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Abstract

A surface principal curvature preserving local geom-

etry aware global shape representation for 3D shapes is

proposed. The shape representation computes the short-

est quasi-geodesic path between all possible pairs of points

on the shape manifold that enforces minimal variation of

geodesic curvature along the path. The normal component

of the principal curvature along the quasi-geodesic paths

is dominant and shown to preserve the local shape geom-

etry. The eigenspectrum of the proposed representation

is exploited to characterize self-symmetry. The commuta-

tive property between shape spectra is exploited to com-

pute region-based correspondence between isometric 3D

shapes without requiring an initial correspondence map to

be specified a priori. The results of the region-based cor-

respondence are extended to characterize the compatibil-

ity of the commutative eigen-spectrum in order to address

the problem of shape deformation transfer. Eigenspectrum-

based characterization metrics are proposed to quantify

the performance of the proposed 3D shape descriptor for

self-symmetry detection and correspondence determination.

The proposed shape descriptor spectrum-based optimiza-

tion criterion is observed to yield competitive performance

compared to relevant state-of-the-art correspondence deter-

mination techniques.

Keywords: 3D shape representation, eigenspectrum de-

composition, spectrum commutativity, shape correspon-

dence, shape symmetry.

1. Introduction

In Computer Graphics, the study of surface geometry-

aware global 3D shape descriptors is critical to enable var-

ious 3D shape analysis applications. A desirable quality

of a 3D shape descriptor is its ability to discriminate be-

tween local regions of a 3D shape, an essential requirement

for applications that entail determination of point-wise cor-

respondence between 3D shapes. Ideally, a 3D shape de-

scriptor should demonstrate robustness to local topologi-

cal noise while effectively capturing the underlying stable

shape features that are essential for correspondence deter-

mination between 3D shapes. Based on the modality of

the underlying shape data (i.e., geometric, topological, etc.)

and objective(s) of the application, 3D shape analysis ap-

plications can be broadly categorized as purely geomet-

ric, semantic or knowledge-driven [1]. Several 3D shape

analysis applications drawn from the aforementioned cate-

gories typically entail solving a fundamental problem, i.e.,

one of determining accurate correspondence between the

3D shapes under consideration. Examples of these appli-

cations include rigid and non-rigid shape registration [2, 3],

shape morphing [4], self-symmetry detection [5], shape de-

formation transfer [6], 3D surface reconstruction [7], and

shape-based object recognition and retrieval [8] among oth-

ers. The success of these applications is critically dependent

on the shape descriptors used for 3D shape correspondence

determination. Several of these applications, however, are

also dependent upon prior specification of an initial shape

correspondence.

We propose a global 3D shape descriptor based on es-

timation of the approximate geodesic distance between all

point pairs on a triangulated mesh-based 3D shape mani-

fold. The 3D shape descriptor represents all the vertices

on the 3D shape manifold by their differential coordinates.

This allows the geodesics over a 3D shape manifold to be

defined as surface curves along which the normal compo-

nent of the principal curvature is dominant. This property

of the geodesics is used to encode the local surface ge-

ometry along the curve. The proposed 3D shape descrip-

tor is shown to effectively address the computation of 3D

self-symmetry within a shape. The eigenspectrum of the

3D shape descriptor is exploited to address a very impor-

tant problem, i.e., correspondence determination between

isometric 3D shapes (i.e., 3D shapes that are related via

an isometric transformation) without requiring any prior

knowledge about the underlying shapes. Furthermore, the
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compatibility of the shape descriptor eigenspectra is for-

mally characterized to generate continuous deformations of

a given shape to enable applications such as 3D shape de-

formation transfer.

On a triangulated 3D surface mesh, the discrete approx-

imation to a geodesic is characterized by an optimal bal-

ance of angular distributions over the surface on the either

side of the geodesic. These angular distributions are com-

puted in a local neighborhood of each mesh point on the

geodesic as depicted in Figure 2 (b) and (c). The balance

of the local angular distribution is observed to encode the

local geometry of the triangulated mesh along the discrete

geodesic. The approximation to a geodesic computed over

a discrete 3D triangulated mesh is referred to as a quasi-

geodesic [9]. The proposed shape descriptor represents the

global 3D shape by computing the quasi-geodesic path be-

tween all point pairs on the discrete 3D triangulated surface

mesh, along which the normal component of the principal

curvature is dominant.

We use the eigenspectrum of the global quasi-geodesic-

based shape descriptor that encodes that local shape geom-

etry to characterize self-symmetry within a shape and to es-

tablish correspondence between isometric deformations of

a shape without resorting to any a priori knowledge of the

correspondence maps. The all-point-pairs geodesic matrix

representation of 3D shapes displays a symmetrical pattern

as shown in Figure 1. We employ the eigenspectrum of the

symmetrical pattern to detect self-symmetry within a shape.

To determine the correspondence between isometric shapes,

we exploit the commutative property of the eigenvectors

corresponding to the shape descriptor eigenspectrum [10].

The commutative property is shown to demonstrate the ap-

proximate orthogonality between different isometric defor-

mations of a discrete triangulated mesh-based 3D shape.

Approximate orthogonality refers to the fact that for two

distinct eigenvectors φi and ψj chosen from separate shape

descriptor eigenspectra, |〈φi, ψj〉| < ǫ where 〈·, ·〉 denotes

the scalar inner product of the vector arguments and ǫ ≈ 0.

It should be noted that the eigenspectrum of the pro-

posed descriptor is distinct from the well known Laplace-

Beltrami eigenspectrum that has been used extensively in

several 3D shape analysis and shape synthesis applications.

In our case, we exploit the commutative property of the

shape descriptor eigenspectrum to establish the correspon-

dence between isometric 3D shapes. It should also be em-

phasized that, unlike many related approaches [11, 12], the

optimization criterion proposed to establish correspondence

between isometric 3D shapes does not exploit nor require

user-specified initial correspondence maps between the 3D

shapes. Furthermore, we extend the correspondence maps

detected between isometric shapes to the other isometric

deformations of the baseline shapes, with an objective to

characterize the compatibility of the correspondence maps

to generate smooth deformations of the baseline shapes to

enable 3D shape deformation transfer. To the best of our

knowledge, the problem of correspondence determination

in the absence of prior knowledge of any point-wise map-

ping between the shapes had not been studied extensively in

the research literature.

The remainder of the paper is organized as follows.

In Section 2, we present a brief survey of the most rele-

vant works on 3D shape description with an emphasis on

the commutative property of isometric shape eigenspec-

tra employed in the proposed correspondence determina-

tion scheme. Section 3 describes the specific contributions

of our work. The mathematical formulation of the pro-

posed shape descriptor and the associated applications are

detailed in Section 4. In Section 5, we present experimen-

tal results for 3D self-symmetry detection and characteriza-

tion, 3D correspondence determination between isometric

shapes, and the analysis of compatibility of the commuta-

tive eigenspectra used to generate a continuous deformation

of a given shape. We conclude in Section 6 with an outline

for future work.

2. Background and Related Work

The proposed global shape descriptor is based on the

computation of quasi-geodesics between all pairs of points

over the discrete triangulated 3D surface mesh where each

mesh vertex is represented by its neighborhood-based sur-

face differential. The proposed shape descriptor effectively

encodes the local geometry at discrete points over the sur-

face mesh. The eigenspectrum of the descriptor is exploited

to address shape self-symmetry, correspondence determi-

nation between isometric shapes and the formulation of a

metric to characterize generation of smooth deformations

of a baseline shape. In this section, we first present a brief

survey of some relevant local and global shape descriptors,

spectrum-based shape correspondence models and defor-

mation transfer models [1, 13]. We also discuss the princi-

ple underlying the commutative property between isometric

shape eigenspectra and related work [11] that exploits this

principle to determine the correspondence between quasi-

isometric shapes.

2.1. Local shape descriptors

The different classes of local shape descriptors can be

categorized based on their approach towards the encod-

ing of the underlying local surface geometry. Ring-based

descriptors typically sample a local surface metric using

a parametrically controlled local neighborhood based on

blowing bubbles [14] or geodesic diameter [15]. Some

ring-based descriptors use the local surface normal vectors

as surface features computed at discrete points on the sur-

face mesh [16, 17, 18], relative to a superimposed frame

of reference over the mesh [19, 20, 21] or in combination
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Figure 1. Global representation of 3D shapes using quasi-geodesics computed over a discrete triangulated 3D surface mesh. The 3D shape

models shown are (a) Victoria (b) Cat (c) Dog (d) David and (e) Wolf. The all-point-pairs quasi-geodesic matrix representation of the 3D

shapes is observed to be approximately symmetric and the resulting eigenspectrum is observed to preserve self-symmetry over the discrete

triangulated 3D mesh-based representation of the 3D shapes.

with local surface curvature [16, 22]. Expanding descrip-

tors fit a hypothesis-based parametric model based on fea-

tures such as geodesic distance [14, 23], volume or surface

area [24, 25] to characterize a surface region. Some vari-

ants of this descriptor use mesh smoothing [26] or mesh

saliency [27] applied over the surface mesh. Iterative

operator-based descriptors capture the geometric changes

within a shape by manipulating the entire mesh surface by

employing strategies such as smoothing [26], estimation of

local diffusion geometry [28] over the mesh surface, or dif-

fusion based variation [29] within the surface mesh.

2.2. Global shape representation

A global shape representation based upon local surface

features is important to effectively characterize the global

shape and determine the correspondence between shapes,

a fundamental problem in many computer vision and com-

puter graphics applications. Surface descriptors based on

the eigenspectrum of the Laplace-Beltrami operator have

gained recent popularity in the context of the correspon-

dence problem. Some well known surface descriptors from

this class employ a Laplace-Beltrami operator-guided dif-

fusion process that samples a surface metric based on mesh

connectivity along the geodesic curves on the 3D surface

mesh [29] and diffusion geometry [28] to measure the point-

to-point length along a specific path on the surface mesh.

Surface descriptors based on the heat kernel signature

(HKS) [30, 31, 32] employ the heat diffusion model in con-

junction with the eigenspectrum of the Laplace-Beltrami

operator to characterize the global shape. The wave kernel

signature (WKS) [33] employs the principles of quantum

mechanics, instead of heat diffusion, in conjunction with

the Laplace-Beltrami eigenspectrum to characterize the 3D

shape. Smeets et al. [34] present a geodesic distance-based

global shape representation that demonstrates robustness to

nearly isometric deformations.

2.3. Deformation transfer models

Deformation transfer between shapes [35, 36] is an

important application in computer graphics that employs

global shape descriptors. The principles of deformation

transfer have been employed in many applications such as

machine learning-based human motion modeling [37] and

sensor-based surface reconstruction [38] to name a few.

However, to the best of our knowledge, modeling large-

scale deformations using spectral techniques without em-

ploying any prior knowledge of correspondence between

the shapes has not been explored in detail. In this paper, we

propose a metric for characterization of commutative eigen-

spectra that can quantify the compatibility of the spectra in

order to generate smooth deformations of a baseline shape

to enable shape deformation transfer.

2.4. Commutative eigenspectrum for correspon­
dence between shapes

Point- or region-based correspondence determination be-

tween isometric shapes can be addressed by exploiting the

commutative property of the shape descriptor eigenspec-

trum. In this section we briefly describe the principle un-

derlying the commutative eigenspectra between isometric

shapes [10].

2.4.1 Commutative eigenspectrum

Formally, the commutative property implies that given two

unitary (i.e., orthogonal) operators ΦX and ΦY defined over

an isometric pair of shapes X and Y , one can determine

a joint diagonalizer Ψ that diagonalizes both ΨTΦXΨ and

ΨTΦY Ψ [10]. The joint diagonalizer Ψ represents the com-

mon eigenbases between the isometric shape eigenspectra

ΦX and ΦY . Shapes represented as discrete triangulated
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meshes need not be exactly isometric to each other due

to discretization error. Therefore, in the discrete case, the

corresponding shape eigenspectra would be approximately

commutative. In this paper, the term ”approximately com-

mutative” is used in the following sense: The eigenspectra

ΦX and ΦY of the triangulated shapesX and Y are approx-

imately commutative if ||ΦXΦY − ΦY ΦX ||F ≈ 0 where

||Λ||F represents the Frobenius norm of matrix Λ.

A detailed treatment of the common eigenbases for ap-

proximately commutative spectral operators can be found

in [10, 39]. Some recent works [11, 40] employ the commu-

tative principle to formulate a least-squares joint optimiza-

tion criterion, to extract a common spectral bases that can

address correspondence determination between isometric

shapes. These applications, however, use prior knowledge

of the correspondence to regularize the joint optimization

criterion and employ the cotangent discretization scheme

for the mesh-based Laplacian [41] to represent the shape

operators.

In this paper, we employ the principle of common eigen-

bases between commutative eigenspectra corresponding to

isometric shapes to determine region-wise correspondence.

However, in contrast to existing works such as [11], the pro-

posed method employs a novel optimization criterion that

does not use any prior knowledge of the correspondence

between the shapes under consideration. We elaborate upon

the optimization scheme for correspondence determination

in Section 4.2.

3. Contributions of the Paper

(1) Self-symmetry characterization: We address the prob-

lem of self-symmetry detection and characterization by ex-

ploiting the eigenspectrum of the proposed global shape de-

scriptor.

(2) Correspondence determination: We determine region-

wise correspondence between isometric 3D shapes without

requiring the user to specify a priori an initial point-wise

mapping between the two 3D shapes.

(3) Isometry deformation characterization: We exploit the

results of the region-wise correspondence to formally char-

acterize the extent of isometry deformation between the 3D

shapes.

(4) Compatibility characterization for smooth deformation

generation: We extend the commutative property of the

eigenfunctions between baseline shapes to characterize the

compatibility of the commutative eigenspectrum in order to

address generation of smooth deformations of the baseline

shapes.

4. Proposed Shape Operator and Applications

The proposed shape representation for a discrete 3D

shape manifold X is denoted by the operator Dg(X),

that is computed by determining the quasi-geodesics be-

tween all vertex pairs on the discrete manifold X . For the

shape representation, we first transform each vertex by its

local neighborhood based surface differential so that the

ith vertex of shape manifold X is represented by δxi =
xi −

1
N

∑

yj∈N(xi)
yj i.e. the differential coordinate where

N(xi) is the neighborhood of size N for vertex xi and

each yj ∈ N(xi) is a neighboring vertex of xi. Subse-

quently, a C2 function f : R3 → R [42, 43] is associated

with each vertex xi, (1 ≤ i ≤ n) of shape X comprising

of n vertices. Consequently, a discrete, triangulated, 3D

shape manifold X is represented by the vertices such that

X = {f(δx1), f(δx2), ..., f(δxn)} where δxi denotes the

surface differential coordinates for the ith vertex of X . The

differential transformation ensures that each vertex location

also defines the normal to the surface at the vertex as shown

in Figure 2 (a). Along a geodesic over a continuous mani-

fold, only the normal component of the principle curvature

is dominant compared to it’s tangential component. The

quasi-geodesic computed for a discrete path xi  xj mini-

mizes the geodesic distance measure d(f(δxi), f(δxj)) be-

tween vertices xi and xj ofX . It should be emphasized that

since each vertex xi is represented by the surface differen-

tial coordinates the distance d(f(δxi), f(δxj)) represents

a path xi  xj that goes through a geometrically “flat”

region over the surface with minimal variation in local ge-

ometry between neighboring points on the path. The pro-

posed shape representation Dg(X) records all such quasi-

geodesic distances, computed between all vertex-pairs over

the surface mesh X . The matrix representation of Dg(X)
reveals an implicit symmetrical form, as is evident for the

example 3D shapes shown in Figure 1.

For discrete meshes, the computation of geodesics is

possible using the stable schemes proposed by Martı́nez et.

al. [9]. The local geometry along a quasi-geodesic over

a discrete mesh is preserved as follows. Figure 2 (b) and

(c) depicts two scenarios where a probable quasi-geodesic

(marked in red) crosses a point P within a neighborhood of

triangular mesh facets. In either case, one can measure the

discrete geodesic curvature at a point P as follows:

κg(P ) =
2π

θ
(
θ

2
− θr) (1)

In eqn. (1), θ denotes the sum of all angles formed by the

neighborhood of point P . In both the cases, as depicted

in Figure 2 (b) and (c), the quasi-geodesics generate an-

gular distributions θl and θr such that θl =
∑

i βi and

θr =
∑

i αi. Since the normal curvature is dominant along

the quasi-geodesics, we can compute an optimum balance

between θl and θr that minimizes the discrete geodesic cur-

vature κg , which is the tangential component of the cur-

vature along the quasi-geodesic. This optimal balance be-

tween angular distributions along a quasi-geodesic encodes

519



the local angular distribution and hence, the local geometry

at surface point P .

To test the robustness of the proposed correspondence

scheme we experimented with coarse triangulated meshes.

Therefore, to ensure the accurate computation of surface

normals at each point of a coarse mesh we considered an

additional error correcting scheme explained with an ex-

ample in Figure 2 (d). Figure 2 (d) depicts a vertex p on

the shape manifold with a neighborhood consisting of three

vertices q, r and s. As a result, vertex p is shared between

three planes defined by disksD1, D2 andD3 with their cor-

responding normals N̄1, N̄2 and N̄3, respectively. Normals

N̄1, N̄2 and N̄3 can be computed from the vertices p, q, r

and s. The accuracy of the computed normal direction at a

surface point may be severely affected due to the choice of

a coarse triangulated mesh. Therefore, the error correcting

scheme ensures that the resulting normal N̄R is constrained

to lie within the solid angle region shown in red in Figure 2

(d) that is bounded by normals N̄1, N̄2 and N̄3.

The spectral decomposition of the symmetric shape rep-

resentation Dg(X) results in the eigenspectrum ΦX for

shape X such that,

Dg(X)ΦX = ∆XΦX (2)

where ∆X = diag(γ1, γ2, ..., γn) denotes the diagonal

matrix of eigenvalues γi, 1 ≤ i ≤ n and ΦX =
{Φ1

X ,Φ
2
X , ...,Φ

n
X} denotes the eigenvectors Φi

X , 1 ≤ i ≤ n

of shape X with n surface vertices ordered by the corre-

sponding eigenvalues.

4.1. Self­symmetry characterization

We propose the following metric to characterize self-

symmetric regions within a shape X . Two regions

X1, X2 ⊂ X are possible symmetric regions within X if

for some upper bound ε:

∣

∣

∣

∣

∣

k0
∑

k=1

Φk
X(p)−

k0
∑

k=1

Φk
X(q)

∣

∣

∣

∣

∣

2

≤ ε ∀p ∈ X1, ∀q ∈ X2

(3)

where | · |2 denotes the L2 norm. Using spectral anal-

ysis one can find a tight bound on ε such that ε ≤
∑

p,q∈X1, r,s∈X2
|d(p, q)− d(r, s)|2 for a C2 distance met-

ric d [44]. This upper bound on ε is a measure of dissimilar-

ity between regionsX1 andX2 in terms of the geodesic dis-

tances computed between points within the regions. Since

the geodesic distances capture the local geometry over the

surface, this upper bound, therefore, captures the geomet-

ric dissimilarity between regions X1 and X2 as well. The

parameter ε, aggregated over the entire mesh, indicates the

variance of geodesic error computed over the entire shape

manifold X . Consequently, ε is a measure of the degree of

isometry deformation ofX vis-a-vis the baseline shape. We

report the bounds on ε computed for different meshes in the

Experimental Results section (Section 5). Since the eigen-

vectors are ordered (in descending order of their eigenval-

ues) and lower-order eigenvectors (with larger eigenvalues)

are known to effectively capture global shape features, we

restrict ourselves to the lower-order eigenvectors such that

k0 ≤ 20 for characterizing self-symmetry. Furthermore,

the above characterization can also be used to jointly ana-

lyze the region-wise correspondence between two isometric

shapes (Section 4.2).

4.2. Correspondence determination between iso­
metric shapes

Determining the compatibility between the eigenbases

of isometric shape spectra plays a critical role in applica-

tions that entail analysis of multiple 3D shapes; in particu-

lar, correspondence determination between 3D shapes. In

related work, Ovsjanikov et al. [12] represent the corre-

spondence between two isometric shapes by a parametric

map between functional spaces corresponding to the shapes.

However, functional map-based methods typically rely on a

set of point-wise correspondence maps between shapes pro-

vided a priori for optimization of the correspondence crite-

rion [12, 45]. In contrast, the proposed approach does not

assume knowledge of any prior correspondence mapping

between the shapes under consideration.

For correspondence determination between two isomet-

ric shapesX and Y we exploit the fact that the eigendecom-

position of symmetric shape operators Dg(X) and Dg(Y )
leads to approximately commutative eigenspectra ΦX and

ΦY respectively. The characterization “approximately com-

mutative” is on account of the triangulated discretization of

the surface meshes describing the shapes and follows the

formal definition given in Section 2.4.

We couple ΦX and ΦY by the commutative terms

ΦT
X∆Y ΦY and ΦT

Y ∆XΦX to solve the following optimiza-

tion problem:

Φ̄X , Φ̄Y = argmin
φx,φy

{

|φTx∆Y φy|F + |φTy ∆Xφx|F
}

(4)

where φx ⊂ ΦX , φy ⊂ ΦY ; ∆X ,∆Y are diagonal ma-

trices of eigenvalues (eqn. (2)) corresponding to shapes X

and Y , respectively and | · |F denotes the Frobenius norm.

The optimization in eqn. (4) considers all pairs of subsets

of eigenvectors {1, . . . , k0} from the eigenspectra of shapes

X and Y . It should be noted that eqn. (4) does not require

that a priori correspondence maps be specified. The opti-

mized maps Φ̄X and Φ̄Y over shapes X and Y encode the

corresponding regions between them where corresponding

regions are denoted by the same color (generated using a

standard colormap library).

From the optimized maps Φ̄X and Φ̄Y , the relative corre-

spondence error between shapes X and Y is given by met-
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Figure 2. The proposed shape descriptor represents each vertex of the mesh by the discrete differential coordinates. (a) The resulting

coordinate axis aligns with the normal on the surface at the vertex. Vertices yj’s belong to the neighborhood ring N(xi) of vertex xi. (b)

and (c) depicts two possible crossings of a geodesic at a point P on the surface. The balance between left and right angular distributions

θl =
∑

i
βi and θr =

∑
i
αi generated by a geodesic at point P on the surface mesh encode the local geometry of the discrete surface

mesh at P . For coarse meshes, an additional scheme depicted in (d) is considered to ensure the accuracy of the surface normal computation.

This scheme ensures that the resultant normal N̄R is constrained to lie within the region in red defined by the disc normals N̄1, N̄2 and N̄3.

ric CX,Y =
∑k0

k=1 |Φ̄
k
X − Φ̄k

Y |2. To compute CX,Y we

consider the lower-order eigenvectors by setting k0 ≤ 20.

It is to be noted that CX,Y essentially represents the geo-

metric difference due to isometric transformations between

corresponding regions of shapes X and Y as captured by

the spectrum of the shape representations. Thus, CX,Y is

a measure of the degree of isometric deformation between

shapes X and Y .

4.3. Compatibility of the commutative spectrum for
deformation transfer

The proposed global shape descriptor is designed to en-

code the local surface geometry that can be used to estab-

lish correspondence between isometric deformations of a

shape following commutative optimization as explained in

Section 4.2. Based on this property of the descriptor, we

hypothesize that the commutative spectra can be success-

fully utilized to generate all continuous deformations of a

shape X from initial correspondence between two isomet-

ric deformations of X . The experimental setup for testing

the hypothesis is explained in Figure 3. The experiment

first computes the commutative eigenspectra Φ̄1, Φ̄2 of two

baseline isometric deformations S1 and S2 of a shape cate-

gory following the optimization in eqn. (4). The optimized

eigenspectra are then mapped on a set S, consisting of other

isometric deformations S3, S4, ... etc. of the baseline shape.

We propose the following metric that evaluates the cor-

respondence established by the commutative eigenspectra

Φ̄1, Φ̄2 between all shape pairs {Si, Sj} from set S:

D(S) =
1

|S|

∑

Si,Sj∈S
i 6=j

CSi,Sj
(5)

where |S| is the size of the set S andCSi,Sj
is the correspon-

dence error between shapes Si and Sj as described in Sec-

tion 4.2. This quantitative characterization D(S) (eqn. (5))

Figure 3. Characterization of compatibility of a commutative

eigenspectrum to address continuous deformation of baseline

shapes.

is suggestive of whether the commutative shape descriptor

spectrum of the baseline shapes can address correspondence

between baseline shapes and other isometric deformations

of the shape category. This characterization can be use-

ful to effectively address the problem of deformation trans-

fer [6, 35, 36].

5. Experimental Results

For our experiments we have chosen the TOSCA dataset

consisting of eleven non-rigid shape categories, i.e., Cat,

Dog, Wolf, two Human Males, Victoria, Gorilla, Horse,

Centaur, Lioness and Seahorse [46]. Within each shape

category, the individual shapes represent different transfor-

mations of the baseline shape such as isometry, isometry

coupled with topology change and different mesh triangula-

tions, among others, of the baseline shape. In this work, we

consider shapes that differ via an isometry transformation.
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Some examples of isometry transformations of shapes are

shown in Figure 4. Experimental results of each of the ap-

plications are formally described in Sections 5.1, 5.2 and 5.3

using visual validation of the results followed by the cor-

responding numerical evaluations. We have experimented

with coarse meshes that are reduced by more than 87% of

their original size or resolution. The results of the proposed

shape representation are compared with those from relevant

state-of-the-art shape representation schemes. The compat-

ibility of the commutative eigenspectra to address deforma-

tion transfer is visually validated in Section 5.3.

Figure 4. Examples of isometry transformation for the shape cate-

gories Human Male and Centaur from the TOSCA dataset.

5.1. 3D self symmetry detection

Figure 5 presents the self-symmetry maps obtained for

different shape categories using eqn. (3). The maps in

Figure 5 correspond to the second eigenvector Φ2
X ob-

tained from the spectral decomposition of the global op-

erator Dg(X) for each shape. Table 1 presents the self-

symmetry characterization measure, denoted by the upper

bound ε in eqn. (3), for each shape category. This character-

ization measure represents the deformation between sym-

metric regions within a shape that the characterization cri-

teria would be able to address as explained in Section 4.1.

5.2. 3D correspondence determination

Since the lower-order eigenvectors represent global

shape geometry more accurately, we consider the first 20

eigenvectors to compute the global region-based correspon-

dence between the isometric shapes. Figure 6 shows the

results of correspondence determination between the iso-

metric Human Male shapes obtained via the optimization

Figure 5. Self-symmetry detection for five different shape cate-

gories using the spectrum of the global representation Dg(X) for

the shape X . Each map corresponds to the second eigenvector Φ2

X

of the shape operator spectrum.

Table 1. Self-symmetry characterization measure for different

shape categories in the TOSCA dataset. The average degree of

isometry transformation within the category Seahorse is observed

to be at least 19% higher than the other categories.

Category ε Category ε

Lioness 0.0506 Dog 0.0486

Wolf 0.0485 Michael 0.0486

Seahorse 0.0603 Centaur 0.0485

Figure 6. Pairwise consistency between corresponding eigenmaps

on the isometric deformations of the Human Male shapes. For

correspondence estimation, the optimization criterion described in

eqn. (4) is used. Lower-order eigenvectors are considered for cor-

respondence estimation since they effectively capture the global

shape geometry. Maps across different order of eigen vectors on

the same shape also demonstrate high degree of consistency.

criterion described in eqn. (4). Except for a small region

at lower left leg, correspondence maps between the shapes

are shown to be consistent across eigenvectors of different

order. It is to be noted that the eigenmaps for a single shape

across different order of eigenvectors are very similar to

each other as well. In Figure 6, eigenvectors up to order

9 are shown to demonstrate this consistency both within a

shape and between shapes. This provides experimental val-

idation of the fact that the proposed descriptor spectrum ef-

fectively captures a global invariance within a shape that is

robust to isometric transformations.

Table 2. Comparison of average relative correspondence error

CX,Y between [47] and the proposed method for correspondence

determination between isometric shapes across different shape cat-

egories.

Category Average CX,Y for [47] Average CX,Y for

present approach

Victoria 0.069 0.045

Dog 0.0624 0.0474

Cat 0.06 0.0522

Michael 0.057 0.0363

Horse 0.0559 0.0179

Centaur 0.052 0.0261
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Figure 7. Experimental setup to characterize the effectiveness of

commutative eigenspectrum for generating smooth deformations

of a baseline shape. The results for Human models are shown.

The relative correspondence error for these maps can be

characterized by the measure CX,Y defined in Section 4.2.

Table 2 lists this measure for isometric shapes from different

shape categories. Lower CX,Y values denote a higher de-

gree of correspondence accuracy achieved via the optimiza-

tion described in eqn. (4). We compare our method with re-

cent work [47] where the shape representation is based upon

geodesics between mesh vertices described using a Carte-

sian coordinate system. The proposed method shows sig-

nificant improvement since the differential representation of

the shape vertices capture the local geometry and topology

variations more effectively. We emphasize here, that the

correspondence accuracy is achieved without requiring any

prior mapping between the shapes.

5.3. Deformation transfer compatibility character­
ization

Following the experimental setup described in Figure 3

we tested the compatibility of commutative eigenspectra to

address deformation transfer on various shape categories.

One such experiment on the Human model is described in

Figure 7. The experiment first computes the commutative

eigenspectra following the optimization in eqn. (4) on base-

line shapes S1 and S2 as shown in Figure 7. Subsequently,

the optimized eigenspectra are mapped over different iso-

metric deformations of shapes S1 and S2. The visual sim-

ilarity of the maps suggest that the optimized eigenspectra

can be effectively used to generate smooth deformations of

baseline shapes and thus can be effectively employed for

deformation transfer for the shape category [35].

The quantitative characterization of this compatibility

can be computed using eqn. (5). We observed that this

metric for different shape categories followed closely the

characterization metric depicted in Table 2 and was hence

not tabulated in this section to avoid redundancy. Table 3

compares the performance of the proposed representation

scheme with the performance of other state-of-the-art repre-

sentation schemes [47, 48, 49]. Methods [48, 49] were fur-

ther combined with the functional map technique [12] in or-

der to improve their correspondence accuracy via functional

map-based local refinement. The results of correspondence

for these combined approaches are also presented in Ta-

ble 3. The numerical values presented in Table 3 denote

the highest percentage correspondence accuracy achieved

by the various representation schemes along with the cor-

responding average geodesic error. The performance of

the proposed representation scheme is observed to com-

pare very well with the performance of the other state-of-

the-art representation schemes. These results underscore

the central hypothesis underlying the proposed shape rep-

resentation, namely that competitive performance in self-

symmetry detection and characterization, and correspon-

dence map determination between isometric 3D shapes can

be achieved by the proposed shape representation without

requiring prior knowledge of correspondence mapping be-

tween the shapes in contrast to other state-of-the-art corre-

spondence determination techniques [48, 49].

Table 3. Comparison between the proposed scheme and other

state-of-the-art schemes described in [47], [48] and [49]. Corre-

spondence results from methods [48], [49] combined with func-

tional maps [12] are also compared.

Methods Geodesic Error % Correspondence

[48] 0.11 ∼ 95

[12] and [48] 0.06 ∼ 95

[49] 0.25 ∼ 90

[12] and [49] 0.2 ∼ 90

[47] 0.15 ∼ 94

Proposed Scheme 0.27 ∼ 94.55

6. Conclusions and Future Work

In this paper we proposed a global shape representation

scheme using quasi-geodesics computed over the entire dis-

crete shape manifold where each vertex of the manifold is

represented by its neighborhood-based surface differential

coordinates. The spectral decomposition of this representa-

tion is used to identify self-symmetric regions of the shape.

By exploiting the commutative property of the eigenbases

of the proposed representation, we successfully computed

region-wise correspondence between isometric shapes and

compared the results to those from state-of-the-art corre-

spondence models. Furthermore, we investigated the effec-

tiveness of the commutative eigenspectra to address smooth

deformation transfer between 3D shapes. We also proposed

formal metrics for characterization of self-symmetry iden-

tification and correspondence determination.

A key contribution of this work is the fact that no prior

mappings between shapes was exploited for correspon-

dence and self-symmetry determination. As an extension

of the current scheme, we intend to apply the shape rep-

resentation model, combined with functional maps [12] to

address applications such as deformation transfer between

isometric shapes in absence of any prior knowledge, and

for correspondence determination between near-isometric

shapes [11].
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[35] B. Lévy, “Laplace-beltrami eigenfunctions towards an algo-

rithm that “ understands” geometry,” in Shape Modeling and

Applications, 2006. SMI 2006. IEEE International Confer-

ence on. IEEE, 2006, pp. 13–13. 3, 6, 8

[36] R. W. Sumner, M. Zwicker, C. Gotsman, and J. Popović,
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