This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the version available on IEEE Xplore.

On the Importance of Label Quality for Semantic Segmentation

Aleksandar Zlateski™*

Ronnachai Jaroensri*

Prafull Sharma

Fredo Durand

Massachusetts Institute of Technology

“Equally contributed

Abstract

Convolutional networks (ConvNets) have become the
dominant approach to semantic image segmentation. Pro-
ducing accurate, pixel-level labels required for this task is
a tedious and time consuming process; however, producing
approximate, coarse labels could take only a fraction of
the time and effort. We investigate the relationship between
the quality of labels and the performance of ConvNets for
semantic segmentation. We create a very large synthetic
dataset with perfectly labeled street view scenes. From these
perfect labels, we synthetically coarsen labels with different
qualities and estimate human—hours required for producing
them. We perform a series of experiments by training Con-
vNets with a varying number of training images and label
quality. We found that the performance of ConvNets mostly
depends on the time spent creating the training labels. That
is, a larger coarsely—annotated dataset can yield the same
performance as a smaller finely—annotated one. Further-
more, fine—tuning coarsely pre—trained ConvNets with few
finely-annotated labels can yield comparable or superior
performance to training it with a large amount of finely-
annotated labels alone, at a fraction of the labeling cost. We
demonstrate that our result is also valid for different network
architectures, and various object classes in an urban scene.

1. Introduction

Driven by the increased computational power of modern
hardware, researchers have revived the use of convolutional
neural networks (ConvNets) for computer vision. [27, 30]
While it achieves state—of—the—art performance on many im-
portant learning tasks, supervised training of ConvNets is
known to be data intensive. For example, training a Con-
vNet for general image recognition may require millions of
labeled images. [17]. In domains for which labeled data is
expensive to produce, additional tricks, such as fine—tuning
or using lower—quality data, need to be employed for Con-
vNets to be feasible.

Semantic image segmentation is a task for which labeled

Figure 1: A finely annotated (top) and a corsely annotated
(bottom) image from the CityScape’s dataset.

training images are very costly to collect. Producing training
images involves assigning a semantic class label for each
individual pixel of a given image. This is particularly hard,
as object boundaries could be complex and difficult to accu-
rately annotate [26].

Despite their cost, accurate (pixel-perfect) annotations
are believed to be essential for high—quality segmentation,
as nearly all dataset publishers spend all of their efforts on
generating such annotations [10, 4, 5, 11, 9, 3]. Recently,
the CityScapes [9] dataset provided a large set of coarsely
annotated images alongside a smaller set of finely annotated
ones. Utilizing these coarse annotations during the training
procedure have been shown to improve the performance
of ConvNets. For example, nearly all top performers on
CityScapes benchmark [9] utilize coarsely labeled images
[32, 34, 8, 33].

Driven by this observation, the main goal of this paper is
to quantify the impact of label quality, and thus labeling cost,
to performances of semantic segmentation ConvNets. Given
a limited budget for annotating data, what is the optimal
strategy that yields best performance?

1479

Because real-image datasets contain only up to a few
thousand of annotated images [9, 10, 5], we decide to use
computer graphics to generate a synthetic dataset for our
study. The benefit is two—fold. Firstly, we are able to gener-
ate a very large number of images with little human effort.
Secondly, because the complete information about the scene
is known, we can produce perfect annotation for every pixel
in every image in the dataset. For this particular work, we
use CityEngine software to procedurally generate a city, and
render street—view images using an open-source rendering
software called Mitsuba [14].

In order to quantify the coarseness of labels and correlate
the human effort required to produce them, we introduce a
metric for label quality which was inspired by CityScape’s
coarsely labeled images[?], and propose an algorithm for
producing labels with various qualities. We then measure
the amount of human—hours required for producing labels at
different quality levels, and use the results of the measure-
ments to estimate the amount of human-hours required to
produce labels in our dataset.

Finally, we trained state—of—the—art ConvNets on vari-
ous combinations of label qualities and numbers of training
images, and analyze their respective performances. We re-
peated these experiments on an additional network architec-
ture and analyzed results on different object classes to ensure
the validity of result. Our main findings are as follows:

e ConvNets’ performance highly correlates more with the
human-hours spent producing the labels and less on the
quality of each individual annotation. This means that a
larger number of coarsely annotated image can yield the
same performance as a smaller number of finely annotated
ones.

e Itis not optimal to invest time in producing a large number
of fine labels. Competitive and/or superior results can
be obtained by using a large number of coarsely labeled
images combined with a small number of finely annotated
ones, which require fewer human-hours to produce.

e While we cannot suggest a general rule for the optimal
ratio of fine and coarse labels, our results suggest that, in
order to achieve maximal performance, while minimizing
human effort, equal or larger amount of human—hours
should be spent on producing coarse labels.

e The trade—off for using coarser labels is training time.
The training time is highly correlated with the number of
images in the training set.

1.1. Terminology and details

Throughout the paper we will be using the terms fine
labels to refer to images annotated with pixel-level preci-
sion. We use the term true labels to refer to the fine labels

generated using computer graphics. With coarse labels we
refer to the labels that are not fine. Coarse labels can have
different quality based on the error metric introduced in the
next section.

To simplify the analysis and better isolate the effect of
label quality, we primarily focus on the specific problem of
two—class semantic segmentation (vehicle vs non-vehicle)
of street images, but repeat our experiments for multi—class
segmentation.

2. Datasets

Having large dataset is crucial for our experiments be-
cause we are compensating coarseness with quantity. Our
experiments shows appreciable trends only after using more
than 10k images per class for training. While MS COCO [18]
boasts > 200k labeled images, its annotations are coarse.
Other publicly available real-image datasets have very lim-
ited sizes (at most 10k images across all classes [0]). There-
fore, we decided to generate and use synthetic data for our
study. In this section, we will discuss existing datasets and
contrast them with ours. Then, we give details on how our
dataset was generated, and how we synthetically coarsened
the labels. Finally, we describe the experiment we performed
to estimate the human effort required to generate labels at
each quality level.

2.1. Existing Synthetic Datasets

When compared to real datasets, synthetic datasets typi-
cally contain orders of magnitude more images. The SYN-
THIA dataset [24] contains 13,407 images of urban scene
with pixel-accurate annotation of several classes such as vehi-
cle, pedestrian, road, and sidewalk. “Driving in the Matrix"
dataset [15] contains up to 200,000 images captured from
the video game Grand Theft Auto V.

While these datasets boast impressive number of images,
they have some drawbacks. First, several consecutive frames
within both datasets are often correlated, significantly reduc-
ing their effective sizes. Second, the scenes represented in
each dataset are limited. The SYNTHIA dataset appears to
contain only a few city blocks [24], while Driving in the
Matrix dataset contains a single city. Many of the images in
Driving in the Matrix dataset are desert highway, and it is un-
clear how diverse its urban scenes are. Lastly, because nearly
no additional information is available, it is very difficult to
sample the dataset while avoiding overlapping training and
test sets.

Despite these limitations, we utilized SYNTHIA in some
of our experiments, as their annotations comprehensively
covered street object categories (e.g. cars, pedestrian, road
and sidewalk, etc.).

1480

Figure 2: Auto City overview (top left), low rise district (top
right and bottom left) and a street scene (bottom right)

2.2. The Auto City Dataset

Because existing datasets’ limitations, we chose to gen-
erate our own dataset of urban, street view scenes. This
allowed us to have a full control over the diversity of the
dataset. We used the CityEngine software to procedurally
generate the models of our city, and we used Mitsuba [4]
to render these models.

Procedural city CityEngine provides a grammar for spec-
ifying and parameterizing urban objects, which can be used
to generate buildings, sidewalks, cars, etc. with variations.
It provides rule-based zoning for easy generations of many
cities at once with residential and/or commercial zones.

We followed CityScape’s “International city” example to
generate cities that included a small financial center, low-rise
buildings area, as well as residential areas with vegetation.
Figure 2 shows the bird’s—eye view of a generated city, as
well as a sample of a street—level shot we used for training
the ConvNets. The city covered a total area of 15 km?,
around 40 kms of roads, and contained 3, 782 cars.

Rendering For high quality, realistic rendering we used
Mitsuba [14], an open source physically based renderer. To
mimic images taken from a driving vehicle, we used camera
locations at the height of 1.5 meters in the middle of each
lane. Images that did not contain a vehicle were discarded.
This resulted in a little over 150, 000 images.

For realistic lighting, Preetham [2 1] sun/sky model imple-
mented in Mitsuba was used. We used a path tracer integrator
with the maximal depth of 5 to render images at 768 x 576
pixels. We chose 16 samples per pixel as a good trade-off
between rendering speed and the amount of noise.

Training, test, validation splits The images were divided
into 3 non—overlapping image pools, sorted east to west.
This way each of the three pools covered all of the three city

zones (residential, financial, and low rise), while being com-
pletely separated from each other. The three pools served
the purpose of training, validation, and test image sets.

2.3. Simulating Coarse Label Quality

Inspired by the CityScapes dataset (Fig. 1), we produced
coarse labels such that they fit within the true labels’ bound-
aries. The coarse annotations were represented by polygons
approximating the true boundary of the objects. More de-
tailed coarse labels were represented with higher degree
polygons whose vertices are placed closer to the true bound-
ary of the object.

To formalize the quality of a semantic labeling, we used
the maximal distance between the polygonal label and the
true object boundary as the measure of labeling error (A).
Given A, we separated the true boundary and the coarsened
one by eroding the true label by A /2. We then simplified the
resulting polygon using the Douglas—Peucker algorithm [2],
a commonly used algorithm for polygon simplification. The
algorithm attempts to simplify the polygon while allowing
for an error of at most A /2. This method allowed for a fine
control over A, and produced coarse labels very similar
to the ones of CityScape’s dataset, which are produced by
humans (Fig. 1). An illustration of the proposed algorithm
steps are given in Fig. 3 (top row), as well as results obtained
by applying the algorithm (bottom three rows). Note that the
resulting annotations contain unlabeled pixels; these pixels
are ignored during the ConvNet training procedure.

2.4. Estimating Human Effort

In order to understand the relationship between the qual-
ity of coarse labels and human effort required for producing
such, we designed an experiment to precisely measure dif-
ferences in human-hours needed for producing labels of
different qualities, by measuring the time it took for humans
to generate such labels.

We asked four individuals to label a set of 50 diverse
images with 1) fine labels and 2) labels similar to the ones
produced by our algorithm with A of 4,8,16 and 32. For
coarse labels, the subjects were asked to trace polygons
inside and outside the vehicles labeling both the vehicles
and the background. The subjects were also explained the
boundary constraint and the notion of maximal allowed error
(A). Furthermore, the subjects were first given 10 already
labeled images, as the ones in Fig 3 (bottom) to serve as
warm—up examples to ensure the subjects knew how accurate
they needed to be.

For producing fine labels, the subjects were instructed to
trace the outlines of vehicles with pixel accuracy.

After the warm—up, the subject were asked to label 40
unlabeled images at each quality level. As the same images
were used for each quality levels, the subjects were instructed
to take long breaks between labeling images with different

1481

True label

Vehicle

Contracted

Simplified

gl

Non-Vehicle

i

Figure 3: The three steps of our method for producing coarse labels (top). True labels and labels obtained with our simplification

algorithm using A, = 4, 8,16, 32 (middle and bottom)

quality.

For each subject and label quality we computed the av-
erage time spent per image. In Fig. 4, we show the mean
and standard deviation of the average times spent labeling.
The results confirm that creating fine-label was extremely
difficult, taking 4 times as much the labeling time for 4px
margin. The coarsest 32px margin was the fastest, 15x faster
than the fine labels.

We note the large standard deviation for producing fine
labels, and relatively small deviations when labeling coarser
images. This is reasonable, as perfectly following the object
boundary is much harder than drawing approximate labels.
It also depends on ones vision, dexterity, etc., and will thus
vary more among different individuals. The data suggests
that there is a large time penalty for producing pixel—perfect
labels, as compared to coarse labels with relatively small
erTor.

3. Experimental Setup

3.1. Reference ConvNets

Most state-of-the-art semantic segmentation ConvNets
typically consist of an encoder network and a corresponding
decoder network that is followed by a pixel-wise classifi-
cation layer [19, 28, 13, 23, 2, 20, 33, 32, 34]. Often, the

w» 400-

2

% T Quality
@ 300- l Ill Fine
©

£ - . 4px
= 200- '

= 8px
o] 16px
S 100- .

% ‘- []32px
S . -—t_:l

F:ne 4Ipx 8lpx 16|p>< 32Ipx
Label quality

Figure 4: Mean time spent on labeling images with different
quality labels.

encoder network is borrowed from architectures used for
image classification, such as VGG16 [29] or AlexNet [17],
and is pre—trained on classification datasets such as the Im-
ageNet [25]. The decoder network is responsible for pro-
ducing features for each pixel for classification, and greatly
varies among different approaches.

Our primary ConvNet was based on FusionNet [22], as
it is a relatively simple encoder—decoder network, closely
resembling many popular networks in recent literature (e.g.
DeconvNet [20], SegNet [2, 1] and UNet [23]).

1482

We modified the default FusionNet by reducing the num-
ber of channels in each layer, and removing residual blocks
in order to simplify the model, and allow for faster train-
ing. This resulted in a ConvNet with approximately 1M
parameters, which allowed for relatively fast training while
producing highly accurate results. It also allowed us to
quickly perform many experiments in order to optimize the
training parameters.

In order to ensure that our findings are valid for different
network architectures, we also ran our experiment using the
FCN16 architecture [19], which we consider to be the most
different from FusionNet, while being simple enough to run
many experiments with.

Unlike the symmetric architecture of FusionNet, FCN16
architecture only uses a light-weight decoder/bilinear up-
sampler to generate its final segmentation. The architecture
itself can be thought of as a sliding an image recognizer such
as VGG16 or AlexNet over the image to produce a dense
prediction [29, 17]. The decoder layers function mainly to
recover lost detail from overlapping receptive fields.

We also ran a subset of experiments with even more so-
phisticated architecture, DeepLab-ResNet, which is one of
the top-performing entries in the CityScapes benchmark
[7, 9], and is very costly to train. However, we will not be
reporting full result with this architecture.

3.2. Training and Evaluation

We trained each network using the Adam [16] gradient
descent optimization algorithm. We were able to carefully
tune the modified FusionNet training parameters due to its
fast training. For FCN16, We used default parameters, except
for the learning rate for which we used a constant value of
10~° instead of decaying learning rate as suggested in the
original papers [19]. We found this configuration to yield
superior performance on our datasets.

Not all segmentation networks are initialized by pre-
trained weights, especially in biomedical domain. To show
that our results are consistent regardless of whether the net-
work weights were pre—traned, we initialized the weights of
FCN16 using VGG16 [29], while we trained the modified
FusionNet from scratch. We monitored validation loss, and
ended training early when it over—fitted or the validation loss
converged.

We used intersection-over-union, a common metric for
semantic segmentation task, to evaluate our ConvNets [10].
The validation set and the test set are obtained by drawing
3,000 images from the validation and test pools respectively.
The quality of the annotations used for validation always
matched the quality of the annotations used for training.
However, we used the true labels for the test set to ensure
that all ConvNet were evaluated on the same standards.

3.3. Experimental Conditions

We trained our ConvNets using training sets with various
label qualities. Additionally, we also varied the size of the
dataset in order to study the impact of dataset diversity. We
used 5 training sets starting at 3, 000 images and doubled
the size until we reached 48, 000 images. For each training
set, we trained our ConvNet with 5 label qualities from fine
labels to coarse labels with maximal errors (Apax) of 4, 8,
16 and 32 pixels.

The images within a given training set were sampled
from a spatial neighborhood within the training pool. The
neighborhood size varied in longitude proportionately to the
number of images within the training set, while covering the
whole city in latitude. This way, the scene diversity would
also vary with the number of images, yielding a total of 25
experimental conditions.

Fine-tuning Experiments Another typical technique to
deal with limited dataset is finetuning. The network is pre—
trained on a larger dataset for a related, or simplified, task,
and then fine—tuned on the limited dataset. In our case,
this would be equivalent to training on a large amount of
coarse labels, and fine—tuning on a smaller number of fine
labels. We study the effect of label quality in this setting
by finetuning the networks pre—trained on training sets of
12,000 or more of coarse labels (with maximal error of 4 up
to 32 pixels).

4. Results and Analysis

We present and analyze the results of training two differ-
ent network architectures on our synthetic dataset, as well
as the results of training the FCN16 architecture on the Syn-
thia dataset [24]. Through analysis, we aim to answer the
following questions:

1. What is the impact of the label quality and the training
set size to the overall ConvNet performances?

2. How can we optimally invest labeling time? Is it better
to invest time in producing fine or coarse labels, or a
combination of both?

3. Are these results valid for different ConvNet architec-
tures and/or differet datasets and labels?

We first focus on the results of our modified FusionNet
architecture. We then show that the results of the other
architectures and data—set confirm our findings.

Impact of Quality and Quantity The performance of our
modified FusionNet trained on various training sets, using
the standard intersection over union (IoU) metric [10], are

1483

Table 1: Mean IoU of our modified FusionNet architecture.

Training | Single quality | Coarse + 1k fine ‘ Coarse + 3k fine

Num images ‘ 3k 6k 12k 24k 48k ‘ 12k+1k 24k+1k 48k+1k ‘ 12k+3k 24k+3k 48k+3k
fine-labels 8526 8875 89.61 91.89 9393 | n/a n/a n/a n/a n/a n/a

4px error 84.97 8693 90.06 91.56 93.33 | 90.58 92.11 94.02 90.61 92.49 94.31
8px error 84.20 86.20 88.61 90.58 92.01 | 90.17 91.95 93.65 90.62 91.42 93.64
16px error 82.15 8397 86.92 88.42 90.65 | 89.60 90.44 92.38 89.81 90.75 92.96
32px error 7830 9196 83.57 86.53 88.42 | 89.41 91.26 91.41 89.32 90.08 92.03

shown in Table. 1. Unsurprisingly, increasing either the qual-
ity of the coarse labels or the size of the training set improves
the performances of the trained networks. We observe simi-
lar trends in our fine—tuning experiments. Using more finely
labeled images for fine—tuning, resulted in a higher perfor-
mance increase. This result is expected, because, intuitively,
both larger training set size or better label quality increase
the total amount of annotated pixels, hence the amount of
useful data in the training set.

Optimal Time Investment On Fig. 5a, we plot the perfor-
mance of our trained ConvNets against the estimated time
required for producing the training set. Here, the orange
markers represent networks trained on coarse labels, while
the red labels represent the networks trained on fine labels;
the shapes represent different qualities of the coarse labels.

As seen in Fig. 5a, the coarse labels performances (shown
in orange) roughly lie on a line. This means, when training
on coarse labels, the performance correlates strongly with
the overall time spent producing labels, and not only with the
quality. That is, a larger dataset of coarse images can yield
the same overall performances as a smaller dataset with
more accurately annotated labels. This is also illustrated
by the points circled in Fig. 5a, which show that the same
performance is achieved when using training sets of different
label quality and different number of images.

Additionally, the resulting performances of ConvNets
trained on fine labels (red markers) also lie on a line that is
strictly below the orange one. This means that, for a given
labeling time budget, coarse labels will outperform the fine
ones. Conversely, for a desired target performance, one
would only need to spend a fraction of time labeling coarse
labels in order to achieve the goal. While the absolute best
performance is achieved by training on maximal number of
finely labeled images, the accuracy is just slightly higher than
the performances on coarse labels which require nearly an
order of magnitude less labeling time (note the logarithmic
scale). This highlights the difficulty for human to produce
fine labels.

Fine-Tuning Experiments Table. | also shows the per-
formance of fine—tuned networks. The best performance

(boldfaced) in each category is very similar. Fine-tuning
with just 1,000 images yielded nearly the same performance
as 48k fine labels, which would be extremely expensive to
produce; fine—tuning with 3,000 fine images yielded a su-
perior performance. This suggests that, training on many
coarse labels, and fine—tune on few fine labels may be a more
optimal way when labeling cost is a concern.

The natural next question is what is the optimal ratio
of finely and coarsely labeled images (or the time spent
producing fine vs coarse labels). On Fig. 5b, we overlay the
performances of the fine—tuned networks. The networks that
are fine—tuned with 1,000 fine labeled images are shown in
green, while the network fine—tuned with 3,000 fine labeled
images are shown in black. Fitted line for each group is
shown.

In Fig. 5b, the black line (fine—tuning with 3k images)
crosses the orange line (single quality) at around 20 days,
which is where the time labeling fine data equals time label-
ing coarse data (producing 3, 000 finely annotated images
would take about 10 days). Additionally, the green line,
which starts at 7 days (where coarse-to-fine labeling time
ratio is > 2), is always above the orange line. This sug-
gest fine—tuning would be cost effective only when the time
spent labeling coarse images equal time spent labeling fine
images (the alternative is to spend more time labeling all
coarse images). This result could be specific to our dataset,
however.

Generalizability of our Findings On Fig. 6 we show the
performances of the more sophisticated FCN16 network
architecture as a function of the total time spent producing
labels for all the training configurations with at least 12, 000
training images. The yellow cluster (coarse labels) forms
a line, and the red cluster (fine labels) is, again, below the
yellow cluster, confirming the trend we saw with modified
FusionNet.

Note that we observe more noise for the results where
less human time is spent labeling. This is because we trained
FCN16 “out of the box”, without extensive tuning of training
parameters.

However, the noisy results still confirm our findings. The
red line (ConvNets trained only on finely annotated images)

1484

Quality
. ® Fine
90 4px
PY 8px
16px
32px

Mean loU

Images
@ 10000
@ 20000
@ 30000
80 @ <000

1 10 100
Estimated labeling time (Human-days)

(a)

96

Training
coarse

93 ® coarse+1k fine

@ coarse+3k fine

® fine

Quality
@® Fine
O 4px
O 8px
A 16px
V 32px

Mean loU
©
o

87

10 100
Estimated labeling time (Human-days)

(b)

Figure 5: (a) Estimated labeling time vs IoU for the vehicle category for single quality experiments (b) Zoomed in of (a) with
fine-tuned experiment plotted. The circled points in (a) has nearly the same performance and time spent labeling, but they have
different quality, showing that coarse label could be compensated with quantity. In (b), green and black points represent ones
trained with coarse and fine—tuned with 1% and 3% fine labels respectively.

Training

coarse

96

© coarse+1k fine
@ coarse+3k fine

® fine

©
[§]

Mean loU
1

Quality
@® Fine
O 4px
88 O 8px
A 16px
V 32px

84
10 100

Estimated labeling time (Human-days)

Figure 6: Performances of the FCN-16 network model.

is below all other clusters, confirming that using only finely
annotated images is not optimal. The green cluster (Con-
vNets fine—tuned with 1, 000 images) is “above” the orange
one (ConvNets trained solely on coarse labels), confirming
that producing 1,000 finely labeled images is better than
producing none. The black line (ConvNets fine—tuned with
3,000 images) crosses the orange line roughly at the x coor-
dinate — 20 human—days.

Finally, the overall performances of the best performing
networks fine—tuned with 1,000 and 3,000 images have
competitive performances to the network trained on a large
set of finely labeled ones, at a fraction of labeling time. Thus,
fine—tuning with small set of fine labels can yield comparable

performance as training on large set of fine labels.

Additionally, partial experiments were performed using
even more sophisticated, DeepLab-ResNet, architecture,
which is very costly to train. The subset of performed exper-
iments confirmed our findings.

Generalizability to other semantic classes and datasets.
On Fig. 7 we show the result of the FCN16 networks trained
on different the Synthia [24] dataset using various configura-
tions.

We trained the networks to distinguish among 5 label
classes, and show the performances on labeling humans,
vehicles and road. Including humans was of particular im-
portance, as their labels are highly non—convex, which is in
contrast to vehicles used in our dataset.

Being much smaller dataset, we could trained the net-
works on training set sizes of 2,500, 5,000 and 10,000
images. The fine—tuning training configurations were not
performed, due to the limited dataset size.

As described above, the nature of the Synthia dataset re-
sulted in high inbalance of class occurrences, which resulted
in additional noise. However, the results clearly show that for
coarse labels, overall performances depend on the labeling
time. Also, given a limited time budged, producing coarse
labels is more time—efficient.

Note that, in Fig. 7, we had assume that the time to cre-
ate labels at different quality levels for each of SYNTHIA
semantic class is the same as vehicle class in our dataset.
While this may not be true, we expect the trend to hold be-
cause we expect fine labels to be costlier than coarse labels
for any semantic class.

1485

Car Road

0.89

0.88

0.85

loU

0.87

0.80 0.86

1 10 1

Pedestrian
0.8

0.7 °

0.6 Training
coarse

® i
05 fine

0.4

10 1 10

Estimated labeling time (Human—days)

Figure 7: Results of training the FCN16 ConvNet on 15 different datasets. The sizes of the datasets were 2, 500, 5, 000 and
10, 000, and for each size both fine labels as well as labels with A, € {4,8,16,32}pz were used.

600 -

N
3
3

Iterations

Training
coarse
o coarse+3k fine
o fine
200-

10000 20000 30000 40000 5000
Images

Figure 8: Training time (in iterations) vs number of training
samples.

Training time Figure 8 shows the training time (in terms
of iterations) it took our ConvNets to converge. The training
time increases with training set size, so the trade off for

using more coarser-labeled images is to run training longer.

This suggests that, if faster training is the goal, human-hours
should be spent on labeling images with higher quality coarse
labels.

5. Conclusion and closing remarks

Our main take home message of the work presented is
that, when creating a training dataset, spending time on
producing coarse labels is arguably more important than
producing fine ones.

Through experiments we showed that the overall ConvNet
performance is strongly correlated with the amount of time
spent producing coarse labels, and not the quality of each
individual label. This suggests that datasets can greatly
benefit by obtaining coarse labels through crowd—sourcing,
without strong control of the label quality.

Using coarse labels for pre—training, and fine—tuning with
finely annotated images allows for competitive performance
to training on a large number of only finely annotated ones,
which requires spending much more human—hours on the

tedious task of labeling images. The optimal portion of
labeling time that should be spent producing coarse and fine
labels will vary on the specifics of the dataset, as a rule of
thumb we suggest that one should spend at least the same
amount of time on coarse labels as on fine ones.

While the overall performances solely depend on the
human-hours spend labeling, the training times also depend
on the total number of images. If one wishes to minimize
the ConvNet training time, one should consider producing
coarse labels with higher quality. This could be important for
involving complex network architectures, and the training
time becomes limiting factor.

Our findings apply for cases when a large number of un-
labeled images are readily available, or easily obtainable —
such as street—view images used in this paper. When the
amount of training images is limited, such as in many med-
ical applications (e.g. ADNI dataset [31]), generating best
quality labels would still yield the best performance.

References

[1] V.Badrinarayanan, A. Handa, and R. Cipolla. Segnet: A deep
convolutional encoder-decoder architecture for robust seman-
tic pixel-wise labelling. arXiv preprint arXiv:1505.07293,
2015. 4

[2] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A
deep convolutional encoder-decoder architecture for image
segmentation. /EEE Transactions on Pattern Analysis and
Machine Intelligence, 2017. 4

[31 S. M. Bileschi. StreetScenes: Towards scene understanding
in still images. PhD thesis, Citeseer, 2006. 1

[4] G.]J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object
classes in video: A high-definition ground truth database.
Fattern Recognition Letters, 2008. 1

[51 G. . Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Seg-
mentation and recognition using structure from motion point
clouds. In ECCV (1), pages 44-57, 2008. 1,2

[6] H. Caesar, J. Uijlings, and V. Ferrari. Coco-stuff: Thing and
stuff classes in context. arXiv preprint arXiv:1612.03716,
2016. 2

1486

(71

(8]

(91

(10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

L.-C. Chen, G. Papandreou, 1. Kokkinos, K. Murphy, and A. L.
Yuille. Deeplab: Semantic image segmentation with deep
convolutional nets, atrous convolution, and fully connected
crfs. arXiv preprint arXiv:1606.00915, 2016. 5

L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam. Re-
thinking atrous convolution for semantic image segmentation.
arXiv preprint arXiv:1706.05587, 2017. 1

M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,
R. Benenson, U. Franke, S. Roth, and B. Schiele. The
cityscapes dataset for semantic urban scene understanding. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3213-3223,2016. 1,2, 5

M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. L.
Williams, J. Winn, and A. Zisserman. The pascal visual object
classes challenge: A retrospective. International Journal of
Computer Vision, 111(1):98-136, Jan. 2015. 1,2, 5

A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231-1237, 2013. 1

J. Hershberger and J. Snoeyink. An o (n log n) implementation
of the douglas-peucker algorithm for line simplification. In
Proceedings of the tenth annual symposium on Computational
geometry, pages 383-384. ACM, 1994. 3

S. Hong, H. Noh, and B. Han. Decoupled deep neural network
for semi-supervised semantic segmentation. In Advances in
Neural Information Processing Systems, pages 1495-1503,
2015. 4

W. Jakob. Mitsuba renderer, 2010. URL: http.//www. mitsuba-
renderer. org, 3:10, 2015. 2, 3

M. Johnson-Roberson, C. Barto, R. Mehta, S. N. Sridhar, and
R. Vasudevan. Driving in the matrix: Can virtual worlds
replace human-generated annotations for real world tasks?
arXiv preprint arXiv:1610.01983, 2016. 2

D. Kingma and J. Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014. 5

A. Krizhevsky, 1. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
Advances in neural information processing systems, pages
1097-1105, 2012. 1,4, 5

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ra-
manan, P. Dollar, and C. L. Zitnick. Microsoft coco: Common
objects in context. In European conference on computer vi-
sion, pages 740-755. Springer, 2014, 2

J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 3431-3440, 2015. 4,5

H. Noh, S. Hong, and B. Han. Learning deconvolution net-
work for semantic segmentation. In Computer Vision (ICCV),
2015 IEEE International Conference on, 2015. 4

A. J. Preetham, P. Shirley, and B. Smits. A practical analytic
model for daylight. In Proceedings of the 26th annual confer-
ence on Computer graphics and interactive techniques, pages
91-100. ACM Press/Addison-Wesley Publishing Co., 1999.
3

T. M. Quan, D. G. Hilderbrand, and W.-K. Jeong. Fusion-
net: A deep fully residual convolutional neural network

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

1487

for image segmentation in connectomics. arXiv preprint
arXiv:1612.05360, 2016. 4

O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional
networks for biomedical image segmentation. In International
Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 234-241. Springer, 2015. 4

G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M.
Lopez. The synthia dataset: A large collection of synthetic
images for semantic segmentation of urban scenes. In Pro-
ceedings of the IEEE Conference on mputer Vision and
Pattern Recognition, pages 3234-3243,2016. 2, 5,7

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Ima-
genet large scale visual recognition challenge. International
Journal of Computer Vision, 115(3):211-252, 2015. 4

B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Freeman.
Labelme: a database and web-based tool for image annota-
tion. International journal of computer vision, 77(1):157-173,
2008. 1

D. Scherer, H. Schulz, and S. Behnke. Accelerating large-
scale convolutional neural networks with parallel graphics
multiprocessors. In Artificial Neural Networks—ICANN 2010,
pages 82-91. Springer, 2010. 1

E. Shelhamer, J. Long, and T. Darrell. Fully convolutional
networks for semantic segmentation. /EEE transactions on
pattern analysis and machine intelligence, 39(4):640-651,
2017. 4

K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556,2014. 4,5

D. Strigl, K. Kofler, and S. Podlipnig. Performance and
scalability of gpu-based convolutional neural networks. In
2010 18th Euromicro Confer ce on Parallel, Distributed and
Network-based Processing, pages 317-324. IEEE, 2010. 1
H.-I. Suk and D. Shen. Deep learning-based feature represen-
tation for ad/mci classification. In International Conference
on Medical Image Computing and Computer-Assisted Inter-
vention, pages 583-590. Springer, 2013. 8

P. Wang, P. Chen, Y. Yuan, D. Liu, Z. Huang, X. Hou, and
G. Cottrell. Understanding convolution for semantic segmen-
tation. arXiv preprint arXiv:1702.08502, 2017. 1, 4

Z. Wu, C. Shen, and A. v. d. Hengel. Wider or deeper: Revis-
iting the resnet model for visual recognition. arXiv preprint
arXiv:1611.10080, 2016. 1, 4

H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia. Pyramid scene
parsing network. In Proceedings of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),2017. 1,4

