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Abstract

We propose an algorithm to predict room layout from a

single image that generalizes across panoramas and per-

spective images, cuboid layouts and more general layouts

(e.g. “L”-shape room). Our method operates directly on the

panoramic image, rather than decomposing into perspec-

tive images as do recent works. Our network architecture is

similar to that of RoomNet [15], but we show improvements

due to aligning the image based on vanishing points, pre-

dicting multiple layout elements (corners, boundaries, size

and translation), and fitting a constrained Manhattan lay-

out to the resulting predictions. Our method compares well

in speed and accuracy to other existing work on panora-

mas, achieves among the best accuracy for perspective im-

ages, and can handle both cuboid-shaped and more general

Manhattan layouts.

1. Introduction

Estimating the 3D layout of a room from one image is an

important goal, with applications such as robotics and vir-

tual/augmented reality. The room layout specifies the posi-

tions, orientations, and heights of the walls, relative to the

camera center. The layout can be represented as a set of

projected corner positions or boundaries, or as a 3D mesh.

Existing works apply to special cases of the problem, such

as predicting cuboid-shaped layouts from perspective im-

ages or from panoramic images.

We present LayoutNet, a deep convolution neural net-

work (CNN) that estimates the 3D layout of an indoor

scene from a single perspective or panoramic image (Fig-

ure. 1). Our method compares well in speed and accu-

racy on panoramas and is among the best on perspec-

tive images. Our method also generalizes to non-cuboid

Manhattan layouts, such as “L”-shaped rooms. Code is

available at: https://github.com/zouchuhang/

LayoutNet.

Our LayoutNet approach operates in three steps ( Fig-

ure. 2). First, our system analyzes the vanishing points

LayoutNet

Figure 1. Illustration. Our LayoutNet predicts a non-cuboid room

layout from a single panorama under equirectangular projection.

and aligns the image to be level with the floor (Sec. 3.1).

This alignment ensures that wall-wall boundaries are ver-

tical lines and substantially reduces error according to our

experiments. In the second step, corner (layout junctions)

and boundary probability maps are predicted directly on the

image using a CNN with an encoder-decoder structure and

skip connections (Sec. 3.2). Corners and boundaries each

provide a complete representation of room layout. We find

that jointly predicting them in a single network leads to bet-

ter estimation. Finally, the 3D layout parameters are opti-

mized to fit the predicted corners and boundaries (Sec. 3.4).

The final 3D layout loss from our optimization process is

difficult to back-propagate through the network, but direct

regression of the 3D parameters during training serves as an

effective substitute, encouraging predictions that maximize

accuracy of the end result.

Our contributions are:

• We propose a more general RGB image to layout al-

gorithm that is suitable for perspective and panoramic
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Figure 2. Overview. Our LayoutNet follows the encoder-decoder strategy. The network input is a concatenation of a single RGB panorama

and Manhattan line map. The network jointly predicts layout boundaries and corner positions. The 3D layout parameter loss encourages

predictions that maximize accuracy. The final prediction is a Manhattan constrained layout reconstruction. Best viewed in color.

images with Manhattan layouts. Our system compares

well in speed and accuracy for panoramic images and

achieves the second best for perspective images, while

also being the fastest.

• We demonstrate gains from using precomputed van-

ishing point cues, geometric constraints, and post-

process optimization, indicating that deep network ap-

proaches still benefit from explicit geometric cues and

constraints. We also show that adding an objective to

directly regress 3D layout parameters leads to better

predictions of the boundaries and corners that are used

to solve for the final predicted layout.

• We extend the annotations for the Stanford 2D-3D

dataset [1], providing room layout annotations that can

be used in future work.

2. Related Work

Single-view room layout estimation has been an active

topic of research for the past ten years. Delage et al. [7] fit

floor/wall boundaries in a perspective image taken by a level

camera to create a 3D model under “Manhattan world” as-

sumptions [3]. The Manhattan world assumptions are that

all walls are at right angles to each other and perpendic-

ular to the floor. A special case is the cuboid model, in

which four walls, ceiling, and floor enclose the room. Lee et

al. [17] produce Orientation Maps, generate layout hypothe-

ses based on detected line segments, and select a best-fitting

layout from among them. Hedau et al. [10] recover cuboid

layouts by solving for three vanishing points, sampling lay-

outs consistent with those vanishing points, and selecting

the best layout based on edge and Geometric Context [12]

consistencies. Subsequent works follow a similar approach,

with improvements to layout generation [26, 27, 22], fea-

tures for scoring layouts [27, 22], and incorporation of ob-

ject hypotheses [11, 16, 5, 6, 33] or other context. The most

recent methods train deep network features to classify pix-

els into layout surfaces (walls, floor, ceiling) [4, 13], bound-

aries [21], corners [15], or a combination [24].

Nearly all of these works aim to produce cuboid-shaped

layouts from perspective RGB images. A few works also

operate on panoramic images. Zhang et al. [32] propose the

PanoContext dataset and method to estimate room layout

from 360◦ panoramic images (more on this later). Yang et

al. [30] recover layouts from panoramas based on edge cues,

Geometric Context, and other priors. Xu et al. [29] estimate

layout based on surface orientation estimates and object hy-

potheses. Other works recover indoor layout from multiple

images (e.g., [2]) or RGBD images (e.g., [28, 31, 9, 18]),

where estimates rely heavily on 3D points obtained from

sensors or multiview constraints. Rent3D [19] takes ad-

vantage of a known floor plan. Our approach simplifies re-

construction by estimating layout directly on a single RGB

equirectangular panorama. Our final output is a sparse and

compact planar Manhattan layout parameterized by each

wall’s distance to camera, height, and the layout rotation.

Our work is most similar in goal to PanoContext [32]

and in approach to RoomNet [15]. PanoContext extends

the frameworks designed for perspective images to panora-

mas, estimating vanishing points, generating hypotheses,

and scoring hypotheses according to Orientation Maps,

Geometric Context, and object hypotheses. To compute

these features, PanoContext first projects the panoramic im-

age into multiple overlapping perspective images, and then

combines the feature maps back into a panoramic image.

Our approach is more direct: after aligning the panoramic

image based on vanishing points, our system uses a deep

network to predict boundaries and corners directly on the

panoramic image. In this regard, we are similar to Room-

Net, which uses a deep network to directly predict lay-

out corners in perspective images, as well as a label that

indicates which corners are visible. Our method differs

from RoomNet in several ways. Our method applies to

panoramic images. Our method also differs in the alignment
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step (RoomNet performs none) and in our multitask predic-

tion of boundaries, corners, and 3D cuboid parameters. Our

final inference is constrained to produce a Manhattan 3D

layout. RoomNet uses an RNN to refine 2D corner position

predictions, but those predictions might not be consistent

with any 3D cuboid layout. Our experiments show that all

of these differences improve results.

More generally, we propose the first method, to our

knowledge, that applies to both perspective and panoramic

images. We also show that our method extends easily to

non-cuboid Manhattan layouts. Thus, our method is ar-

guably the most general and effective approach to date for

indoor layout estimation from a single RGB image.

3. Approach

We first describe our method for predicting cuboid-

shaped layouts from panoramas: alignment (Sec. 3.1), cor-

ner and boundary prediction with a CNN (Sec. 3.2 and 3.3),

and optimization of 3D cuboid parameters (Sec. 3.4).

Then, we describe modifications to predict on more gen-

eral (non-cuboid) Manhattan layouts and perspective im-

ages (Sec. 3.5).

3.1. Panoramic image alignment

Given the input as a panorama that covers a 360◦ hor-

izontal field of view, we first align the image by estimat-

ing the floor plane direction under spherical projection, ro-

tate the scene, and reproject it to the 2D equirectangular

projection. Similar to Zhang et al.’s approach [32], we se-

lect long line segments using the Line Segment Detector

(LSD) [23] in each overlapped perspective view, then vote

for three mutually orthogonal vanishing directions using the

Hough Transform. This pre-processing step eases our net-

work training. The detected candidate Manhattan line seg-

ments also provide additional input features that improve

the performance, as shown in Sec. 4.

3.2. Network structure

An overview of the LayoutNet network is illustrated in

Fig. 2. The network follows an encoder-decoder strategy.

Deep panorama encoder: The input is a 6-channel fea-

ture map: the concatenation of single RGB panorama with

resolution of 512× 1024 (or 512× 512 for perspective im-

ages) and the Manhattan line feature map lying on three or-

thogonal vanishing directions using the alignment method

in Sec. 3.1. The encoder contains 7 convolution layers with

kernel size of 3×3. Each convolution is followed by a ReLU

operation and a max pooling layer with the down-sampling

factor of 2. The first convolution contains 32 features, and

we double size after each convolution. This deep structure

ensures a better feature learning from high resolution im-

ages and help ease the decoding step. We tried Batch Nor-

malization after each convolution layer but observe lower

accuracy. We also explored an alternative structure that ap-

plies a separate encoder for the input image and the Manhat-

tan lines, but observe no increase in performance compared

to our current simpler design.

2D layout decoder: The decoder consists of two branches

as shown in Fig. 2. The top branch, the layout boundary

map (mE) predictor, decodes the bottleneck feature into the

2D feature map with the same resolution as the input. mE

is a 3-channel probability prediction of wall-wall, ceiling-

wall and wall-floor boundary on the panorama, for both vis-

ible and occluded boundaries. The boundary predictor con-

tains 7 layers of nearest neighbor up-sampling operation,

each followed by a convolution layer with kernel size of

3 × 3, and the feature size is halved through layers from

2048. The final layer is a Sigmoid operation. We add skip

connections to each convolution layer following the spirit

of the U-Net structure [25], in order to prevent shifting of

predictions results from the up-sampling step. The lower

branch, the 2D layout corner map (mC) predictor, follows

the same structure as the boundary map predictor and addi-

tionally receives skip connections from the top branch for

each convolution layer. This stems from the intuition that

layout boundaries imply corner positions, especially for the

case when a corner is occluded. We show in our experi-

ments (Sec. 4) that the joint prediction helps improve the

accuracy of the both maps, leading to a better 3D recon-

struction result. We experimented with fully convolutional

layers [20] instead of the up-sampling plus convolutions

structure, but observed worse performance with checker-

board artifacts.

3D layout regressor: The function to map from 2D

corners and boundaries to 3D layout parameters is simple

mathematically, but difficult to learn. So we train a regres-

sor for 3D layout parameters with the purpose of produc-

ing better corners and boundaries, rather than for its own

sake. As shown in Fig. 2, the 3D regressor gets as input

the concatenation of the two predicted 2D maps and pre-

dicts the parameters of the 3D layout. We parameterize

the layout with 6 parameters, assuming the ground plane

is aligned on the x − z axis: width sw, length sl, height

sh, translation T = (tx, tz) and rotation rθ on the x − z

plane. The regressor follows an encoder structure with 7
layers of convolution with kernel size 3× 3, each followed

by a ReLU operation and a max pooling layer with the down

sampling factor of 2. The convolution feature size doubles

through layers from the input 4 feature channel. The next

four fully-connected layers have sizes of 1024, 256, 64, and

6, with ReLU in between. The output 1 × 6 feature vector

d = {sw, sl, sh, tx, tz, rθ} is our predicted 3D cuboid pa-

rameter. Note that the regressor outputs the parameters of

the 3D layout that can be projected back to the 2D image,

presenting an end-to-end prediction approach. We observed

that the 3D regressor is not accurate (with corner error of
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3.36% in the PanoContext dataset compared with other re-

sults in Table 1), but including it in the loss objective tends

to slightly improve the predictions of the network. The di-

rect 3D regressor fails due to the fact that small position

shifts in 2D can have a large difference in the 3D shape,

making the network hard to train.

Loss function. The overall loss function of the network

is in Eq. 1:

L(mE ,mC ,d) = −α
1

n

∑

p∈mE

(

p̂ log p+ (1− p̂) log(1− p)
)

− β
1

n

∑

q∈mC

(

q̂ log q + (1− q̂) log(1− q)
)

+ τ‖d− d̂‖2 (1)

The loss is the summation over the binary cross entropy er-

ror of the predicted pixel probability in mE and mC com-

pared to ground truth, plus the Euclidean distance of re-

gressed 3D cuboid parameters d to the ground truth d̂. p

is the probability of one pixel in mE , and p̂ is the ground

truth of p in mE . q is the pixel probability in mC , and q̂ is

the ground truth. n is the number of pixels in mE and mC

which is the image resolution. Note that the RoomNet ap-

proach [15] uses L2 loss for corner prediction. We discuss

the performance using two different losses in Sec. 4. α, β

and τ are the weights for each loss term. In our experiment,

we set α = β = 1 and τ = 0.01.

3.3. Training details

Our LayoutNet predicts pixel probabilities for corners

and boundaries and regresses the 3D layout parameters. We

find that joint training from a randomly initialized network

sometimes fails to converge. Instead, we train each sub-

network separately and then jointly train them together. For

the 2D layout prediction network, we first train on the lay-

out boundary prediction task to initialize the parameters of

the network. For the 3D layout regressor, we first train the

network with ground truth layout boundaries and corners as

input, and then connect it with the 2D layout decoder and

train the whole network end-to-end.

The input Manhattan line map is a 3 channel 0-1 tensor.

We normalize each of the 3D cuboid parameter into zero

mean and standard deviation across training samples. We

use ADAM [14] to update network parameters with a learn-

ing rate of e−4, α = 0.95 and ǫ = e−6. The batch size for

training the 2D layout prediction network is 5 and changes

to 20 for training the 3D regressor. The whole end-to-end

training uses a batch size of 20.

Ground truth smoothing: Our target 2D boundary and

corner map is a binary map with a thin curve or point on

the image. This makes training more difficult. For exam-

ple, if the network predicts the corner position slightly off

the ground truth, a huge penalty will be incurred. Instead,

we dilate the ground truth boundary and corner map with

a factor of 4 and then smooth the image with a Gaussian

kernel of 20 × 20. Note that even after smoothing, the tar-

get image still contains 9̃5% zero values, so we re-weight

the back propagated gradients of the background pixels by

multiplying with 0.2.

Data augmentation: We use horizontal rotation, left-right

flipping and luminance change to augment the training sam-

ples. The horizontal rotation varies from 0o − 360o. The

luminance varies with γ values between 0.5-2. For perspec-

tive images, we apply ±10◦ rotation on the image plane.

Algorithm 1 3D layout optimization

1: Given panorama I , layout corner prediction mC , and

boundary prediction mE ;

2: Initialize 3D layout L0 based on Eq. 2;

3: Ebest = Score(L0) by Eq. 3, Lbest = L0;

4: for i = 1 :wallNum do

5: Sample candidate layouts Li by varying wall posi-

tion wi in 3D, fix other wall positions;

6: for j = 1 : |Li| do

7: Sample candidate Layouts Lij by varying floor

and ceiling position in 3D;

8: Rank the best scored Layout LB ∈ {Lij} based

on Eq. 3;

9: if Ebest < Score(LB) then

10: Ebest = Score(LB), Lbest = LB ;

11: Update wi from Lbest, fix it for following sampling
return Lbest

3.4. 3D layout optimization

The initial 2D corner predictions are obtained from the

corner probability maps that our network outputs. First, the

responses are summed across rows, to get a summed re-

sponse for each column. Then, local maxima are found in

the column responses, with distance between local maxima

of at least 20 pixels. Finally, the two largest peaks are found

along the selected columns. These 2D corners might not

satisfy Manhattan constraints, so we perform optimization

to refine the estimates.

Given the predicted corner positions, we can directly

recover the camera position and 3D layout, up to a scale

and translation, by assuming that bottom corners are on

the same ground plane and that the top corners are directly

above the bottom ones. We can further constrain the lay-

out shape to be Manhattan, so that intersecting walls are

perpendicular, e.g. like a cuboid or “L”-shape in a top-

down view. For panoramic images, the Manhattan con-

straints can be easily incorporated, by utilizing the char-

acteristic that the columns of the panorama correspond to

rotation angles of the camera. We parameterize the layout

coordinates in the top-down view as a vector of 2D points

Lv = {v1 = (0, 0),v2 = (x1, y1), . . . ,vN = (xN , yN )}.
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v1 resolves the translation ambiguity, and |v1 − v2| = 1
sets the scale. Because the layout is assumed to be Manhat-

tan, neighboring vertices will share one coordinate value,

which further reduces the number of free parameters. We

recover the camera position vc = {xc, yc} and Lv based

on the following generalized energy minimization inspired

by Farin et al. [8]:

E(Lv,vc) = min
vc,Lv

∑

(i,j)∈Lv

|β(vi,vj)− α(vi,vj)| (2)

where vi,vj are pairs of neighboring vertices, and βij =

arccos
vi−vc·vj−vc

‖vi−vc‖‖vj−vc‖
is the rotation angle of the camera

vc between vi and vj . We denote αij as the pixel-wise hor-

izontal distance on the image between vi and vj divided by

the length of the panorama. Note that this L2 minimiza-

tion also applies to general Manhattan layouts. We use L-

BFGS [34] to solve for Eq. 2 efficiently.

We initialize the ceiling level as the average (mean) of

3D upper-corner heights, and then optimize for a better fit-

ting room layout, relying on both corner and boundary in-

formation using the following score to evaluate 3D layout

candidate L:

Score(L) = wjunc

∑

lc∈C

logPcorner(lc)

+ wceil

∑

le∈Le

max logPceil(le)

+ wfloor

∑

lf∈Lf

max logPfloor(lf ) (3)

where C denotes the 2D projected corner positions of L.

Cardinality of L is #walls× 2. We connect the nearby cor-

ners on the image to obtain Le which is the set of pro-

jected wall-ceiling boundaries, and Lf which is the set of

projected wall-floor boundaries (each with cardinality of

#walls). Pcorner(·) denotes the pixel-wise probability value

on the predicted mC . Pceil(·) and Pfloor(·) denote the prob-

ability on mE . The 2nd and 3rd term take the maximum

value of log likelihood response in each boundary le ∈ Le

and lf ∈ Lf . wjunc, wceil and wfloor are the term weights,

we set to 1.0, 0.5 and 1.0 respectively using grid search.

This weighting conforms with the observation that wall-

floor corners are often occluded, and the predicted bound-

aries could help improve the layout reconstruction. We find

that adding wall-wall boundaries in the scoring function

helps less, since the vertical pairs of predicted corners al-

ready reveals the wall-wall boundaries information.

Directly optimizing Eq. 3 is computationally expensive,

since we penalize on 2D projections but not direct 3D prop-

erties. In this case, we instead sample candidate layout

shapes and select the best scoring result based on Eq. 3. We

use line search to prune the candidate numbers to speed up

the optimization. Algorithm 1 demonstrates the procedure.

In each step, we sample candidate layouts by shifting one

of the wall position within ±%10 of its distance to the cam-

era center. Each candidate’s ceiling and floor level is then

optimized based on the same sampling strategy and scored

based on Eq. 3. Once we find the best scored layout by

moving one of the walls, we fix this wall position, move to

the next wall and perform the sampling again. We start from

the least confident wall based on our boundary predictions.

In total, ∼ 1000 layout candidates are sampled. The opti-

mization step spends less then 30 sec for each image and

produces better 3D layouts as demonstrated in Sec. 4.

3.5. Extensions

With small modifications, our network, originally de-

signed to predict cuboid layouts from panoramas, can also

predict more general Manhattan layouts from panoramas

and cuboid-layouts from perspective images.

General Manhattan layouts: To enable more general

layouts, we include training examples that have more than

four walls visible (e.g. “L”-shaped rooms), which applies

to about 10% of examples. We then determine whether to

generate four or six walls by thresholding the score of the

sixth strongest wall-wall boundary. Specifically, the aver-

age probability along the sixth strongest column of the cor-

ner map is at least 0.05. In other words, if there is evi-

dence for more than four walls, our system generates addi-

tional walls; otherwise it generates four. Since the available

test sets do not have many examples with more than four

walls, we show qualitative results with our additional cap-

tured samples in Sec. 4.2 and in the supplemental material.

Note that there will be multiple solutions given non-

cuboid layout when solving Eq. 2. We experimented with

predicting a concave/convex label as part of the corner map

prediction to obtain single solution, but observed degraded

2D prediction. We thus enumerate all possible shapes (e.g.

for room with six walls, there will be six variations) and

choose the one with the best score. We found this heuris-

tic search to be efficient as it searches in a small discrete

set. We do not train with the 3D parameter regressor for the

non-cuboid layout.

Perspective images: When predicting on perspective im-

ages, we skip the alignment and optimization steps, instead

directly predicting corners and boundaries on the image.

We also do not use the 3D regressor branch. The network

predicts a 3-channel boundary layout map with ceiling-wall,

wall-wall and wall-floor boundaries, and the corner map has

eight channels for each possible corner. Since perspective

images have smaller fields of view and the number of visible

corners varies, we add a small decoding branch that predicts

the room layout type, similar to RoomNet [15]. The predic-

tor has 4 fully-connected (fc) layers with 1024, 256, 64 and

11 nodes, with ReLU operations in between. The predicted

layout type then determines which corners are detected, and
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Method 3D IoU (%)
Corner

error (%)

Pixel

error (%)

PanoContext [32] 67.23 1.60 4.55

ours (corner) 73.16 1.08 4.10

ours (corner+boundary) 73.26 1.07 3.31

ours full (corner+boundary+3D) 74.48 1.06 3.34

ours w/o alignment 69.91 1.44 4.39

ours w/o cuboid constraint 72.56 1.12 3.39

ours w/o layout optimization 73.25 1.08 3.37

ours w/ L2 loss 73.55 1.12 3.43

ours full w/ Stnfd. 2D-3D data 75.12 1.02 3.18

Table 1. Quantitative results on cuboid layout estimation from

panorama using PanoContext dataset [32]. We compare the

PanoContext method, and include an ablation analysis on a va-

riety of configurations of our method. Bold numbers indicate the

best performance when training on PanoContext data.

Method Average CPU time (s)

PanoContext [32] > 300

ours full (corner+boundary+3D) 44.73

ours w/o alignment 31.00

ours w/o cuboid constraint 13.75

ours w/o layout optimization 14.23

Table 2. Average CPU time for each method. We evaluate the

methods on the PanoContext dataset [32] using Matlab on Linux

machine with an Intel Xeon 3.5G Hz (6 cores).

the corners are localized as the most probable positions in

the corner maps. We use cross entropy loss to jointly train

the layout boundary and corner predictors. To ease train-

ing, similar to the procedure in Sec. 3.3, we first train the

boundary/corner predictors, and then add the type predictor

branch and train all components together.

4. Experiments

We implement our LayoutNet with Torch and test on

a single NVIDIA Titan X GPU. The layout optimization

is implemented with Matlab R2015a and is performed on

Linux machine with Intel Xeon 3.5G Hz in CPU mode.

We demonstrate the effectiveness of our approach on the

following tasks: 1) predict 3D cuboid layout from a sin-

gle panorama, 2) estimate 3D non-cuboid Manhattan layout

from a single panorama, and 3) estimate layout from a sin-

gle perspective image. We train only on the training split

of each public dataset and tune the hyper-parameters on the

validation set. We report results on the test set. Our final

corner/boundary prediction from the LayoutNet is averaged

over results with input of the original panoramas/images

and the left-right flipped ones. Please find more results in

the supplemental materials.

4.1. Cuboid layout for panorama

We evaluate our approach on three standard metrics:

1. 3D Intersection over Union (IoU), calculated between

our predicted 3D layout and the ground truth and aver-

aged across all images;

Method 3D IoU (%)
Corner

error (%)

Pixel

error (%)

ours (corner) 72.50 1.27 3.44

ours (corner+boundary) 75.26 1.03 2.68

ours full (corner+boundary+3D) 75.39 1.01 2.70

ours w/o alignment 68.56 1.56 3.70

ours w/o cuboid constraint 74.13 1.08 2.87

ours w/o layout optimization 74.47 1.07 2.92

ours w/ L2 loss 76.33 1.04 2.70

ours full w/ PanoContext data 77.51 0.92 2.42

Table 3. Evaluation on our labeled Stanford 2D-3D annotation

dataset. We evaluate our LayoutNet approach with various con-

figurations for ablation study. Bold numbers indicate best perfor-

mance when training only on Stanford 2D-3D training set.

2. Corner error, the L2 distance between predicted room

corner and the ground truth, normalized by the image

diagonal and averaged across all images;

3. Pixel error, the pixel-wise accuracy between the layout

and the ground truth, averaged across all images.

We perform our method using the same hyper-parameter

on the following two datasets.

PanoContext dataset: The PanoContext dataset [32] con-

tains 500 annotated cuboid layouts of indoor environments

such as bedrooms and living rooms. Since there is no

existing validation set, we carefully split 10% validation

images from the training samples so that similar rooms

do not appear in the training split. Table 1 shows the

quantitative comparison of our method, denoted as “ours

full (corner+boundary+3D)”, compared with the state-of-

the-art cuboid layout estimation by Zhang et al. [32], de-

noted as “PanoContext”. Note that PanoContext incorpo-

rates object detection as a factor for layout estimation. Our

LayoutNet directly recovers layouts and outperforms the

state-of-the-art on all the three metrics. Figure 3 shows the

qualitative comparison. Our approach presents better local-

ization of layout boundaries, especially for a better estimate

on occluded boundaries, and is much faster in time as shown

in Table 2.

Our labeled Stanford 2D-3D annotation dataset: The

dataset contains 1413 equirectangular RGB panorama col-

lected in 6 large-scale indoor environment including office

and classrooms and open space like corridors. Since the

dataset does not contain applicable layout annotations, we

extend the annotations with carefully labeled 3D cuboid

shape layout, providing 571 RGB panoramas with room

layout annotations. We evaluate our LayoutNet quantita-

tively in Table 3 and qualitatively in Figure 4. Although

the Stanford 2D-3D annotation dataset is more challenging

with smaller vertical field of view (FOV) and more occlu-

sions on the wall-floor boundaries, our LayoutNet recovers

the 3D layouts well.

Ablation study: We show, in Table 1 and Table 3, the

performance given the different configurations of our ap-

proach: 1) with only room corner prediction, denoted as
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PanoContext Ours PanoContext Ours

PanoContext Ours PanoContext Ours

PanoContext Ours Ours

PanoContext LayoutNet PanoContext LayoutNet

Ours

Figure 3. Qualitative results (randomly sampled) for cuboid layout prediction on PanoContext dataset [32]. We show both our

method’s performance (even columns) and the state-of-the-art [32] (odd columns). Each image consists predicted layout from given

method (orange lines) and ground truth layout (green lines). Our method is very accurate on the pixel level, but as the IoU measure shows

in our quantitative results, the 3D layout can be sensitive to even small 2D prediction errors. Best viewed in color.

PanoContext Ours PanoContext Ours

PanoContext Ours PanoContext Ours

PanoContext Ours PanoContext Ours

Figure 4. Qualitative results (randomly sampled) for cuboid layout prediction on the Stanford 2D-3D annotation dataset. This

dataset is more challenging than the PanoContext dataset, due to a smaller vertical field of view and more occlusion. We show our

method’s predicted layout (orange lines) compared with the ground truth layout (green lines). Best viewed in color.

“ours (corner)”; 2) joint prediction of corner and bound-

ary, denoted as “ours (corner+boundary)”; 3) our full ap-

proach with 3D layout loss, denoted as “ours full (cor-

ner+boundary+3D)”; 4) our full approach trained on a com-

bined dataset; 5) our full approach without alignment step;

6) our full approach without cuboid constraint; 7) our full

approach without layout optimization step; and 8) our full

approach using L2 loss for boundary/corner prediction in-

stead of cross entropy loss. Our experiments show that the

full approach that incorporates all configurations performs

better across all the metrics. Using cross entropy loss ap-

pears to have a better performance than using L2. Training

with 3D regressor has a small impact, which is the part of

the reason we do not use it for perspective images. Table 2

Method L2 dist cosine dist

Yang et al. [30] 27.02 4.27

Ours 18.51 5.85

Table 4. Depth distribution error compared with Yang et al. [30].

shows the average runtimes for different configurations.

Comparison to other approaches: We compare with

Yang et al. based on their depth distribution metric. We di-

rectly run our full cuboid layout prediction (deep net trained

on PanoContext + optimization) on 88 indoor panoramas

collected by Yang et al. As shown in Table 4, our approach

outperforms Yang et al. in L2 distance and is slightly worse

in cosine distance. Another approach, Pano2CAD [29], has

not made their source code available and has no evalua-

tion on layout, making direct comparison difficult. For time
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Input RGB LayoutNet boundary LayoutNet corner LayoutNet result Input RGB LayoutNet boundary LayoutNet corner LayoutNet result

Figure 5. Qualitative results for perspective images. We show the input RGB image, our predicted boundary/corner map and the final

estimated layout (orange lines) compared with ground truth (green lines). Best viewed in color.

Figure 6. Qualitative results for non-cuboid layout prediction.

We show our method’s predicted layout (orange lines) for non-

cuboid layouts such as “L”-shaped rooms. Best viewed in color.

consumption, Yang et al. report to be less than 1 minute,

Pano2CAD takes 30s to process one room. One forward

pass of LayoutNet takes 39ms. In CPU mode (w/o parallel

for loop) using Matlab R2015a, our cuboid constraint takes

0.52s, alignment 13.73s, and layout optimization 30.5s.

4.2. Non­cuboid layout for panorama

Figure 6 shows qualitative results of our approach

to reconstruct non-cuboid Manhattan layouts from single

panorama. Due to the limited number of non-cuboid room

layouts in the existing datasets, we captured several images

using a Ricoh Theta-S 360◦ camera. Our approach is able

to predict 3D room layouts with complex shape that are dif-

ficult for existing methods.

4.3. Perspective images

We use the same experimental setting as in [4, 15]. We

train our modified approach to jointly predict room type on

the training split of the LSUN layout estimation challenge.

We do not train on the validation split.

Table 5 shows our performance compared with the state-

of-the-art on Hedau’s dataset [10]. Our method ranks sec-

ond among the methods. Our method takes 39ms (25 FPS)

to process a perspective image, faster than the 52ms (19

Method Pixel Error (%)

Schwing et al. [26] 12.8

Del Pero et al. [6] 12.7

Dasgupta et al. [4] 9.73

LayoutNet (ours) 9.69

RoomNet recurrent 3-iter [15] 8.36

Table 5. Performance on Hedau dataset [10]. We show the top 5

results, LayoutNet ranks second to RoomNet recurrent 3-iter in

Pixel Error (%).

FPS) of RoomNet basic [15] or 168ms (6 FPS) of Room-

Net recurrent, under the same hardware configuration. We

report the result on LSUN dataset in the supplemental ma-

terial. Figure 5 shows qualitative results on the LSUN vali-

dation split. Failure cases include room type prediction er-

ror (last row, right column) and heavy occlusion from lim-

ited field of view (last row, left column).

5. Conclusion

We propose LayoutNet, an algorithm that predicts room

layout from a single panorama or perspective image. Our

approach relaxes the commonly assumed cuboid layout lim-

itation and works well with non-cuboid layouts (e.g. “L”-

shape room). We demonstrate how pre-aligning based on

vanishing points and Manhattan constraints substantially

improve the quantitative results. Our method operates di-

rectly on panoramic images (rather than decomposing into

perspective images) and is among the state-of-the-art for

the perspective image task. Future work includes extend-

ing to handle arbitrary room layouts, incorporating object

detection for better estimating room shapes, and recovering

a complete 3D indoor model recovered from single images.
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