

become the bottleneck for very large-scale motion averag-

ing, especially when solving problems that involve millions

of images. Figure 1 demonstrates the growth of peak mem-

ory and time cost of motion averaging along with the num-

ber of input cameras.

4. Distributed Motion Averaging

4.1. Problem Formulation

Our goal is to compute the global poses P = {Pi} of a

great number of cameras C = {Ci} from the relative rota-

tions Rrel = {Rij} and translations Trel = {tij} in a dis-

tributed manner. We assume that most of the erroneous

epipolar geometry and feature correspondences have been

discarded by the epipolar filters [11, 22, 49, 52].

Some terminologies are necessary to facilitate our fol-

lowing discussion, which are better explained by referring

to Figure 2. In this figure, we define a camera graph

G = {V, E}, where each vertex Vi ∈ V is a camera Ci, an

edge Eij ∈E will link two cameras Ci and Cj if the relative

motion between them is known. Figure 2 (a) shows a cam-

era partition, where cameras in the same partitions have the

same color. If a camera is only linked to the cameras in the

same partition, we name it as intra-camera. The set of all

these cameras is Cintra. The edges among cameras in Cintra

are referred as intra-relative-poses. If a camera is linked to

G
lo

ba
l r

ot
at

io
n

av
er

ag
in

g

G
lo

ba
l t

ra
ns

la
tio

n
av

er
ag

in
g

LRA LTA

LRA LTA

LRA LTA

LRA LTA

G
lo

ba
l c

am
er

a
po

se
s

C
am

er
a

pa
rt

iti
on

in
g

Figure 3: The system architecture of our distributed motion

averaging. We abbreviate local rotation averaging to “LRA”

and local translation averaging to “LTA”.

those in other partitions, we name it inter-cameras, which

are the separators in the nest dissection [25]. They form

a set Cinter. The edges involving a camera in Cinter are re-

ferred as inter-relative-poses. Moreover, the 3D points vis-

ible only by intra-cameras are defined as intra-3D-points

denoted by Xintra, and the others as inter-3D-points termed

as Xinter. Such a categorization of cameras and points is

illustrated in Figure 2 (b).

After camera partitioning, each partition is reconstructed

by a local motion averaging, whose complexity can be

easily controlled by the number of partitions. A com-

pact parameterization is necessary to make the following

global motion averaging manageable. For a camera parti-

tion Ck = {Ck
i }, the intra-cameras and 3D points within it

are parametrized by a similarity transformation:

Sk=[αkQk | lk], (5)

where αk is the scale factor, Qk is the rotation matrix, and

lk is the translation vector. In this way, the global opti-

mization is simplified to consider only inter-cameras and

the similarity transformations of different partitions, which

significantly reduces the number of involved parameters.

Now we can have the following notations. The rota-

tion and position of an intra-camera Ck
i ∈ Ck

intra is de-

noted by Rk
i and cki respectively within a local coordi-

nate frame. This local coordinate frame is registered to

the global coordinate frame by a similarity transformation

Sk = [αkQk | lk]. Therefore, the rotation and position of

Ck
i in the global coordinate frame are Ri = Rk

iQ
kT and

ci=αkQkcki +lk respectively. The rotation and position of

an inter-camera Cj ∈ Cinter are denoted as Rj and cj with

respect to the global coordinate frame.

4.2. System Architecture

Figure 3 shows our system architecture. We first divide

the input images into some partitions based on the associ-

ation among them (Section 4.3). Then the motion averag-

ing will be completed by two steps, namely rotation aver-

aging (Section 4.4) and translation averaging (Section 4.5).

4570

0

5

10

15

20

10 50 90 130 170 210 250 290 330 370

Relative translation error

Relative rotation error

Number of feature correspondences

A
ng

ul
ar

 re
si

du
al

s

Figure 4: The accuracy of relative rotations and translations

measured by the median angular distance in degrees for dif-

ferent numbers of feature correspondences of camera pairs.

The statistics are based on the Internet data-set [49].

In each step, our system iterates between the distributed lo-

cal motion averaging and the global motion averaging until

the convergence criterion is reached. In the first iteration of

local motion averaging, we follow the traditional motion av-

eraging pipeline revisited in Section 3 to reconstruct camera

rotations or translations of each partition. From the second

iteration, we optimize the intra-camera poses while fixing

all the inter-camera poses and similarity transformations.

In the global motion averaging, the inter-camera poses and

similarity transformations associated with each partition

are optimized by the inter-relative-poses with all the intra-

camera poses fixed in their local coordinate frames.

4.3. Camera Partitioning

We start with the camera graph G = {V, E} and recur-

sively apply normalized-cut [12] to partition the camera

graph into two sub-graphs until the local motion averag-

ing corresponding to each sub-graph can be solved by a

single computer. Normalized-cut [12] also encourages a

balanced partition for a high degree of parallelism. Next,

we define the edge weight w(eij) between two cameras

Ci and Cj as the number of their inlier feature correspon-

dences. As shown in Figure 4, camera pairs with strong

association indicate robust relative poses. In this way, cam-

era pairs with more accurate relative motions tend to be

grouped together. Finally, we have a set of camera parti-

tions {Ck | Ck = {Ck
i }}. A sample partition is shown in

Figure 5 (a).

4.4. Rotation Averaging

Local rotation averaging For every partition of cam-

eras Ck = {Ck
i }, we fix the rotations of similarity trans-

formations Q = {Qk} and the rotations of inter cameras

Rinter = {Rj}, and obtain associate rotations of intra-

cameras Rintra = {Rk
intra |R

k
intra = {Rk

i }} with respect to

their local coordinate frames by the minimization problem:

∀Ck : LR(Rk) = LR

intra(R
k) + LR

betw(R
k). (6)

First, LR

intra(R
k) is the local rotational error function of

intra-cameras, which is defined as:

LR

intra(R
k) =

∑

Rk
i
,Rk

j
∈Rk

intra

dR(Rij ,R
k
jR

k
i

T
)p. (7)

(a) (b)

(c) (d)

Figure 5: The intermediate results of the City-B data-set. (a)

The partitions of cameras. (b) The camera poses after the

first global motion averaging. (c) The camera poses after

the second local motion averaging. (d) The final camera

poses and sparse 3D points after bundle adjustment.

Second, LR

betw(R
k) is the local rotational error function be-

tween intra-cameras and inter-cameras. Given that Ri =

Rk
iQ

kT , we can define LR

betw(R
k) as:

LR

betw(R
k) =

∑

R
k
i ∈R

k
intra

Rj∈Rinter

dR(Rij ,Rj(R
k
iQ

kT)
T

)p. (8)

Global rotation averaging With the rotations of intra-

cameras Rintra = {Rk
intra |R

k
intra = {Rk

i }} fixed, we define

the global rotational error GR(S,R) as:

GR(S,R) = GR

betw(S,R) +GR

inter(R). (9)

First, GR

betw(S,R) is the rotational error function between

intra-cameras and inter-cameras. Since we have Ri =

Rk
iQ

kT , GR

betw(S,R) is defined by:

GR

betw(S,R)=
∑

k

∑

R
k
i ∈R

k
intra

Rj∈Rinter

d(Rij ,Rj(R
k
iQ

kT)
T

)p. (10)

Moreover, GR

inter(R) is the global rotational error function

of inter-cameras and it is defined as:

GR

inter(R) =
∑

Ri,Rj∈Rinter

d(Rij ,RjR
T
i)

p. (11)

We set the rotation of any one camera Ri = I3×3 to fix the

gauge freedom.

4.5. Translation Averaging

After obtaining the global rotations, we continue to aver-

age camera translations while regarding all the rotations as

known parameters.

4571

Local translation averaging With inter-camera positions

Tinter = {cj} and similarity transformations S = {Sk |Sk =
[αkQk | lk]} fixed, we can obtain the positions of intra-

cameras Tintra = {T k
intra | T

k
intra = {cki }} with respect to their

local coordinate frames by minimizing the following error

function considering both camera-to-camera and camera-

to-point relative translations in terms of camera partitions

{Ck | Ck={Ck
i }}. That is

∀Ck : LT(T k) = LT

intra(T
k) + LT

betw(T
k). (12)

Specifically, the local positional error function of intra-

cameras denoted by LT

intra(T
k) is defined as:

LT

intra(T
k) =

∑

ck
i
, ck

j
∈T k

intra

dT(tij ,R
k
j (c

k
i − ckj))

p. (13)

Since we have ci =αkQkcki +lk, the local positional error

function between intra-cameras and inter-cameras denoted

by LT

betw(T
k) is defined as:

LT

betw(T
k) =

∑

c
k
i ∈T

k
intra

cj∈Tinter

dT(tij ,Rj((α
kQkcki +lk)−cj))

p (14)

Here, we omit the camera-to-point relative translation con-

straints, which take a similar form as the camera-to-camera

constraints in Equation 13 and 14.

Global translation averaging Fixing the intra-camera

positions Tintra={T k
intra | T

k
intra={cki }}, we define the global

positional error function GT(S, T) as:

GT(S, T) = GT

betw(S, T) +GT

inter(T). (15)

Here, GT

betw(S, T) is the global positional error function be-

tween intra-cameras and inter-cameras. Given that ci =
αkQkcki +lk, the global positional error is defined as:

GT

betw(S, T)=
∑

k

∑

c
k
i ∈T

k
intra

cj∈Tinter

dT(tij ,Rj((α
kQkcki+l

k)−cj))
p. (16)

Finally, we define the global positional error of inter-

cameras as:

GT

inter(T) =
∑

ci,cj∈Tinter

dT(tij ,Rj(ci−cj))
p. (17)

Likewise, we omit the camera-to-point relative translation

constraints in Equation 16 and 17. We fix the gauge free-

dom by setting the position of any one camera ci = 03×1

and the scale of any one similarity transformation αk = 1.

4.6. Implementation Details

This section briefly expounds on the implementation of

our large-scale motion averaging system. It needs to be em-

phasized that the proposed distributed and robust motion av-

eraging framework is also applicable to the state-of-the-art

motion averaging approaches [3, 5, 6, 7, 17, 18, 20, 27, 33]

with different choices of distance measures and norms.

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

1st iteration
2nd iteration
3rd iteration

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32

Graph partition
Global TA
Global RA
Local TA
Local RA

Number of partitionsNumber of partitions

T
im

e

T
im

e

Figure 6: The comparison of the motion averaging running

time between the traditional and our distributed approaches

with different numbers of partitions. The time of one par-

tition corresponds to that of the traditional method. The

running time is calculated on the city-scale data-sets on the

average of 10 runs using our distributed computing system.

Camera partitioning Figure 1 shows that as the number

of camera partitions increases, both the memory and time

consumption first remarkably decrease and then stabilize.

That means over-partitioning does not bring additional ben-

efits. Therefore, the data-sets handled by a single computer

are partitioned according to the computer core number. In

our experiments, we limit the number of cameras within a

partition (≤ 3000) so that each partition can be fit into a

single computer for the subsequent operations.

Relative motions In each partition, we follow the work

in [4, 58] and utilize robust local incremental SfM to ob-

tain a partial reconstruction and associate relative poses.

The introduction of local incremental SfM is helpful in

two aspects. First, incremental SfM employs RANSAC

based filters [24, 30] and repeated intermediate bundle ad-

justment [46] to discards most of the erroneous epipolar

geometry and feature correspondences. More importantly,

the relative translation between cameras Ck
i and Ck

j with

the baseline length can be obtained, and we denote it as

tkij . Since tkij is also up to the similarity transformation

Sk = [αkQk | lk] in the global coordinate frame, we have

tij = αktkij . Therefore, we can directly use the Euclidean

distance between two relative translations as the dissimilar-

ity measure of translation averaging. To introduce the con-

straints of camera-to-point relative translations into transla-

tion averaging, we choose a subset of scene points by greed-

ily selecting 3D points visible by the most number of cam-

eras until each camera sees at least 20 points [49].

Distance measures Given that most of the erroneous rela-

tive motions have been discarded by local incremental SfM,

we directly refer to the robust non-linear loss function for a

fast and robust convergence. First, we use the angular dis-

tance, the most natural metric on SO(3) [20], to measure

the distance between two rotation matrices S and R, namely

dR(R,S) = || log(RST)||2. Moreover, we solve the trans-

lation averaging by minimizing Euclidean distances be-

tween relative translations with baseline lengths, which is

4572

1 2 3 4 5
1.74

1.76

1.78

1.8

1.82

1.84

1.86

1.88

1.9 1 partition
2 partitions
4 partitions
8 partitions
16 partitions
32 partitions

1 2 3 4 5
2.4

2.41

2.42

2.43

2.44

2.45

2.46

2.47
1 partition
2 partitions
4 partitions
8 partitions
16 partitions
32 partitions

Iterations

R
o

ta
ti

o
n

 r
es

id
u

al
s

Iterations

P
o

si
ti

o
n

 r
es

id
u

al
s

Figure 7: The convergence rate of the rotational and posi-

tional errors provided different numbers of partitions. The

line chart is obtained on the city-scale data-sets [49] on the

average of 10 runs.

a much well-posed similarity averaging according to [11].

That measures the distance between two vectors u,v as

dT(u,v) = Lδ(u−v) and Lδ(x) = δ(
√

1 + (x
δ
)2−1) is

the Pseudo-Huber loss function with slope δ (δ = 0.1). The

slope is set according to the real GPS scale and we fix the

scale of one relative translation of two cameras which have

real GPS positions from the EXIF tag.

Non-linear optimization To solve all the non-linear least

square objective functions defined in Equation (6), (9), (12)

and (15), we use the standard Levenberg-Marquardt algo-

rithm [32]. The efficient package [2] is adopted as the

solver. To initialize the similarity transformations, we fol-

low the work in [4] that uses sampled epipolar geometry

across partitions to roughly merge partial sparse reconstruc-

tions together.

Since the local motion averaging reaches convergence

before global motion averaging, we have a very small num-

ber of iterations of local and global motion averaging before

convergence. More importantly, the communications are re-

markably reduced, and local motion averaging becomes in-

herently highly parallel. We use a standard stopping criteria

adopted in non-linear optimization. In both rotation aver-

aging and translation averaging, an iteration stops when the

root mean square error of their corresponding distance mea-

surement decreases by less than 1%. The histogram in Fig-

ure 6 shows that our approach with 32 partitions takes only

15% of the time of the traditional approach.

As shown in Figure 7, we regard the residual of the tra-

ditional motion averaging (i.e. 1 partition) as the baseline.

We can see that our algorithm converges in two global it-

erations with 2 and 4 partitions and three global iterations

with 8, 16 and 32 partitions. After the first iteration, the

rotational and positional residuals drop to approximately

0.012% − 2.2% and 0.90% − 8.6% above the minimum

residuals respectively. After the second iteration, the rota-

tional and positional residuals are about 0.012% − 0.57%
and 0.34%− 0.57% above the minimum residuals.

5. Experiments

The experiments of the city-scale data-sets are run on

a distributed computing system consisted of 12 comput-

ers with 12 core 3.6 GHz processors and 64 GB RAM.

The Internet data-set [49] and the sequential data-set [22]

are run on a single computer with the same configuration.

We also use a computer with 40 core 3.6 GHz processors

and 512 GB RAM to test the traditional methods on the

city-scale data-sets. As for the implementation of our SfM

pipeline, we use SIFT [26] to detect scale-invariant fea-

tures, the method in [31] to retrieve candidate image pairs

for putative feature matching, and distributed bundle adjust-

ment [54] for the final non-linear optimization of both cam-

era poses and 3D points.

Internet data-sets Table 1 demonstrates the statistical

comparison between the global SfM methods [33, 45, 49]

and our implementation with and without the proposed dis-

tributed formulation on the Internet data-set [49]. After

applying our framework to the global SfM methods [33,

45, 49], they obviously reconstruct more cameras. We

can verify that the divide-and-conquer optimization, where

the well-posed subproblems are tackled first and subse-

quently merged together, encourages a robust convergence

indeed, especially for the data-set consisted of images cap-

tured in a wild. The improvement of efficiency is signifi-

cant after adopting our distributed formulation. The works

in [33, 45, 49] and our implementation (denoted as T ∗
MA)

under the proposed framework are 2.6− 9.9 times more ef-

ficient than the original methods (TMA). We further test the

robustness of our pipeline on the challenging ArtsQuad6K

and Dubrovnik6K data-sets. The overview and zoom-in fig-

ures of these data-sets are shown in Figure 9.

Sequential data-sets In Figure 8, we further demonstrate

the robustness of our method on the Temple of Heaven data-

set [22] with 341 sequential images under different levels of

Gaussian noise in the relative motions. The sparse recon-

struction from the traditional motion averaging approach

is regarded as the ground-truth for the absolute measure-

ment of rotational and positional errors. A Gaussian noise

N (0, σ2

r
) is added to the relative rotations, more specifically

to the angle of the angle-axis representation, where σr = 1
(in degrees). Another Gaussian noise N (0, σ2

t
) is added

to the relative translations, where σt = 1 (in centimeters).

At the noise level of 7σr and 16σt, our approach succeeds

to reconstruct the close-loop while the traditional method

fails. Figure 8(e) and (f) also show the absolute camera ro-

tation and position error curves. The errors of the traditional

method fluctuate largely as the noise level increases, while

those of our method increase much more stably. In the Fig-

ure 10, we add an experiments to confirm the necessity of

intra variables.

City-scale data-sets Finally, we turn to the challenging

city-scale data-sets, in which the largest City-A data-set

contains 1.21 million images of 50 mega-pixels. The peak

4573

(a) (c) (d)(b)

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

Rotational noise level σr

R
o

ta
ti

o
n

 e
rr

o
r

(d
eg

re
es

)

0 2 4 6 8 10 12 14 16
0

3

6

9

12

15

18

P
o

si
ti

o
n

 e
rr

o
r

(c
en

ti
m

et
er

s)

Positional noise level σt

Our approach

Traditional approach

Our approach

Traditional approach

(e) (f)

Figure 8: The results of the sequential data-set. (a) are camera poses from our method at the rotational Gaussian noise level

of 7σr and (b) are from traditional methods. (c) are camera poses from our method at the positional Gaussian noise level of

16σt and (d) are from traditional methods. (e) and (f) are comparisons of the absolute rotational and positional errors given

different levels of rotational and positional Gaussian noises.

Datasets

Number of reconstructed cameras Motion averaging time (sec)

images LUD [33] 1DSfM [49] Sweeney [45] Ours LUD [33] 1DSfM [49] Sweeney [45] Ours

Nc N∗
c Nc N∗

c Nc N∗
c Nc N∗

c TMA T ∗
MA TMA T ∗

MA TMA T ∗
MA TMA T ∗

MA

Alamo 577 547 551 529 542 533 547 549 559 133 20 752 97 892 112 173 24

Ellis Island 227 207 213 214 221 203 217 221 224 76 11 139 25 155 20 26 13

Metropolis 341 288 287 291 307 272 291 298 322 120 19 201 28 233 32 88 16

Montreal N.D. 450 435 442 427 439 416 433 445 445 167 29 1135 142 1236 156 167 27

Notre Dame 553 536 538 507 504 501 519 514 542 126 24 1445 184 1596 200 246 32

NYC Library 332 320 327 295 307 294 304 290 312 54 11 392 56 437 57 79 12

Piazza del Popolo 350 305 321 308 327 302 331 334 342 31 12 191 31 224 31 72 16

Piccadilly 2152 1953 2077 1956 2099 1928 2047 2114 2122 2224 284 2425 303 3455 433 932 173

Roman Forum 1084 901 1021 989 1042 966 959 1079 1079 1243 157 1245 161 1415 192 604 89

Tower of London 572 425 482 414 504 409 507 458 510 86 18 606 79 643 82 320 64

Union Square 789 698 717 710 704 701 712 720 732 264 33 340 45 442 60 145 35

Vienna Cathedral 836 750 786 770 792 771 803 793 807 208 34 2837 360 3135 395 712 72

Yorkminster 437 404 417 401 417 409 422 407 413 148 23 777 102 876 109 199 29

Table 1: The statistics of the Internet data-sets [49]. Here, N∗
c and Nc denote the number of reconstructed cameras from an

approach with and without the the proposed distributed and robust framework. T ∗
MA and TMA represent the time of motion

averaging with and without the proposed framework. We implement the work [33, 45] and obtain the statistics.

A
rt

sQ
ua

d
D

ub
ro

vn
ik

6k

Figure 9: The SfM results of the challenging ArtsQuad6K

and Dubrovnik6K data-sets from our pipeline.

memory of the traditional motion averaging approach de-

noted as “TMA” on the City-A data-set is 134.01 GB, which

runs out of memory on our distributed computing system

with 64 GB RAM, and it takes 86.7 hours on a single com-

puter to finish a traditional motion averaging. In contrast,

our approach completes motion averaging in 9.44 hours

with only 7.06 GB peak memory on the distributed com-

puting system. As shown in the table of Figure 12, the

Folded

structure

(a) Overview (c) Without intra-variables(b) With intra-variables

Figure 10: The sparse reconstruction from motion averag-

ing with and without intra variables. As (c) shows, the

sparse reconstruction without intra variables (merged by

similarity transformations) will introduce folded structures,

namely poor camera poses.

peak memory of our approach on the city-scale data-sets

is only 4.2% − 7.7% of the traditional motion averaging

method, and the time cost is 10.9% − 26.0% of the tradi-

tional method.

Limitations We can see from the plot in Figure 12 that as

the number of images drastically increases, more partitions

are introduced and the global optimization gradually domi-

nates the memory requirement. Although the peak memory

of our largest City-A data-set is only 7.06 GB and there is

still a lot of headroom left, global motion averaging comes

4574

C
it
y
-B

C
it
y
-C

C
it
y
-D

C
it
y
-A

Part 2

Part 1

Figure 11: The visual SfM results of our city-scale data-sets. Figures from left to right are respectively camera partitions, the

final SfM results after bundle adjustment, and the detailed SfM results visualized from different viewpoints.

Data-set # images Resolution # partitions # cameras # relative poses # points
Peak memory [GB] Time [hours]

TMA Ours TMA Ours

City-A 1210106 50 Mpixel 364 1207472 263.4M 1.72B 134.01 7.06 86.70 9.44

City-B 138200 24 Mpixel 35 138193 29.3M 100.2M 13.76 0.72 17.85 2.45

City-C 91732 50 Mpixel 24 91714 21.3M 76.2M 9.12 0.38 10.95 1.95

City-D 36480 36 Mpixel 13 36428 8.1M 27.8M 3.62 0.28 3.65 0.95
Number of partitions

Pe
ak

 m
em

or
y

(G
B

)

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128 256

Local motion averaging
Global motion averaging

Figure 12: Left: the statistics of the city-scale data-sets. “Traditional motion averaging” is abbreviated as “TMA”. Right: the

peak memory of local and global motion averaging given different numbers of partitions on the City-A data-set.

to be the bottleneck of scalability of our approach along

with the continuously enlarged reconstruction scale.

6. Conclusion

Finally, the contributions of this paper can be summed

up in two points. First, we introduce a divide-and-conquer

framework to handle large-scale motion averaging problems

in a distributed manner with almost a magnitude reduction

in both memory and computation time. Second, the recur-

sive partitioning reorders the optimization of camera poses

in a more robust manner. Remarkably, the proposed frame-

work is applicable to the majority of the state-of-the-art

motion averaging methods to boost their scalability and ro-

bustness. Future work includes further investigation of the

numerical methods of parallel and distributed computation.

We also intend to propose a truly distributed SfM system

with acceptable machine-machine communications able to

handle more large-scale motion averaging problems.

Acknowledgement

This work is supported by Hong Kong RGC 16208614,

Hong Kong ITC PSKL12EG02, T22-603/15N, and China

973 program, 2012CB316300. The city-scale data-sets are

provided by Altizure.com.

4575

Altizure.com

References

[1] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless,

S. M. Seitz, and R. Szeliski. Building rome in a day. Com-

mun. ACM, 54(10):105–112, 2011. 1, 2

[2] S. Agarwal, K. Mierle, and Others. Ceres solver. http:

//ceres-solver.org. 1, 3, 6

[3] M. Arie-Nachimson, S. Z. Kovalsky, I. Kemelmacher-

Shlizerman, A. Singer, and R. Basri. Global motion esti-

mation from point matches. In 3DIMPVT, 2012. 1, 2, 5

[4] B. Bhowmick, S. Patra, A. Chatterjee, V. M. Govindu,

S. Banerjee, B. Bhowmick, S. Patra, A. Chatterjee, V. M.

Govindu, and S. Banerjee. Divide and conquer: Efficient

large-scale structure from motion using graph partitioning.

2014. 2, 5, 6

[5] M. Brand, M. Antone, and S. Teller. Spectral solution of

large-scale extrinsic camera calibration as a graph embed-

ding problem. In ECCV, 2004. 1, 2, 5

[6] L. Carlone, R. Tron, K. Daniilidis, and F. Dellaert. Initializa-

tion techniques for 3d slam: a survey on rotation estimation

and its use in pose graph optimization. In ICRA, 2015. 1, 2,

5

[7] A. Chatterjee and V. M. Govindu. Efficient and robust large-

scale rotation averaging. In ICCV, 2013. 1, 2, 5

[8] J. Courchay, A. Dalalyan, R. Keriven, and P. Sturm. Ex-

ploiting loops in the graph of trifocal tensors for calibrating

a network of cameras. In ECCV, 2010. 2

[9] D. Crandall, A. Owens, N. Snavely, and D. Huttenlocher.

SfM with MRFs: Discrete-continuous optimization for

large-scale structure from motion. PAMI, 2013. 1, 2

[10] Z. Cui, N. Jiang, C. Tang, and P. Tan. Linear global trans-

lation estimation with feature tracks. In BMVC, 2015. 2,

3

[11] Z. Cui and P. Tan. Global structure-from-motion by similar-

ity averaging. In ICCV, 2015. 1, 2, 3, 6

[12] I. S. Dhillon, Y. Guan, and B. Kulis. Weighted graph

cuts without eigenvectors a multilevel approach. PAMI,

29(11):1944–1957, 2007. 4

[13] E. Dunn and J. Frahm. Next best view planning for active

model improvement. In BMVC, 2009. 2

[14] A. Eriksson, J. Bastian, T.-J. Chin, and M. Isaksson. A

consensus-based framework for distributed bundle adjust-

ment. In CVPR, 2016. 2

[15] J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson,

R. Raguram, C. Wu, Y.-H. Jen, E. Dunn, B. Clipp, S. Lazeb-

nik, and M. Pollefeys. Building rome on a cloudless day. In

ECCV, 2010. 2

[16] Y. Furukawa, B. Curless, S. M. Seitz, R. Szeliski, and G. Inc.

R.: Towards internet-scale multiview stereo. In CVPR, 2010.

2

[17] V. M. Govindu. Combining two-view constraints for motion

estimation. In CVPR, 2001. 1, 2, 5

[18] V. M. Govindu. Lie-algebraic averaging for globally consis-

tent motion estimation. In CVPR, 2004. 1, 2, 5

[19] S. Haner and A. Heyden. Covariance propagation and next

best view planning for 3d reconstruction. In SSBA, 2012. 2

[20] R. I. Hartley, J. Trumpf, Y. Dai, and H. Li. Rotation averag-

ing. IJCV, 103(3):267–305, 2013. 1, 2, 5

[21] N. Jiang, Z. Cui, and P. Tan. A global linear method for

camera pose registration. In ICCV, 2013. 1, 2

[22] N. Jiang, P. Tan, and L. F. Cheong. Seeing double with-

out confusion: Structure-from-motion in highly ambiguous

scenes. In ICCV, 2012. 2, 3, 6

[23] F. Kahl and R. Hartley. Multiple-view geometry under the

Linfty-norm. PAMI, 30(9):1603–1617, 2008. 2

[24] L. Kneip, D. Scaramuzza, and R. Siegwart. A novel

parametrization of the perspective-three-point problem for a

direct computation of absolute camera position and orienta-

tion. In CVPR, 2011. 5

[25] R. J. Lipton, D. J. Rose, and R. E. Tarjan. Generalized nested

dissection. SIAM Journal on Numerical Analysis, 16(2):346–

358, 1979. 1, 2, 3

[26] D. G. Lowe. Distinctive image features from scale-invariant

keypoints. IJCV, 60(2):91–110, 2004. 6

[27] D. Martinec and T. Pajdla. Robust rotation and translation

estimation in multiview reconstruction. In ICPR, 2007. 1, 2,

5

[28] P. Moulon, P. Monasse, and R. Marlet. Global fusion of rela-

tive motions for robust, accurate and scalable structure from

motion. In ICCV, 2013. 1, 2

[29] K. Ni, D. Steedly, and F. Dellaert. Out-of-corebundle adjust-

mentforlarge-scale3d reconstruction. In ICCV, 2007. 2

[30] D. Nistér. An efficient solution to the five-point relative pose

problem. PAMI, pages 756–770, 2004. 5

[31] D. Nistér and H. Stewenius. Scalable recognition with a vo-

cabulary tree. In CVPR, 2006. 6

[32] J. Nocedal and S. J. Wright. Numerical Optimization.

Springer, New York, 2nd edition, 2006. 6

[33] O. Özyesil and A. Singer. Robust camera location estimation

by convex programming. In CVPR, 2015. 1, 2, 5, 6, 7

[34] M. Pollefeys, D. Nistér, J. M. Frahm, A. Akbarzadeh, P. Mor-

dohai, B. Clipp, C. Engels, D. Gallup, S. J. Kim, P. Mer-

rell, C. Salmi, S. Sinha, B. Talton, L. Wang, Q. Yang,

H. Stewénius, R. Yang, G. Welch, and H. Towles. Detailed

real-time urban 3d reconstruction from video. IJCV, 78(2-

3):143–167, 2008. 1, 2

[35] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest,

K. Cornelis, J. Tops, and R. Koch. Visual modeling with

a hand-held camera. IJCV, 59(3):207–232, 2004. 1, 2

[36] C. Rother. Multi-View Reconstruction and Camera Recovery

using a Real or Virtual Reference Plane. PhD thesis, 2003.

2

[37] J. L. Schönberger and J.-M. Frahm. Structure-from-motion

revisited. In CVPR, 2016. 1, 2

[38] T. Shen, J. Wang, T. Fang, S. Zhu, and L. Quan. Color cor-

rection for image-based modeling in the large. In ACCV,

2016. 2

[39] T. Shen, S. Zhu, T. Fang, R. Zhang, and L. Quan. Graph-

based consistent matching for structure-from-motion. In

ECCV, 2016. 2

[40] K. Sim and R. Hartley. Recovering camera motion using l∞

minimization. In CVPR, 2006. 2

[41] S. N. Sinha, D. Steedly, and R. Szeliski. A multi-stage lin-

ear approach to structure from motion. In ECCV-workshop

RMLE, 2010. 2

4576

http://ceres-solver.org
http://ceres-solver.org

[42] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: ex-

ploringimagecollectionsin3d. SIGGRAPH, 2006. 1

[43] N. Snavely, S. M. Seitz, and R. Szeliski. Skeletal graphs for

efficient structure from motion. In CVPR, 2008. 2

[44] C. Sweeney, V. Fragoso, T. Höllerer, and M. Turk. Large

scale sfm with the distributed camera model. In 3DV, 2016.

2

[45] C. Sweeney, T. Sattler, T. Hollerer, M. Turk, and M. Polle-

feys. Optimizing the viewing graph for structure-from-

motion. In ICCV, 2015. 1, 6, 7

[46] B. Triggs, P. F. McLauchlan, R. I. Hartley, and A. W. Fitzgib-

bon. Bundle adjustment - a modern synthesis. In LNCS,

2000. 5

[47] J. Wang, T. Fang, Q. Su, S. Zhu, J. Liu, S. Cai, C. Tai, and

L. Quan. Image-based building regularization using struc-

tural linear features. TVCG, 22(6):1760–1772, 2016. 2

[48] K. Wilson, D. Bindel, and N. Snavely. When is rotations

averaging hard? In ECCV, 2016. 1

[49] K. Wilson and N. Snavely. Robust global translations with

1dsfm. In ECCV, 2014. 1, 2, 3, 4, 5, 6, 7

[50] C. Wu. Towards linear-time incremental structure from mo-

tion. In 3DV, 2013. 1, 2

[51] Y. Yao, S. Li, S. Zhu, T. Fang, H. Deng, and L. Quan. Rela-

tive camera refinement for accurate dense reconstruction. In

3DV, 2017. 2

[52] C. Zach, A. Irschara, and H. Bischof. What can missing

correspondences tell us about 3d structure and motion? In

CVPR, 2008. 2, 3

[53] R. Zhang, S. Li, T. Fang, S. Zhu, and L. Quan. Joint cam-

era clustering and surface segmentation for large-scale multi-

view stereo. In ICCV, 2015. 2

[54] R. Zhang, S. Zhu, T. Fang, and L. Quan. Distributed very

large scale bundle adjustment by global camera consensus.

In ICCV, 2017. 2, 6

[55] L. Zhou, S. Zhu, T. Shen, J. Wang, T. Fang, and L. Quan.

Progressive large scale-invariant image matching in scale

space. In ICCV, 2017. 2

[56] S. Zhu, T. Fang, J. Xiao, and L. Quan. Local readjustment

for high-resolution 3d reconstruction. In CVPR, 2014. 2

[57] S. Zhu, T. Fang, R. Zhang, and L. Quan. Multi-view geome-

try compression. In ACCV, 2014. 2

[58] S. Zhu, T. Shen, L. Zhou, R. Zhang, J. Wang, T. Fang, and

L. Quan. Parallel structure from motion from local increment

to global averaging. In arXiv:1702.08601, 2017. 2, 5

4577

