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Abstract

Research in visual saliency has been focused on two ma-

jor types of models namely fixation prediction and salient

object detection. The relationship between the two, how-

ever, has been less explored. In this paper, we propose

to employ the former model type to identify and segment

salient objects in scenes. We build a novel neural network

called Attentive Saliency Network (ASNet)1 that learns to

detect salient objects from fixation maps. The fixation map,

derived at the upper network layers, captures a high-level

understanding of the scene. Salient object detection is then

viewed as fine-grained object-level saliency segmentation

and is progressively optimized with the guidance of the fix-

ation map in a top-down manner. ASNet is based on a hier-

archy of convolutional LSTMs (convLSTMs) that offers an

efficient recurrent mechanism for sequential refinement of

the segmentation map. Several loss functions are introduced

for boosting the performance of the ASNet. Extensive exper-

imental evaluation shows that our proposed ASNet is capa-

ble of generating accurate segmentation maps with the help

of the computed fixation map. Our work offers a deeper in-

sight into the mechanisms of attention and narrows the gap

between salient object detection and fixation prediction.

1. Introduction

Salient object detection (SOD) has been studied exten-

sively for more than a decade (since [37]). It has several

applications such as segmentation [52, 10], object proposal

generation [2], and image resizing [57, 50]. Recently, the

use of deep neural networks for saliency detection has been

trending. Although promising results have been achieved,

they occasionally fail to detect the most salient object in
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Figure 1. Given complex scenes like (a), what are the salient

objects? We propose the Attentive Saliency Network (ASNet)

that infers the object saliency (b) from predicted fixation maps (c),

which is consistent with human attention mechanisms.

complex cluttered scenes containing several objects (such

as the ones shown in Fig. 1 (a)). Additionally, for current

computational saliency models, their connection with how

humans explicitly choose salient objects or watch natural

scenes are less clear (as discussed in [3, 6]).

In this paper, we take a further step towards a more bi-

ologically plausible SOD model equipped with high-level

prior of fixation map. The human attention prior, rep-

resented by eye movements or from a fixation prediction

model, is instinctive and more consistent with visual pro-

cessing of human visual system. The suggested model not

only generates high-quality object saliency maps, but also

pushes the boundary of SOD research by building a close

connection to human fixation prediction (FP). As shown in

Fig. 1, our model infers object saliency using the fixation

prior, where this prior acts as a selective mechanism to en-

hance the saliency representation for the purpose of accu-

rate object saliency inference. Our algorithm has bias on

the assumption that aligns with the core views of previous

studies [34, 4] that explored the relationship between eye

movements (implicit saliency) and explicit object saliency.

These studies confirmed a strong correlation between fix-

ations and salient objects. Further beyond treating FP and

SOD as two separate tasks that are learned in a branched
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network (as in [26]), these two tasks are more deeply inter-

connected in our model. The fixation map provides a high-

level signal, which is learned from upper layers of our neu-

ral network. It is then used for salient object detection in a

top-down manner. This process is straightforward and sim-

ilar to how humans process a scene sequentially (i.e., first

paying attention to important areas of a scene quickly, and

then taking more efforts for precise segmentation). Further,

leveraging the rich information from exiting large-scale eye

movement datasets can improve the robustness and gener-

alization ability of SOD models.

The proposed Attentive Saliency Network (ASNet) is

based on convolutional LSTM (convLSTM) [59], which has

convolutional structures in both the input-to-state and state-

to-state transitions. Further, beyond the fully connected

LSTM models, convLSTM encodes the spatial information

via convolution operations to facilitate pixel-wise saliency

labeling. The key advantage of LSTM is iterative removal

of irrelevant information and learning powerful represen-

tations through updating the memory cell. This allows the

ASNet to progressively optimize features for better saliency

estimation in a feed-forward strategy. By stacking multiple

convLSTMs, the ASNet is trainable for gradually rendering

object saliency from fixation map in a top-down manner.

Our contributions are manifold:

• We aim to infer salient objects (captured in lower net-

work layers) from the fixation map (encoded in higher lay-

ers) within a unified neural network. This goes one step

beyond previous deep learning based saliency models and

offers a deep insight into the confluence between fixation

prediction and salient object detection.

• We present the Attentive Saliency Network (ASNet)

which is a hierarchy of convLSTMs for step-wise inference

of object saliency. ConvLSTM has the advantage of the

improved flow of information with recurrent connections,

which results in more powerful saliency representation.

• We introduce novel loss functions for SOD, derived from

exiting SOD evaluation metrics, for capturing several qual-

ity factors. As we will show empirically, these new loss

functions lead to higher performance.

2. Related Work

In this section, we first briefly review the fixation pre-

diction (§ 2.1) and salient object detection literature (§ 2.2).

Then, in § 2.3, we discuss studies exploring the relationship

between the above two tasks.

2.1. Fixation Prediction (FP)

Fixation Prediction (FP) aims to identify the fixation

points that human viewers would focus on at first glance.

It has a long history from [19] and is still active in vision

research. From the view of mechanism to obtain atten-

tion, early attention models can be classified into different

schools [5], such as cognitive model [19, 28, 40, 42, 41],

Bayesian model [63], decision theoretic model [12], infor-

mation theoretic model [7], graphical model [13], spectral

analysis model [16], pattern classification model [23], etc.

We refer the readers to [5] for more detailed overview.

More recently, many deep learning based attention

models have been proposed. The eDN model [46] repre-

sented an early architecture that automatically learns deep

representations for FP. After that, DeepFix [25], SALICON

net [18], Mr-CNN [36], Shallow and Deep [43], attentive

LSTM [11], DVA net [51], were successively proposed,

with the use of deeper networks and more complex architec-

tures. Jetley et al. [20] tested several loss functions based on

probability distance measures and found Bhattacharyya dis-

tance could give the best performance. Those deep learning

solutions generally achieved better performance, compared

with traditional non-deep learning techniques.

2.2. Salient Object Detection (SOD)

Salient object detection (SOD) aims at highlighting

salient object regions in images. Different from FP that is

originated from cognition and psychology research commu-

nities, SOD is more a computer vision task that is driven by

object-level applications [56]. The history of SOD is rela-

tively more recent and dates back to the works of Liu et al.

[37] and Achanta et al. [1]. Due to lack of the knowledge

of image content, most non-deep learning SOD models

[10, 58, 60, 21, 67, 53, 55] are based on low-level features

and certain heuristic hypothesizes (such as contrast, back-

ground prior). Please see [4] for detailed overviews.

In more recent work, deep learning based SOD mod-

els have made substantial improvement. These methods

mainly utilize multi-scale and multi-level representations

[31, 64, 38], integrate both local estimation and global

search [47], explore global and local context information

[66], combine pixel- and segment-level features [32], de-

velop level set [17], or consider short connections with skip-

layer structures [15], based on neural network. Some other

methods try to integrate deep learning models with hand-

crafted features [30], study saliency prior [48], or exploit

various deep learning architectures [27, 35, 65, 49, 54].

2.3. The Relationship between FP and SOD

Although SOD has been extensively studied in computer

vision research, only few studies (e.g., [39, 4, 34]) have ex-

plored how humans explicitly choose salient objects. They

have quantitatively confirmed that object saliency judg-

ments agree with human fixations. According to the analy-

sis in [4], there exists a strong correlation between explicit

saliency judgments and free-viewing fixations, which can

be viewed as two proxies of visual attention. Li et al. [34]

have demonstrated that, unlike FP datasets, there exists a

heavy bias in many widely used SOD datasets. Most of the
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Figure 2. Typical network architectures used in previous FP or SOD models and our ASNet. (a) Single-stream network, (b) Multi-

stream network, and (c) Skip-layer network. (d) Branched network adopted in [26], where FP and SOD are achieved via two branches

sharing several bottom layers. (e) The adopted ASNet captures fixation map from upper layer, which is indicative of the inference of object

saliency from lower layers. Stack of convLSTMs are adopted for iteratively optimizing features, while preserving spatial information.

SOD datasets have only a few obvious objects in the scene.

Next, we discuss several representative deep models in

SOD or FP from the view of network architecture. This

would better situate our work with respect to previous works

and help to highlight our contributions. As shown in Fig. 2,

most deep learning models for FP or SOD only consider a

single task. Typical architectures include: (a) single-stream

network [25, 20, 43, 65, 17] (standard architecture), (b)

multi-stream network [18, 66, 31, 36] (training with multi-

scale inputs), and (c) skip-layer network [15, 32, 64, 38]

(concatenate multi-layer responses for final output). As

seen, previous deep learning based works often treated FP

and SOD as two unrelated tasks.

Instead of performing FP or SOD separately, we ex-

ploit the correlation between fixations and salient objects

via tightly coupling these two tasks in a unified deep learn-

ing architecture. There are only few methods consider FP

and SOD tasks together. In [9], fixation map from a pre-

trained FP model is used as an extra cue for guiding SOD,

while it didn’t emphasize learning both FP and SOD simul-

taneously. In [26], FP and SOD are achieved via two sep-

arate network branches, which only share weights in sev-

eral lower layers (Fig. 2 (d)). In our method, as illustrated

in Fig. 2 (e), fixation map (high-level knowledge captured

in top layers) is used for guiding accurate object saliency

detection in lower layers. Thus our approach goes beyond

above work by learning FP and SOD within a unified net-

work and in a top-down end-to-end manner.

3. Our Approach

Given an input image, the goal is to produce a pixel-wise

saliency map to highlight salient object regions. As demon-

strated in Fig. 3, the proposed ASNet first captures a global

and high-level understanding of a scene in its higher layers,

by learning to predict human fixations (§3.1). Then, it uses

a stack of convLSTMs to progressively infer object saliency

from the fixation map in a top-down and coarse-to-fine man-

ner (§3.2). The whole network is simultaneously trained to

predict fixation locations and to detect salient objects in an

end-to-end way (§3.3).

3.1. Fixation Predicting

At the bottom of ASNet resides a stack of convolutional

layers where the lower layers respond to primitive image

features such as edges, corners and shared common pat-

terns, and the higher layers extract semantic information

like objects or faces. The ASNet learns the FP as a high-

level task towards modeling human fixation locations with

the utilization of features from higher layers, and achieves

the SOD by optimizing the fixation prior with the features

from the lower layers.

The lower convolutional layers are borrowed from the

first five convolutional blocks of VGGNet [45] (13 convolu-

tional layers in total). We omit the last pooling layer (pool5)

for preserving more spatial information. For a training im-

age, with a typical resolution of 224 × 224 × 3, we com-

pute a convolutional layer by applying a 3×3 kernel with

sigmoid activation function, to the last convolutional fea-

ture map (14 × 14 × 512). The result is a probability map

P ∈ [0, 1]14×14 which is used as a fixation prior from global

and high-level image context. The model for the task of

FP is trained via minimizing the following Kullback-Leibler

Divergence (KL-Div) loss function:

LAtt(G,P ) =
1

14× 14

∑14×14

x
gx log(

gx
px

), (1)

where G denotes the resized ground-truth attention map

G ∈ [0, 1]14×14 and gx ∈ G, px ∈ P . The gray-scale fix-

ation map is obtained via filtering the binary fixation map

using a Gaussian filter with small variance. The KL-Div

measure, the minimization of which is equivalent to cross-

entropy minimization, is widely used in visual saliency pre-

diction [18, 51]. In the next section, we will leverage such

fixation map as the prior for producing object saliency.

3.2. Detecting Object Saliency with Fixation Prior

The fixation map P gives a coarse but informative prior

regarding visually salient regions. A number of previous

studies for pixel-labeling tasks such as semantic segmenta-

tion [44], and salient object detection [35, 48], have shown

that neural networks are capable of producing fine-gained
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Figure 3. Architecture of the proposed ASNet. The fixation map

is learned from the upper layers and is used by the ASNet to locate

the salient objects. Then, the fine-grained object saliency is grad-

ually inferred from lower layers and is successively optimized via

the recurrent architecture of convLSTM. Zoom-in for details.

labeling results via incorporating high-level information en-

coded in upper network layers. Here, we desire our model

to be able to infer precise object saliency from the fixation

map predicted in the upper network layers.

The network is trained for detecting and successively re-

fining the salient object via aggregating information from

high-level fixation map and the spatially rich information

from low-level network features. As shown in Fig. 3, the

SOD is computed in a top-down fashion, successively in-

tegrating information from earlier layers. Multiple convL-

STM networks [59] (the yellow blocks in Fig. 3) are stacked

for building more meaningful feature representations with

recurrent connections. We leverage the sequential nature

of LSTM to process features in an iterative way. For a

certain layer, convLSTM discards less informative features

while enhances informative features, thus generating grad-

ually improved saliency maps.

ConvLSTM extends traditional fully connected LSTM

[14] to consume spatial features. Basically, this is achieved

by substituting dot products with convolutional operations

in the LSTM equations. ConvLSTM has convolutional

structures in both the input-to-state and state-to-state transi-

tions, which can preserve the spatial information of convo-

lutional feature map, thus enabling our network to produce

a pixel-wise labeling.

A schematic diagram of convLSTM is presented in Fig.

4. Similar to traditional gated LSTMs, the convLSTM uses

the memory cells and gates to control information flow.

It works by sequentially updating an internal state H and

memory cell C, according to the values of three sigmoid

gates i, f, c. At each step t, as a new input Xt arrives, its in-

formation will be accumulated to the cell if the input gate it
is activated. Also, the past cell status Ct−1 could be “forgot-

ten” in this process if the forget gate ft is on. Whether the

latest cell status Ct should be propagated to the final state Ht

is further controlled by the output gate ot. Formally, above

memory update process at step t is driven by the following

equations:

it= σ(WX

i ∗ Xt +WH

i ∗ Ht−1 + bi), (2)

ft= σ(WX

f ∗ Xt +WH

f ∗ Ht−1 + bf ), (3)

ot= σ(WX

o ∗ Xt +WH

o ∗ Ht−1 + bo), (4)

Ct= ft◦Ct−1+it◦tanh(W
X

c ∗Xt+WH

c ∗Ht−1+bc), (5)

Ht= ot ◦ tanh(Ct), (6)

where ‘∗’ denotes the convolution operator and ‘◦’ repre-

sents element-wise product. σ and tanh are the activa-

tion functions of logistic sigmoid and hyperbolic tangent.

The inputs Xt, cell memory Ct, hidden states Ht and gates

it, ft, ct are 3D tensors whose spatial dimensions are the

same. W s and bs are the learned weights and biases.

In our case, the convLSTM takes the features X ex-

tracted from the convolutional neural network (from the last

convolutional layers prior to pooling layers) as input, and

produces refined saliency features for final saliency estima-

tion. Since it operates on static images, the input features in

all steps are the same: X1 = . . . = Xt = X (see Fig. 4).

Here, we take the advantages of recurrent natures of LSTM

for iteratively optimizing the saliency features of static im-

ages, instead of using LSTM for modeling the temporal de-

pendency of sequential data.

With the learned fixation prior P ∈ [0, 1]14×14, we first

combine P with the convolutional features from conv5-3

and feed them into a convLSTM. In each time step, the con-

vLSTM is trained for inferring the salient object with the

knowledge of fixation information, and sequentially opti-

mizes the features with the updated memory cell and hidden

states (see Fig. 4 (b)). Thus, the features are reorganized

towards better representation of object saliency. More spe-

cially, we first compress the feature responses from conv5-3

layer via a convolutional layer with 64 filters to lower com-

putational costs and adopt sigmoid activation for regulariz-

ing the response from features to lie within the same range

([0, 1]) of P . Then, the attention prior map P is concate-

nated with the compressed features and fed into the con-

vLSTM. We apply a 1×1 convolution kernel to the final

convLSTM output H for obtaining an object saliency map

Q ∈ [0, 1]14×14.

Several different metrics have been proposed for evaluat-

ing saliency models and no single metric can fully summa-

rize the performance of a model. This motivates us to com-

bine the classical weighted cross-entropy loss function with
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(a) (b)

Figure 4. Illustration of our convLSTM based object saliency optimization, where (b) shows detailed architecture of our convLSTM

optimization module in (a). Zoom-in for details.

precision, recall, F-measure, and MAE metrics for more ef-

ficient training. Given the ground-truth salient object an-

notation S (here S ∈ {0, 1}14×14 for conv5-3 layer), the

overall loss function is defined as:

LSal(S,Q) = LC(S,Q)+α1LP (S,Q)+α2LR(S,Q)

+α3LF (S,Q)+α4LMAE(S,Q),
(7)

where αs are balance parameters and are empirically set as

α1 = α2 = α3 = α4 = 0.1. LC is the weighted cross-

entropy loss function, which is widely adopted for training

SOD models and opted as the primary loss in our case:

LC(S,Q) =
1

N

∑

x

(

γ · (1− sx) · log(1− qx)

+ (1− γ) · sx · log qx
)

,
(8)

where N is the total number of pixels and sk ∈ S, qk ∈
Q. γ refers to the ratio of salient pixels in ground truth S.

Weighted cross-entropy loss handles the imbalance between

number of salient and non-salient pixels.

LP , LR and LF are computed similar to precision, recall

and F-measure scores:

LP (S,Q) = −
∑

x
sx · qx

/

(
∑

x
qk + ǫ), (9)

LR(S,Q) = −
∑

x
sx · qx

/

(
∑

x
sk + ǫ), (10)

LF (S,Q) = −
(1 + β2) · LP (S,Q) · LR(S,Q)

β2 · LP (S,Q) + LR(S,Q) + ǫ
. (11)

where β2 = 0.3 as suggested by [1], and ǫ is a regular-

ization constant. Since precision, recall and F-measure are

similarity metrics and higher values are better, negative val-

ues are used for minimizing.

LMAE is derived from the mean absolute error (MAE)

measure that computes the discrepancy between the

saliency map Q and the ground-truth map S:

LMAE(S,Q) =
1

N

∑

x
|sx − qx|. (12)

After obtaining the object saliency map Q ∈ [0, 1]14×14

inferred from the fixation map P , we upsample (×2) Q
and feed it to the next convLSTM with the compressed

features (28×28×64) from conv4-3 layer for more de-

tailed refinement. Above process is iteratively applied for

conv4-3, conv3-3, conv2-2 and conv1-2 layers, respectively.

Finally, the ASNet outputs a high-quality object saliency

mask (224×224×1). In sum, the ASNet is able to effec-

tively infer the object saliency thanks to 1) a learnable fixa-

tion prior, 2) iteratively updating saliency features with re-

current architecture and 3) efficiently merging spatially rich

information from lower layers in a top-down manner.

3.3. Implementation Details

Overall loss: Let I = {Ik, k = 1, . . . ,K} denote all the

training images (resized into 224× 224) borrowed from ex-

iting SOD or FP datasets. Since there are only few datasets

that offer annotations for both SOD and FP tasks, most of

the training images are either labeled with human fixation

annotation or object saliency mask. Let yAk ∈ {0, 1} and

ySk ∈ {0, 1} indicate whether we have the attention anno-

tation Gk and object saliency mask Sk for the k-th training

image. Our final loss function can be expressed as:

L=
K
∑

k=1

yAk ·LAtt(Gk, Pk)+
K
∑

k=1

ySk ·
5

∑

ℓ=1

LSal(S
ℓ
k, Q

ℓ
k), (13)

where the loss functions LAtt and LSal are defined in Eqn.

1 and Eqn. 7, respectively. The indicators yAk and ySk are

employed to remedy missing ground truth in correspond-

ing tasks. That is the error is not propagated back when

the annotations are not offered. The ℓ ∈ {1, . . . , 5} refers

to the ℓ-th convLSTM with conv-ℓ block in ASNet. With

the hierarchical loss functions, each layer in ASNet has di-

rect access to the gradients from the loss function leading

to an implicit deep supervision [29]. We set the time steps

to three in our convLSTM and employ 3 × 3 kernels for

convolution operations.
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Dataset #Images
Annotation

Resolution
FP SOD

Training

SALICON [22] 15,000 X 640× 480
THUS10K [10] 10,000 X max(w, h) = 400

DUT-OMRON [61] 5,168 X X max(w, h) = 400

Testing

PASCAL-S[34] 850 X X max(w, h) = 500
MIT1003[23] 1,004 X max(w, h) = 1024

ECCSD[60] 1,000 X max(w, h) = 400
HKU-IS[31] 4,447 X max(w, h) = 400

Table 1. Datasets used for training and testing the ASNet.

Training datasets: Another advantage of ASNet is that it

can use data from both SOD and FP benchmarks. We con-

sider three large-scale saliency datasets: SALICON [22],

THUS10K [10], and DUT-OMRON [61]. The SALICON

dataset is widely used in the domain of FP, while the

THUS10K dataset is commonly used for SOD. These two

datasets have annotations for fixations and salient objects,

respectively. We further utilize the DUT-OMRON dataset

which offers annotations for both FP and SOD. Detailed de-

scriptions of employed datasets can be found in Table 1.

Training settings: In each training iteration, we use a min-

batch of 10 images, which are sampled from above three

datasets and ensure data balance between SOD and FP. Data

augmentation techniques (e.g., flipping, rotation) are also

adopted. Our model is implemented in Python on Keras,

and trained with the Adam optimizer [24]. During the train-

ing phase, the learning rate is set to 0.0001 and is decreased

by a factor of 10 every two epochs. The networks were

trained for 12 epochs with early stopping strategy.

Computation load: ASNet is simultaneously trained for

FP and SOD tasks in an end-to-end manner. The entire

training procedure takes about 10 hours with a NVIDIA TI-

TAN X GPU and a 4.0GHz Intel processor. It takes about

0.08s to process an image of 224× 224 size, which is faster

than most deep learning based competitors.

4. Experimental results

In this section, we first examine the performance of AS-

Net for the FP task. The goal of this experiment is to in-

vestigate the effectiveness of the learned fixation map prior,

instead of comparing it with the state-of-the-art FP models.

Then we evaluate the performance of the ASNet for the pri-

mary SOD task. Finally, an ablation study is performed to

gain a deeper insight into the proposed ASNet.

Testing datasets: Four datasets including PASCAL-S [34],

MIT1003 [23], ECCSD [60] and HKU-IS [31] are used for

testing our model. PASCAL-S offers both annotations for

FP and SOD, MIT1003 is a representative benchmark for

FP, and ECCSD and HKU-IS are two typical datasets which

are widely used for SOD. We report the evaluation results

for both tasks over the PASCAL-S dataset. More details of

above datasets can be found in Table 1.

Evaluation metrics: For the FP task, there are several ways

Methods AUC-Judd ↑ SIM ↑ shuffled AUC ↑ CC ↑ NSS ↑

Mr-CNN [36] 0.80 0.35 0.73 0.38 1.36

SALICON [18] 0.85 0.42 0.74 0.53 1.86

Shallow-Net [43] - - 0.68 - 1.60

Deep-Net [43] 0.86 0.40 0.73 0.51 1.73

SU [26] - - 0.73 - 2.08

eDN [46] 0.85 0.30 0.66 0.41 1.29

BMS [62] 0.79 0.33 0.69 0.36 1.25

AIM [8] 0.79 0.27 0.68 0.26 0.82

GBVS [13] 0.83 0.36 0.66 0.42 1.38

ITTI [19] 0.77 0.32 0.66 0.33 1.10

ASNet-14×14 0.87 0.49 0.73 0.60 2.01

ASNet-28×28 0.88 0.52 0.75 0.65 2.30

- The authors in [26, 43] have not released detailed results.

Table 2. Quantitative comparison of different FP models on the

MIT1003 [23] dataset.

Methods AUC-Judd ↑ SIM ↑ shuffled AUC ↑ CC ↑ NSS ↑

Mr-CNN [36] 0.79 0.34 0.71 0.40 1.35

SALICON [18] 0.86 0.46 0.72 0.58 1.88

Shallow-Net [43] - - 0.69 - 1.90

Deep-Net [43] 0.87 0.42 0.71 0.55 1.74

SU [26] - - 0.73 - 2.22

eDN [46] - - 0.65 - 1.42

BMS [62] - - 0.67 - 1.28

AIM [8] 0.77 0.30 0.65 0.32 0.97

GBVS [13] 0.84 0.36 0.65 0.45 1.36

ITTI [19] 0.82 0.36 0.64 0.42 1.30

ASNet-14×14 0.90 0.55 0.74 0.70 2.26

ASNet-28×28 0.90 0.59 0.74 0.73 2.43

- The authors in [43, 26, 46, 62] have not released detailed results.

Table 3. Quantitative comparison of different FP models on the

PASCAL-S [23] dataset.

to measure the agreement between model predictions and

human eye movements. Here, we employ five typical met-

rics, namely Normalized Scanpath Saliency (NSS), Simi-

larity Metric (SIM), Linear Correlation Coefficient (CC),

AUC-Judd, and shuffled AUC. Please refer to [5, 51] for

detailed descriptions of these metrics. For the SOD task,

three standard metrics, namely PR-curve, F-measure, and

MAE, are employed for evaluation. See [55] for details.

4.1. Performance of ASNet

Performance on FP task: We evaluated the fixation prior

map generated by ASNet compared to 10 state-of-the-art

fixation models, including 4 classical models: ITTI [19],

GBVS [13], AIM [8], BMS [62], and 6 deep learning based

models: eDN [46], SALICON [18], SU [26], Mr-CNN [36],

Shallow-Net [43] and Deep-Net[43]. Results are reported

over PASCAL-S [34] and MIT1003 [23] datasets.

Our ASNet is able to generate a fixation prediction map

P from top layer, which is relatively rough, and much

smaller (only 14×14) compared to exiting fixation models.

For the sake of a fairer comparison and deeper insight into

the advantage of our ASNet, we further generate a larger

fixation map (28×28) via feeding P into an additional con-
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(a) ECCSD (b) HKU-IS (c) PASCAL-S

Figure 5. SOD results with PR-curve on three widely used benchmarks: ECCSD [60], HKU-IS [31] and PASCAL-S [34], where the

scores from non-deep learning models are indicated by dashed lines. Best viewed in color.

Figure 6. Qualitative results of ASNet. From top to bottom: example images, fixation maps, and object saliency results.

vLSTM with the features from conv4-3 layer. We therefore

derive two baselines: ASNet-14×14 and ASNet-28×28,

corresponding to the rough prediction and the refined at-

tention map with a more detailed spatial information.

As shown in Table 2 and Table 3, ASNet-14×14 per-

forms better than previous non-deep learning models and

is competitive with current top-performing deep learning

contenders. Considering our relatively simple network ar-

chitecture, and smaller output resolution (14×14), the sug-

gested ASNet is much favorable and effective. We at-

tribute this primarily to the extra generality and powerful

saliency representations learned from the SOD task. Ad-

ditionally, ASNet-28×28 produces further better results,

which demonstrates the proposed ASNet has potential of

obtaining better FP results with considering more detailed

spatial information.

Performance on SOD task: Here we evaluate the per-

formance of ASNet on its primary task: SOD. We per-

form quantitative study on 3 widely used datasets, namely

ECCSD [60], HKU-IS [31] and PASCAL-S [34]. We com-

pare ASNet against 14 recent deep learning based alterna-

tives: LEGS [47], MDF [31], DS [33], SU [26], DCL [32],

ELD [30], RFCN [48], DHS [35], HEDS [15], NLDF [38],

DLS [17], AMU [64], UCF [65], and SRM [49]. We also

Methods
ECCSD [60] HKU-IS [31] PASCAL-S [34]

F-score↑ MAE↓ F-score↑ MAE↓ F-score↑ MAE↓
HS [60] 0.730 0.223 0.710 0.215 0.636 0.259

DRFI [21] 0.787 0.166 0.783 0.143 0.692 0.196

wCtr [67] 0.672 0.178 0.694 0.138 0.611 0.193

MDF [31] 0.831 0.108 0.860* 0.129* 0.764 0.145

LEGS [47] 0.831 0.119 0.812 0.101 0.749 0.155

DS [33] 0.810 0.160 0.848 0.078 0.818 0.170

DCL [32] 0.898 0.071 0.907 0.048 0.822 0.108

ELD [30] 0.865 0.080 0.844 0.071 0.767 0.121

SU [26] 0.88 0.06 - - 0.77 0.10

RFCN [48] 0.898 0.097 0.895 0.079 0.827 0.118

DHS [35] 0.905 0.061 0.892 0.052 0.820 0.091

HEDS [15] 0.915 0.052 0.913 0.039 0.830 0.080

NLDF [38] 0.905 0.063 0.902 0.048 0.831 0.099

DLS [17] 0.825 0.090 0.806 0.072 0.719 0.136

AMU [64] 0.889 0.058 0.918 0.052 0.834 0.098

UCF [65] 0.868 0.068 0.905 0.062 0.771 0.116

SRM [49] 0.910 0.056 0.892 0.046 0.783 0.127

ASNet 0.928 0.043 0.920 0.035 0.857 0.072

- The authors in [26] have not released detailed results.
∗ MDF [31] is trained on a subset of HKU-IS, and evaluated on the

remaining images.

Table 4. The F-measure and MAE scores of SOD on three pop-

ular datasets. ASNet gains the best performance with the assis-

tance of visual attention prior. See text for details.
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Aspects Methods
ECCSD [60] HKU-IS [31] PASCAL-S [34]

F-score↑ MAE↓ F-score↑ MAE↓ F-score↑ MAE↓

ASNet
0.928 0.043 0.920 0.035 0.857 0.072

(conv1-output)

variants w/o fixation 0.913 0.051 0.915 0.040 0.831 0.083

w/o convLSTM 0.891 0.068 0.887 0.069 0.797 0.112

conv5-output 0.853 0.093 0.830 0.079 0.739 0.117

archi- conv4-output 0.875 0.076 0.844 0.058 0.749 0.092

tecture conv3-output 0.903 0.061 0.892 0.049 0.794 0.086

conv2-output 0.919 0.049 0.912 0.040 0.847 0.078

w/o LP 0.923 0.045 0.917 0.038 0.852 0.075

w/o LR 0.924 0.046 0.915 0.039 0.854 0.074

loss w/o LF 0.924 0.047 0.916 0.040 0.854 0.074

w/o LMAE 0.921 0.044 0.914 0.037 0.850 0.072

w/o extra loss 0.917 0.048 0.912 0.040 0.847 0.075

Table 5. Ablation study of ASNet. We change one component at

a time, to assess individual contributions. See § 4.2 for details.

consider 3 classical non-deep learning models: HS [60],

DRFI [21] and wCtr [67]. The results are obtained from

the authors or by running their public implementations with

original settings. The precision-recall curves of all methods

are plotted in Fig. 5. As can be seen, the ASNet outper-

forms other competitors2. We report maximum F-measure

and MAE scores in Table 4. Overall, the proposed method

achieves better performance over three datasets using all

evaluation metrics. Qualitative results over example images

from above datasets are depicted in Fig. 6; showing that

the proposed ASNet is well applicable to various complex

scenes.

4.2. Validation of the Proposed Algorithm

We now conduct a more detailed examination of our pro-

posed approach. We assess 1) contribution of the fixation

prior for the SOD task, 2) the effects of convLSTM archi-

tecture, 3) the influence of stacked convLSTMs structure,

and 4) the importance of the introduced loss functions.

1. Does fixation prior contribute to SOD? To answer this

question, we directly remove the fixation prediction layer

and the corresponding loss function LAtt in Eqn. 13. Then,

we retrain ASNet with SOD data and obtain a baseline:

w/o fixation. From Table 4, we find that fixation map is

indeed informative to SOD over all three datasets. The im-

provement is more pronounced on PASCAL-S [34] dataset,

which is collected from PASCAL challenge with more gen-

eral scenes and less center-bias. These results demonstrate

that a strong correlation exists between SOD and FP tasks,

and our ASNet achieves better performance with the guid-

ance from the fixation map. This also demonstrate that the

leverage of large-scale FP data could improve the general-

ization ability of ASNet.

2Here we do not include the results from SU [26], since the authors

have not released code or PR-curve results.

2. What is the effect of convLSTM? Here, we study the

contribution of the convLSTM architecture, which consti-

tutes a building block of our ASNet. To this end, we replace

the convLSTMs with 5 convolution layers, which have 3×3

kernels and inputs/outputs with original dimensions. Thus

we have a baseline: w/o convLSTM. Such network has sim-

ilar architecture with previous bottom-up/top-down deep

learning models [44, 35]. From Table 4, we observe a drop

in F-score and MAE scores over three datasets which im-

plies the effectiveness of the convLSTM.

3. Is the hierarchical architecture meaningful? We also

study the effect of our hierarchical architecture with a stack

of several convLSTMs and top-down saliency inference.

We test 4 baselines: conv5-output, conv4-output, conv3-

output, and conv2-output, which correspond to the outputs

from the intermediate layers of ASNet. Note that the fi-

nal prediction of ASNEt can be viewed as the output from

conv1 layer. We find that the saliency results are gradually

optimized by adding more details from lower layers.

4. Are the extra loss functions necessary? ASNet is

equipped with 4 extra loss functions: LP , LR, LF , LMAE ,

which are derived from four widely used SOD metrics.

For testing their effects, we retrain ASNet with different

loss functions separately and thus we have four baselines:

w/o LP , w/o LR, w/o LF , w/o LMAE . Another base-

line w/o extra loss indicates the results without consider-

ing all the extra loss functions. We show their F-measure

and MAE scores in Table 5. We observe that those loss

functions would boost the final performance with about 1%
improvement in F-score.

5. Conclusions

We proposed a deep learning network, ASNet, towards a

better interpretable and efficient SOD model, which lever-

ages fixation prediction for detecting salient objects. The

fixation map, as high-level knowledge of a scene, was

learned from upper layers of ASNet. Such prior was fur-

ther utilized for teaching the network where the salient ob-

ject is and the detailed object saliency was rendered step by

step by considering finer and finer features in a top-down

manner. ConvLSTM was equipped for iteratively dropping

useless features and enhancing the features for better repre-

sentation. A set of loss functions derived from SOD metrics

were introduced for boosting model predictions. Extensive

experimental results demonstrate that our approach outper-

forms state-of-the-art methods and confirm our view that

fixation map is valuable and indicative for SOD.

This paper points out two potential directions of follow-

ing works. The first one regards exploring the rationale

behind SOD from the fixation prediction viewpoint. The

second one is to seek better loss functions for boosting the

performance of deep learning based SOD models.
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