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Abstract

This paper proposes an unpaired learning method for

image enhancement. Given a set of photographs with the

desired characteristics, the proposed method learns a photo

enhancer which transforms an input image into an en-

hanced image with those characteristics. The method is

based on the framework of two-way generative adversar-

ial networks (GANs) with several improvements. First, we

augment the U-Net with global features and show that it

is more effective. The global U-Net acts as the genera-

tor in our GAN model. Second, we improve Wasserstein

GAN (WGAN) with an adaptive weighting scheme. With

this scheme, training converges faster and better, and is less

sensitive to parameters than WGAN-GP. Finally, we pro-

pose to use individual batch normalization layers for gener-

ators in two-way GANs. It helps generators better adapt to

their own input distributions. All together, they significantly

improve the stability of GAN training for our application.

Both quantitative and visual results show that the proposed

method is effective for enhancing images.

1. Introduction

Photographs record valuable moments of our life. With

the popularization of mobile phone cameras, users enjoy

taking photographs even more. However, current cameras

have limitations. They have to reconstruct a complete and

high-quality image from a set incomplete and imperfect

samples of the scene. The samples are often noisy, incom-

plete in color and limited in the resolution and the dynamic

range. In addition, the camera sensor responds linearly to

the incoming light while human perception performs more

sophisticated non-linear mapping. Thus, users could be

disappointed with photographs they take because the pho-
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tographs do not match their expectations and visual experi-

ence. The problem is even aggravated for mobile cameras

because of their small sensors and compact lenses.

Image enhancement methods attempt to address the is-

sues with color rendition and image sharpness. There are

interactive tools and semi-automatic methods for this pur-

pose. Most interactive software provides elementary tools

such as histogram equalization, sharpening, contrast adjust-

ment and color mapping, and some advanced functions such

as local and adaptive adjustments. The quality of the results

however highly depends on skills and aesthetic judgement

of the users. In addition, it often takes a significant amount

of time to reach satisfactory retouching results. The semi-

automatic methods facilitate the process by only requiring

adjustments of a few parameters. However, the results could

be very sensitive to parameters. In addition, these methods

are often based on some heuristic rules about human percep-

tion such as enhancing details or stretching contrast. Thus,

they could be brittle and lead to bad results.

This paper proposes a method for image enhancement

by learning from photographs. The method only requires

a set of “good” photographs as the input. They have the

characteristics that the user would like to have for their

photographs. They can be collected easily from websites

or any stock of photographs. We treat the image enhance-

ment problem as an image-to-image translation problem in

which an input image is transformed into an enhanced im-

age with the characteristics embedded in the set of training

photographs. Thus, we tackle the problem with a two-way

GAN whose structure is similar to CycleGAN [26]. How-

ever, GANs are notorious for their instability. For address-

ing the issue and obtaining high-quality results, we pro-

pose a few improvements along the way of constructing our

two-way GAN. First, for the design of the generator, we

augment the U-Net [20] with global features. The global

features capture the notion of scene setting, global lighting

condition or even subject types. They are helpful for deter-

mining what local operations should be performed. Second,

we propose an adaptive weighting scheme for Wasserstein
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GAN (WGAN) [1]. WGAN uses weight clipping for en-

forcing the Lipschitz constraint. It was later discovered a

terrible way and some proposed to use the gradient penalty

for enforcing the constraint [9]. However, we found that

the approach is very sensitive to the weighting parameter of

the penalty. Thus, we propose to use an adaptive weight-

ing scheme to improve the convergence of WGAN training.

Finally, most two-way GAN architectures use the same gen-

erator in both forward and backward passes. It makes sense

since the generators in both paths perform similar mapping

with the same input and output domains. However, we

found that, although in the same domain, the inputs actually

come from different sources, one from the input data and

the other from the generated data. The discrepancy between

distributions of input sources could have vicious effects on

the performance of the generator. We propose to use indi-

vidual batch normalization layers for the same type of gen-

erators. This way, the generator can better adapt to the in-

put data distribution. With these improvements, our method

can provide high-quality enhanced photographs with better

color rendition and sharpness. The results often look more

natural than previous methods. In addition, the proposed

techniques, global U-Net, adaptive WGAN and individual

batch normalization, can be useful for other applications.

2. Related work

Image enhancement has been studied for a long time.

Many operations and filters have been proposed to enhance

details, improve contrast and adjust colors. Wang et al. [22]

proposed a method for enhancing details while preserving

naturalness. Aubry et al. [2] proposed local Laplacian op-

erator for enhancing details. Most of these operations are

algorithmic and based on heuristic rules. Bychkovsky et

al. [4] proposed a learning-based regression method for ap-

proximating photographers’ adjustment skills. For this pur-

pose, they collected a dataset containing images before and

after adjustments by photographers.

The convolutional neural networks (CNNs) have become

a major workhorse for a wide set of computer vision and

image processing problems. They have also been applied to

the image enhancement problem. Yan et al. [23] proposed

the first deep-learning-based method for photo adjustment.

Gharbi et al. [7] proposed a fast approximation for exist-

ing filters. Ignatov et al. [10] took a different approach by

learning the mapping between a mobile phone camera and a

DSLR camera. They collected the DPED dataset consisting

of images of the same scene taken by different cameras. A

GAN model was used for learning the mapping. Chen et

al. [6] approximated existing filters using a fully convolu-

tional network. It can only learn existing filters and cannot

do beyond what they can do. All these methods are super-

vised and require paired images while ours is unpaired. The

unpaired nature eases the process of collecting training data.

Our method is based on the generative adversarial net-

works (GANs) [8]. Although GANs have been proved

powerful, they are notorious on training instability. Sig-

nificant efforts have been made toward stable training of

GANs. Wasserstein GAN uses the earth mover distance

to measure the distance between the data distribution and

the model distribution and significantly improves training

stability [1]. Gulrajani et al. found that WGAN could

still generate low-quality samples or fail to converge due

to weight clipping [9]. Instead of weight clipping, they

proposed to penalize the norm of the gradient of the dis-

criminator with respect to the input. The resultant model is

called WGAN-GP (WGAN with gradient penalty). It often

generates higher-quality samples and converges faster than

WGAN. There are also energy-based GAN variants, such

as BEGAN [3] and EBGAN [25].

Isola et al. proposed a conditional adversarial network

as a general-purpose solution to image-to-image transla-

tion problems [13], converting from one representation of

a scene to another, such as from a semantic label map to a

realistic image or from a day image to its night counterpart.

Although generating amazing results, their method requires

paired images for training. Two-way GANs were later pro-

posed for addressing the problem by introducing cycle con-

sistency. Famous two-way GANs include CycleGAN [26],

DualGAN [24] and DISCOGAN [14]. We formulate image

enhancement as an instance of the image-to-image transla-

tion problems and solve it with a two-way GAN.

3. Overview

Our goal is to obtain a photo enhancer Φ which takes

an input image x and generates an output image Φ(x) as

the enhanced version of x. It is however not easy to define

enhancement clearly because human perception is compli-

cated and subjective. Instead of formulating the problem

using a set of heuristic rules such as “details should be en-

hanced” or “contrast should be stretched”, we define en-

hancement by a set of examples Y . That is, we ask the

user to provide a set of photographs with the characteristics

he/she would like to have. The proposed method aims at

discovering the common characteristics of the images in Y
and deriving the enhancer so that the enhanced image Φ(x)
shares these characteristics while still resembling the origi-

nal image x in content.

Because of its nature with set-level supervision, the

problem can be naturally formulated using the framework

of GANs which learns the embedding of the input samples

and generates output samples locating within the subspace

spanned by training samples. A GAN model often consists

of a discriminator D and a generator G. The framework

has been used for addressing the image-to-image translation

problem which transforms an input image from the source

domain X to the output image in the target domain Y [13].
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Figure 1. The network architectures of 1-way and 2-way GANs.

In our application, the source domain X represents original

images while the target domain Y contains images with the

desired characteristics.

Figure 1(a) gives the architecture for 1-way GAN. Given

an input x ∈ X , the generator GX transforms x into y′ =
GX(x) ∈ Y . The discriminator DY aims at distinguish-

ing between the samples in the target domain {y} and the

generated samples {y′=GX(x)}. To enforce cycle consis-

tency for better results, several have proposed 2-way GANs

such as CycleGAN [26] and DualGAN [24]. They require

that G′

Y (GX(x)) = x where the generator G′

Y takes a GX -

generated sample and maps it back to the source domain X .

In addition, 2-way GANs often contains a forward mapping

(X → Y ) and a backward mapping (Y →X). Figure 1(b)

shows the architecture of 2-way GANs. In the forward pass,

x
GX−→ y′

G′

Y−→ x′′ and we check the consistency between x

and x′′. In the backward pass, y
GY−→ x′

G′

X−→ y′′ and we

check the consistency between y and y′′.

In the following sections, we will first present the design

of our generator (Section 4). Next, we will describe the

design of our 1-way GAN (Section 5) and the one for our

2-way GAN (Section 6).

4. Generator

For our application, the generator in the GAN framework

plays an important role as it will act as the final photo en-

hancer Φ. This section proposes a generator and compares

it with several options. Figure 2(a) shows the proposed gen-

erator. The size of input images is fixed at 512×512.

Our generator is based on the U-Net [20] which was

originally proposed for biomedical image segmentation but

later also showed strong performance on many tasks. U-

Net however does not perform very well on our task. Our

conjecture is that the U-Net does not include global fea-

tures. Our vision system usually adjusts to the overall light-

ing conditions and scene settings. Similarly, cameras have

scene settings and often apply different types of adjustments

depending on the current setting. The global features could

reveal high-level information such as the scene category, the

subject type or the overall lighting condition which could be

useful for individual pixels to determine their local adjust-

ments. Thus, we add the global features into the U-Net.

In order to improve the model efficiency, the extraction

of global features shares the same contracting part of the

U-Net with the extraction of local features for the first five

layers. Each contraction step consists of 5×5 filtering with

stride 2 followed by SELU activation [15] and batch nor-

malization [12]. Given the 32× 32×128 feature map of the

5th layer, for global features, the feature map is further re-

duced to 16×16×128 and then 8×8×128 by performing

the aforementioned contraction step. The 8× 8×128 fea-

ture map is then reduced to 1×1×128 by a fully-connected

layer followed by a SELU activation layer and then another

fully-connected layer. The extracted 1×1×128 global fea-

tures are then duplicated 32×32 copies and concatenated

after the 32×32×128 feature map for the low-level features,

resulting a 32×32×256 feature map which fuses both lo-

cal and global features together. The expansive path of the

U-Net is then performed on the fused feature map. Finally,

the idea of residual learning is adopted because it has been

shown effective for image processing tasks and helpful on

convergence. That is, the generator only learns the differ-

ence between the input image and the label image.

Global features have been explored by other image pro-

cessing tasks such as colorization [11]. However, their

model requires an extra supervised network trained with ex-

plicit scene labels. For many applications, it is difficult to

define labels explicitly. The novelty of our model is to use

the U-Net itself to encode an implicit feature vector describ-

ing global features useful for the target application.

The dataset. We used the MIT-Adobe 5K dataset [4] for

training and testing. The dataset contains 5, 000 images,

each of which was retouched by five well-trained photogra-

phers using global and local adjustments. We selected the

results of photographer C as labels since he was ranked the

highest in the user study [4]. The dataset was split into three

partitions: the first one consists of 2, 250 images and their

retouched versions were used for training in the supervised

setting in this section; for the unpaired training in Section 5

and Section 6, the retouched images of another 2, 250 im-

ages acted as the target domain while the 2, 250 images of

the first partition were used for the source domain; the rest

500 images were used for testing in either setting.

The experiments. We evaluated several network architec-

tures for the generator. (1) DPED [10]: since we only eval-

uate on generators, we took only the generator of their GAN

architecture. (2) 8RESBLK [26, 17]: the generator has been

used in CycleGAN [26] and UNIT [17]. (3) FCN [6]: a

fully convolutional network for approximating filters. (4)

CRN [5]: the architecture has been used to synthesize re-

alistic images from semantic labels. (5) U-Net [20]. The

residual learning is augmented to all of them. Because of

the image size and the limitation on memory capacity, the
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Figure 2. The network architectures of the proposed generator (a) and the proposed discriminator (b).

DPED 8RESBLK FCN CRN U-Net Ours

PSNR 25.50 31.46 31.52 33.52 31.06 33.93

SSIM 0.911 0.951 0.952 0.972 0.960 0.976
Table 1. The average accuracy of different network architectures

on approximating fast local Laplacian filtering on the 500 testing

images from the MIT-Adobe 5K dataset.

DPED 8RESBLK FCN CRN U-Net Ours

PSNR 21.76 23.42 20.66 22.38 22.13 23.80

SSIM 0.871 0.875 0.849 0.877 0.879 0.900
Table 2. The average accuracy of different network architectures

on predicting the retouched images by photographers on the 500

testing images from the MIT-Adobe 5K dataset.

number of features of the first layer is limited at 16. Oth-

erwise, the overall architecture cannot be fitted within the

memory. The loss function is to maximize PSNR:

argmin
GX

E
y,y′

[

log
10
(MSE(y, y′))

]

,where (1)

MSE(x, y) =
1

mn

m−1
∑

i=0

n−1
∑

j=0

‖x(i, j)− y(i, j)‖
2
. (2)

Table 1 shows both the average PSNR and SSIM values

for all compared architectures on approximating fast local

Laplacian filtering for the 500 testing images from MIT-

Adobe 5K dataset. By adding the global features, the pro-

posed architecture provides nearly 3dB gain over its coun-

terpart without global features, and outperforms all com-

pared architectures. Our generator does an excellent job on

approximating the fast local Laplacian filter with 33.93dB

PSNR, better than FCN which is designed for such tasks.

Table 2 reports the performance of these architectures on

predicting the retouched images. This task is much more

difficult as human retouching could be more complicated

and less inconsistent than algorithmic filters. Again, the

proposed global U-Net architecture outperforms others.

5. One-way GAN

This section presents our GAN architecture for unpaired

training. Figure 2(b) illustrates the architecture of our dis-

criminator. By employing the generator (Figure 2(a)) as GX

variant PSNR parameters

GAN 19.65 α = 10, D/G = 1
LSGAN 20.27 α = 0.1, D/G = 1
DRAGAN 20.20 α = 10, D/G = 10
WGAN-GP 21.42 α = 1000, D/G = 50, λ = 10
WGAN-GP 21.19 α = 1000, D/G = 50, λ = 1
WGAN-GP 20.78 α = 1000, D/G = 50, λ = 0.1
A-WGAN 22.17 α = 1000, D/G = 50

Table 3. Comparisons of different GANs and parameters.

and the discriminator (Figure 2(b)) as DY in Figure 1(a), we

have the architecture for our 1-way GAN. As mentioned in

Section 4, for training GANs, to avoid the content corre-

lation between the source and the target domains, we used

2, 250 images of the MIT-Adobe 5K dataset as the source

domain while using the retouched images of another 2, 250
images as the target domain.

There are many variants of GAN formulations. We

first experimented with several flavors of GANs, includ-

ing GAN [8], LSGAN [18], DRAGAN [16] and WGAN-

GP [9], with different parameter settings. Table 3 reports

the results for some of them. All GANs require the param-

eter α for the weight of the identity loss E
x,y′

[

MSE(x, y′)
]

which ensures the output is similar to the input. The pa-

rameter D/G represents the ratio between the numbers of

discriminator and generator training passes. In our applica-

tion, WGAN-GP performs better than GAN, LSGAN and

DRAGAN. Table 3 only reports the best performance for

methods other than WGAN-GP. However, the performance

of WGAN-GP depends on an additional parameter λ which

weights the gradient penalty.

WGAN relies on the Lipschitz constraint on the training

objective: a differentiable function is 1-Lipschtiz if and only

if it has gradients with norm at most 1 everywhere [9]. For

satisfying the constraint, WGAN-GP directly constrains the

gradient norm of the discriminator output with respect to its

input by adding the following gradient penalty,

E
ŷ

[

(

‖∇ŷDY (ŷ)‖2 − 1
)2

]

, (3)

where ŷ is point sampled along straight lines between points

6309



1-way 2-way 2-way GAN

GAN GAN with iBN

WGAN-GP 21.42 21.96 (+0.54) 22.27 (+0.31)

A-WGAN 22.17 22.21 (+0.04) 22.37 (+0.16)
Table 4. The comparison of 1-way GAN, 2-way GAN and 2-way

GAN with individual batch normalization (iBN). The numbers in

parenthesis indicate the performance gains.

in the target distribution and the generator distribution. A

parameter λ weights the penalty with the original discrim-

inator loss. λ determines the tendency that gradients ap-

proaches 1. If λ is too small, the Lipschitz constraint can-

not be guaranteed. On the other hand, if λ is too large, the

convergence could be slow as the penalty could over-weight

the discriminator loss. It makes the choice of λ important.

Instead, we use the following gradient penalty,

E
ŷ

[

max(0, ‖∇ŷDY (ŷ)‖2 − 1)
]

, (4)

which better reflects the Lipschitz that requires the gradients

are less than or equal to 1 and only penalizes the part which

is larger than 1. More importantly, we employ an adap-

tive weighting scheme for adjusting the weight λ, which

chooses a proper weight so that the gradients locate within

a desired interval, say [1.001, 1.05]. If the moving aver-

age of gradients within a sliding window (size=50) is larger

than the upper bound, it means that the current weight λ is

too small and the penalty is not strong enough to ensure the

Lipschitz constraint. Thus, we increase λ by doubling the

weight. On the other hand, if the moving average is smaller

than the lower bound, we decay λ into a half so that it will

not become too large.

Figure 3 compares WGAN-GP and the proposed A-

WGAN (Adaptive WGAN) on the swissroll dataset. It is

clear that the proposed adaptive weighting WGAN con-

verges to the target distribution regardless of the initial

setting of λ while the results of WGAN-GP significantly

depend on λ. Table 3 also confirms that A-WGAN out-

performs WGAN-GP and achieves the best performance

among compared GANs. Note that the PSNR value is not

very high even with A-WGAN. It is impossible to capture

the exact mapping since the photographer can be subjective

with different tastes and often inconsistent. The best that a

method can do is to discover the common trend on image

characteristics from the training data. However, even if we

cannot accurately predict human labels, the learned opera-

tion can still improve image quality as shown in Section 7.

6. Two-way GAN

Section 5 has determined to use A-WGAN as our GAN

formulation. For achieving better results, this section ex-

tends the GAN architecture into a 2-way GAN. Figure 1(b)

(a)

(b)

(c)

(d)

(e)

(f)

100 iterations 2,500 iterations 5,000 iterations

Figure 3. The experiment with swissroll. The orange points rep-

resent the target distribution. The green points are generated sam-

ples. (a) WGAN-GP (λ = 0.1). (b) A-WGAN (λ = 0.1). (c)

WGAN-GP (λ = 1). (d) A-WGAN (λ = 1). (e) WGAN-GP

(λ=10). (f) A-WGAN (λ=10).

shows the architecture for the 2-way GAN. Table 4 com-

pares WGAN-GP and the proposed A-WGAN when ex-

tending to the 2-way GAN architectures. Both have gains

from the use of the 2-way GAN architecture. However, the

gain is more significant on WGAN-GP. It could be because

there is less room for A-WGAN to improve.

Most 2-way GANs use the same generator for both GX

and G′

X because both map an input from the domain X to

the domain Y , and similarly for GY and G′

Y . However,

from Figure 1(b), the input of GX is taken from the input

samples X while G′

X takes the generated samples X ′ as

its inputs. They could have different distribution charac-

teristics. Thus, it is better that the generators GX and G′

X

adapt to their own inputs. Our solution is to use individual

batch normalization (iBN) layers for GX and G′

X . That is,

our generators GX and G′

X share all layers and parameters

except for the batch normalization layers. Each generator

has its own batch normalization so that it better adapts to

the characteristics of its own inputs. Table 4 confirms that

the use of individual batch normalization helps the genera-

tor adapt to input distributions. With iBN, both WGAN-GP
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(a) input (b) ours (HDR) (c) ours (HDR) w/o iBN (d) ours (SL) (e) ours (UL)

(f) DPED (iPhone7) (g) CLHE (h) NPEA (i) FLLF (j) label
Figure 4. Comparisons of our models with DPED [10], CLHE [21], NPEA [22] and FLLF [2]. SL and UL respectively mean supervised

and unpaired learning on the MIT-Adobe 5K dataset. The label is the retouched image by a photographer.

and A-WGAN were improved, by 0.31dB and 0.16dB re-

spectively. As shown in Figure 4 and Figure 5, without iBN,

the 2-way GAN could fail to capture the right distribution

on more challenging cases.

To sum up, our objective consists of several losses. The

first one is the identity mapping loss I which requires that

the content of the transformed image y should be similar to

the input image x. Because of the 2-way GAN, there is also

a counterpart for mapping from y to x′.

I = E
x,y′

[

MSE(x, y′)
]

+ E
y,x′

[

MSE(y, x′)
]

. (5)

The second loss is the cycle consistency loss C defined as

C = E
x,x′′

[

MSE(x, x′′)
]

+ E
y,y′′

[

MSE(y, y′′)
]

. (6)

The adversarial losses for the discriminator AD and the gen-

erator AG are defined as

AD = E
x

[

DX(x)
]

− E
x′

[

DX(x′)
]

+ (7)

E
y

[

DY (y)
]

− E
y′

[

DY (y
′)
]

, (8)

AG = E
x′

[

DX(x′)
]

+ E
y′

[

DY (y
′)
]

. (9)

When training the discriminator, the gradient penalty P is

added where

P = E
x̂

[

max(0, ‖∇x̂DX(x̂)‖
2
− 1)

]

+ (10)

E
ŷ

[

max(0, ‖∇ŷDY (ŷ)‖2 − 1)
]

. (11)

The term ensures 1-Lipschitz functions for Wasserstein dis-

tance. Thus, the discriminator is obtained by the following

optimization,

argmax
D

[

AD − λ̃P
]

, (12)

where the weight λ̃ is adaptively adjusted using A-WGAN.

The generator is obtained by

argmin
G

[

−AG + αI + 10αC
]

, (13)

where α weights between the adversarial loss and iden-

tity/consistency losses. Finally, we take the resultant gen-

erator GX as the photo enhancer Φ.

7. Results

In addition to training on photographer labels of the MIT-

Adobe 5K dataset, we have also collected an HDR dataset
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(a) input (b) ours (HDR) (c) ours (HDR) w/o iBN (d) ours (SL) (e) ours (UL)

(f) DPED (iPhone7) (g) CLHE (h) NPEA (i) FLLF (j) label
Figure 5. Comparisons of our models with DPED [10], CLHE [21], NPEA [22] and FLLF [2].

for training. The images were selected from Flickr images

tagged with HDR. They were ranked by interestness pro-

vided by Flickr and the top ones were further selected by

users. Finally, 627 images were selected as the training set.

The learned deep photo enhancer is very efficient and runs

at 50fps with NVidia 1080 Ti. Although the model was

trained on 512×512 inputs, we have extended it so that it

can handle arbitrary resolutions1.

Figure 4 compares our models with several methods in-

cluding DPED [10] (Figure 4(f)), CLHE [21] (Figure 4(g)),

NPEA [22] (Figure 4(h)) and FLLF [2] (Figure 4(i)). By

learning from photographers using the MIT-Adobe 5K

dataset, both our supervised method (Figure 4(d)) and un-

paired learning method (Figure 4(e)) do a reasonable job

on enhancing the input image (Figure 4(a)). Figure 4(j))

shows the photographer label of this image as a reference.

The result of our method trained with the collected HDR

dataset (Figure 4(b)) shows the best result among all com-

pared methods. It looks sharp and natural with good color

rendition. Using the same HDR dataset, without individ-

ual batch normalization (iBN), the color rendition is weird

(Figure 4(c)). It shows the importance of the proposed iBN.

1The demo system is available at http://www.cmlab.csie.

ntu.edu.tw/project/Deep-Photo-Enhancer/.

CycleGAN DPED NPEA CLHE ours total

CycleGAN - 32 27 23 11 93

DPED 368 - 141 119 29 657

NPEA 373 259 - 142 50 824

CLHE 377 281 258 - 77 993

ours 389 371 350 323 - 1433

Table 5. The preference matrix from the user study.

Figure 5 show comparisons on another example. Figure 6

show more comparisons. Again, our HDR model consis-

tently gives the best results. Note that the inputs of the first

and the last rows of Figure 6 were taken by mobile phones.

User study. We have performed a user study with 20 par-

ticipants and 20 images using pairwise comparisons on five

methods. Table 5 reports the preference matrix. Our model

trained on HDR images ranked the first and CLHE was the

runner-up. When comparing our model with CLHE, 81%

of users (323 among 400) preferred our results.

Limitations. Our model could amplify noise if the input

is very dark and contains a significant amount of noise. In

addition, since some HDR images for training are products

of tone mapping, our model could suffer from halo artifacts

inherited from tone mapping for some images.

Other applications. This paper proposes three improve-

6312

http://www.cmlab.csie.ntu.edu.tw/project/Deep-Photo-Enhancer/
http://www.cmlab.csie.ntu.edu.tw/project/Deep-Photo-Enhancer/


input our (HDR) DPED (iPhone7, Nexus 5x) CLHE

Figure 6. Comparisons of our method with DPED and CLHE. The first and the last inputs were taken by iPhone7+ and Nexus respectively.

input ground truth global U-Net U-Net

WGAN-GP λ=0.1 WGAN-GP λ=10 WGAN-GP λ=1000 A-WGAN λ=1000

input w/ iBN w/o iBN input w/ iBN w/o iBN

Figure 7. Other applications of global U-Net, A-WGAN and iBN.

ments: global U-Net, adaptive WGAN (A-WGAN) and

individual batch normalization (iBN). They generally im-

prove results; and for some applications, the improvement

is sufficient for crossing the bar and leading to success. We

have applied them to some other applications. For global U-

Net, we applied it to trimap segmentation for pets using the

Oxford-IIIT Pet dataset [19]. The accuracies of U-Net and

global U-Net are 0.8759 and 0.8905 respectively. The first

row of Figure 7 shows an example of pet trimap segmenta-

tion. The second row of Figure 7 shows the results of bed-

room image synthesis. With different λ values, WGAN-GP

could succeed or fail. The proposed A-WGAN is less de-

pendent with λ and succeeded with all three λ values (only

one shown here). Finally, we applied the 2-way GAN to

gender change of face images. As shown in the last row of

Figure 7, the 2-way GAN failed on the task but succeeded

after employing the proposed iBN.

8. Conclusion

This paper presents Deep Photo Enhancer which learns

image enhancement from a set of given photographs with

user’s desired characteristics. With its unpaired setting, the

process of collecting training images is easy. By taking im-

ages provided by different users, the enhancer can be per-

sonalized to match individual user’s preference. We have

made several technical contributions while searching for the

best architecture for the application. We enhance U-Net

for image processing by augmenting global features. We

improve the stability of WGAN by an adaptive weighting

scheme. We also propose to use individual batch normal-

ization layers for generators for improving 2-way GANs.
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