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Abstract

A human pose often conveys not only the configuration

of the body parts, but also implicit predictive information

about the ensuing motion. This dynamic information can

benefit vision applications which lack explicit motion cues.

The human visual system can easily perceive the dynamic

information in still images. However, computational algo-

rithms to infer and utilize it in computer vision applica-

tions are limited. In this paper, we propose a probabilistic

framework to infer the dynamic information associated with

a human pose. The inference problem is posed as a non-

parametric density estimation problem on a non-Euclidean

manifold of linear dynamical models. Since direct modeling

is intractable, we develop a data driven approach, estimat-

ing the density for the test sample under consideration. Sta-

tistical inference on the estimated density provides us with

quantities of interest like the most probable future motion of

the human and the amount of motion information conveyed

by a pose. Our experiments demonstrate that the extracted

motion information benefits numerous applications in com-

puter vision. In particular, the predicted future motion is

useful for activity recognition, human trajectory synthesis,

and motion prediction.

1. Introduction

As traditional vision problems like people tracking [46]

and activity recognition [1] are based on video as input,

motion cues play an important part in these applications.

However, with the availability of personal photo collections,

images from web-sources, human activity in still images is

gaining importance. These image-based applications do not

have explicit motion cues, and are currently limited to using

just the appearance cues [34, 45]. This leads to an interest-

ing question: Can implicit motion cues be extracted from

still images of humans, and used to aid visual analysis?

Extensive studies in psychology have shown that infor-

mation present in the posture of the human body plays a

vital role in biological motion perception [4, 23]. Experi-

ments of Hirai and Hiraki [17] demonstrated that destroying

the body structure led to significant reduction in motion per-

ception in humans when compared to destroying the tempo-

ral structure of motion. Furthermore, humans can easily an-

ticipate the future motion of actors from their current body

configuration [22].

Dynamic information in human poses can aid computer

vision systems in multiple ways. Similar to biological sys-

tems, vision systems can utilize this information to effi-

ciently predict the future motion of human users. In robotic

applications like “assistance to manipulation”, robots often

assist humans or manipulate the same object as humans. In

such applications, accurate prediction of human motion can

improve robotic performance, as empirically verified by Jar-

rasse et al. [19]. Dynamic information in poses can also

improve activity recognition from still images and aid the

synthesis of realistic human motion. The latter is useful

in applications involving humanoid robots and animation.

Japanese Manga images in Figure 1 is a case in point, which

illustrates a technique from the arts, pioneered by Hokusai,

of conveying motion using physically unstable human con-

figurations [26]. This is in contrast to other approaches such

as showing motion via streak-lines, which are not intrinsic

to the depicted human.

Contributions: Motivated by the above discussion, we

develop a computational model to infer the “next move”

from still images. Our goal is to predict the future motion

of a human given a single pose and quantify the extent to

which it is constrained by a given pose. We emphasize that

the input to our algorithm is just a single image containing

a human, and the goal is to predict the motion of the hu-

man and the type of action performed. We demonstrate the

usefulness of the estimated dynamic information in a vari-

ety of vision applications like human motion prediction and

activity recognition.
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Figure 1. Database of 45 Hokusai Manga Images. The functional

Magnetic Resonance Imaging (fMRI) studies by Osaka et al. [26]

illustrated that the dancer images on the left in unstable poses acti-

vated the motion sensitive visual cortex in humans, indicating that

humans can perceive the implied motion in these images. How-

ever, the priest images on the right in stable poses elicited low

responses of implied motion in humans. We use this dataset to

experimentally validate the proposed computational model.

Organization of the paper: A brief review of related

work is presented in Section 2. The proposed framework for

extracting dynamic information in human pose is described

in Section 3. We empirically evaluate the proposed tech-

nique in Section 4 and present conclusions in Section 5.

2. Related Work

Recently, several algorithms for action recognition from

still images have been developed. Thurau and Hlavác [34]

recognized human actions by representing actions as a his-

togram of pose primitives, and using histogram matching

for recognition. Ikizler et al. [18] represented the human

pose using histogram of rectangular regions and used SVMs

for classification. [9] used oriented rectangular patches ex-

tracted from the human silhouette to represent the action,

followed by histogram matching for recognition. Human

pose in the query image was considered as a latent variable

in [44]. The latent SVM model was used for recognizing

activities in this work. However, these techniques are often

applicable only for simple actions, since complex activities

cannot always be captured by a single pose. Nevertheless,

even poses belonging to complex activities often provide

information about the local motion trajectory. For instance,

consider the pose π2 in Figure 2. While it is easy to infer

that the person is bending down, it is difficult to predict the

ensuing activity (for example sitting down or picking up a

ball). In this work, we focus on estimating this motion in-

formation associated with the human pose in still images.

Another line of research is motion estimation from still

images of natural scenes. Roth and Black [28] learned the

prior probability of motion fields from still images of natu-

ral scenes using an MRF model. Their experiments demon-

strated that the learned motion prior captures the rich spatial

structure found in natural scenes, and can also improve mo-

tion estimation accuracy in test videos. Liu et. al [25] pro-

posed SIFT flow, a method to densely align scene images by

matching densely sampled pixel-wise SIFT features, while

preserving continuity. Motion of pixels in query images

were then predicted by transferring SIFT flow from simi-

lar training images. Yuen and Torralba [47] estimated the

probability density of local motion trajectories in a non-

parametric manner at each pixel location, and used samples

from the density to estimate the motion trajectories in query

scene images. These methods capture only the local struc-

ture of the scene, and not the influence of the global scene

on the ensuing motion. Hence, they are not directly appli-

cable to human motion prediction, where future motion is

dependent on the entire human pose. On the other hand, we

directly model the relationship between the human pose and

the future motion of the human body in this work.

More recently, several works use deep learning to gen-

erate future video frames based on past frames. These in-

clude works by Vondrick et al. [39] which attempts to gen-

erate video frames using a CNN with a purely data-driven

approach. However this fares poorly due to the very large

space of predictions. Vondrick and Torralba [40] instead

propose to predict transformations that are applied to the

input frames, in order to generate the future frames. How-

ever, although superior to the previous work, the quality of

frames thus generated is still poor. Srivastava et al. [33]

showed that LSTMs can be effective for generating entire

future frames. For human actions, instead of generating fu-

ture frames directly, an intermediate step of predicting fu-

ture poses can be used to improve results considerably. This

was shown recently by Villegas et al. [37] and by Walker et

al. [41]. In this work, we propose to use relevant examples

from a large training set in order to predict human motion

from a single image. Similar approaches have been suc-

cessful in applications like image super-resolution [11] and

image inpainting [15]. Another recent paper that is similar

in spirit to our paper is that of Bansal et al. [3] which pro-

poses conditional image-synthesis using a two-step pipeline

– a CNN first generates an intermediate image which is then

refined based on nearest neighbors in the training dataset.

The refinement step produces more diverse images and in-

creases interpretability.

3. Dynamic inference from a human pose

Before developing a computational model, we first an-

alyze the physical evidence for the existence of dynamic

information in this section. Starting at a particular pose,

the future motion of the human body is constrained by nu-

merous factors. The mechanics of body joints prevent ar-

bitrary motion of the body. Laws of physics, like grav-

ity and momentum, also limit future movements of the hu-

man. Furthermore, every realistic pose is part of a human

activity with a well-defined objective. These constraints

on the future motion of the human body are responsible

for the dynamic information associated with a particular

pose. Furthermore, the set of possible future motions vary
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widely between different human poses.As the input feature,

we choose the simple HOG-based model [34], representing

the human pose using the HOG features extracted from the

bounding box. This avoids the need for training models for

pose estimation, can generalize to new poses and is robust to

errors in the estimated pose parameters. However, the core

framework will generalize to any other pose representation.

Given a human pose, there is a set of possible trajectories

(in the chosen pose-space) originating from it, and the ex-

act future motion is uncertain. To capture this uncertainty,

we develop a probabilistic framework, estimating the con-

ditional probability distribution of subsequent human mo-

tion given a pose. Once this distribution is obtained, one

can compute useful statistics such as its mode and entropy.

Given a single pose, the mode of the conditional distribu-

tion gives us the most probable temporal evolution of poses.

The entropy of this distribution measures the uncertainty in

these future sequences. The work of Kerzel [21] shows that

this uncertainty (unpredictability) provides a measure of the

amount of dynamic information perceived by humans in a

pose. The higher the predictability of motion from a pose,

the higher the dynamic information it conveys.

To develop a probabilistic model, we first need to de-

fine the space of predictions. Firstly, from a stable pose the

set of possible human motions that can follow is extremely

large. Further, even for predictable poses where the set of

future motions is potentially constrained, there is an equiv-

alence class of future motions differing only in the rate of

execution. Hence, we need a representation of motion that

is invariant to the rate of execution. Considering the above,

we first model human activities as a sequence of movements

called action segments, separated by “ballistic” boundaries

[38]. These movements are natural units of human actions,

typically comprising an initial acceleration of limbs towards

a target followed by deceleration to stop the movement. Fig-

ure 2 shows a simple illustration of the ballistic boundaries.

Here, the ballistic boundaries highlighted in red separate the

“picking up” action into two action segments, namely the

“bending down” action segment and the “getting up” ac-

tion segment. Vitaladevuni et al. [38] have developed com-

putational models to automatically extract ballistic motion

boundaries from videos. By viewing actions as separated

by ballistic motion boundaries, we can restrict the scope of

the motion prediction problem to predicting statistics over

future action segments, which are shorter in duration. Also,

since ballistic boundaries are robust to the rate of execution,

the estimated statistics are robust to rate as well.

We now introduce the notation and elements of our ap-

proach. Let πi represent the ith pose and Π = {πi, i =
1, . . .M} be the set of all possible human poses. Similarly,

let φi represent the ith action segment and Φ = {φi, i =
1 . . . N} be the set of all possible action segments. Any

action α is a temporally ordered sequence of action seg-

Figure 2. Illustration of ballistic boundaries for the “picking up”

action. The three ballistic boundaries π1, π4 and π7, highlighted

in red, divide the action α into two action segments φ1 and φ2.

ments
[

φα1 , . . . φαt(α)

]

, where each action segment φk is

itself a temporally ordered sequence of individual poses
[

πk1
, . . . πkt(k)

]

. This action α consists of two action seg-

ments [φ1, φ2]. Action segment φ1 is a temporally ordered

sequence of poses [π1, π2, π3, π4]. Similarly, segment φ2 is

a temporally ordered sequence of poses [π4, π5, π6].
Let P(φ|π) denote the conditional probability that a

given pose π occurred in an action segment φ . As discussed

earlier, the uncertainty in the temporal evolution of poses

starting from π is low, if it has high dynamic information.

In an information-theoretic framework, this uncertainty can

be measured by the entropy H(φ|π) of the conditional dis-

tribution of an action segment given a pose.

H(φ|π) = −

∫

φ∈Φ

P(φ|π) log(P(φ|π))dφ (1)

This motivates our measure, Degree of Dynamic Infor-

mation (DDI) of a pose, which can be computed as

DDI(π) = exp[−H(φ|π)] (2)

where the negative exponent captures the inverse relation-

ship between uncertainty in the temporal evolution of poses

starting from π and the amount of dynamic information in

π. Another piece of valuable information that can be imme-

diately obtained from P(φ|π) is the most probable action

segment φ̂ that contains the pose π.

φ̂(π) = argmax
φ∈Φ

P(φ|π) (3)

Similarly, given a start pose πs and an end pose πe, we

can obtain the most probable pose trajectory as

φ̂(πs, πe) = argmax
φ∈Φ

φ=[πs,...,πe]

P(φ|πs, πe) (4)

Having defined the two terms using P(φ|π), the ques-

tion now turns to estimating this density. Explicitly mod-

eling this density and estimating its parameters from finite

training data is extremely difficult and prone to overfitting
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due to the large variations in humans poses and future mo-

tions in unconstrained settings. Hence, we adopt the data-

driven approach, which has become very popular in recent

years [25, 14, 24]. This approach advocates transferring in-

formation from a rich training database to the specific query

under consideration, instead of learning a general function

applicable to all queries. Such methods have shown sig-

nificant promise in solving otherwise difficult tasks such as

scene alignment [25], geo-localization [14], scene comple-

tion [16], scene parsing [24] and object matching [31].

Given a test pose πs, we estimate P(φ|πs) directly from

the training data. This estimate is then used to compute the

amount of associated dynamic information DDI(πs) and

the most probable action segment φ̂(πs). We explain this

approach in detail below.

3.1. Estimation of Conditional Distribution
Instead of developing a functional form for P(φ|πs),

we compute this probability whenever we encounter a test

pose πs. Our training data consist of videos of human ac-

tions. Let D denote the database of all the poses which

are extracted from these videos. By applying the tempo-

ral segmentation algorithm of Vitaladevuni et al. [38], these

videos are divided into action segments separated by bal-

listic boundaries. Given a test pose πs, we find all the in-

stances of the pose in the database D and denote this set

by Nπs
. In our experiments, nearest neighbors of the test

pose πs in the database D are used to form the set Nπs
.

Note that every pose π ∈ D is a part of an action seg-

ment φ ∈ Φ. This implies that every pose πr ∈ Nπs

has an associated action segment φ(πr). Let Nφ(πs) be

the set of action segments corresponding to the poses in

Nπs
. Nφ(πs) = {φ(π), π ∈ Nπs

} can be considered as

samples from the density P(φ|πs). Hence, sample-based

density estimation techniques can be adopted to estimate

P(φ|πs) given Nφ(πs). However, such techniques cannot

be applied directly on the space of action segments Φ due

to two reasons. First of all, action segments can differ in the

number of frames. Hence, a direct representation in terms

of the associated pixels lead to vectors of different dimen-

sionality. Secondly, this direct representation in terms of

the associated pixels is high dimensional. Learning models

from higher dimensional data is often impractical, and has

lead to the development of alternate low dimensional repre-

sentations for the data [13]. Hence we adopt a parametric

approach, where the action segments are compactly repre-

sented by a low dimensional dynamical model.

Modeling Action Segments: In this work, we employ

the linear dynamical system (LDS) [32], a popular model in

computer vision. For an action segment φ, the LDS model

is described by

zφ(t+ 1) = Aφzφ(t) + vφ(t), vφ(t) ∼ N(0,Ξ)

yφ(t) = Cφzφ(t) + wφ(t), wφ(t) ∼ N(0,Θ)
(5)

Figure 3. Block diagram demonstrating the various steps in the

proposed method.

where zφ(t) ∈ R
p is the hidden state vector for the tth

frame in the action segment φ, yφ(t) ∈ R
d are the fea-

tures extracted from tth frame, Aφ ∈ R
p×p is the tran-

sition matrix, Cφ ∈ R
d×p is the measurement matrix.

vφ(t) and wφ(t) are the noise components, which are mod-

eled as Gaussian with mean zero and covariances Ξ and

Θ respectively. Aφ is constrained to have eigen vectors

inside the unit circle, while Cφ is constrained to be or-

thonormal. Hence, the parameters of the LDS model,

namely (Aφ, Cφ) do not lie on the Euclidean space. For

comparison of actions, a commonly used distance met-

ric is the subspace angles between the column spaces of

the corresponding observability matrices. The ‘observabil-

ity’ matrix Ω̂φ of an action segment φ is given by Ω⊤
φ =

[

C⊤
φ , (CφAφ)

⊤, . . . , (CφA
m−1
φ )⊤, . . .

]

. It is an infinite di-

mensional matrix, which can be approximated by the finite

matrix Ω̂⊤
φ =

[

C⊤
φ , (CφAφ)

⊤, . . . , (CφA
m−1
φ )⊤

]

. Note

that Ω̂φ ∈ R
n×p,where n = md. Hence the column space

of Ω̂φ is a p-dimensional subspace in R
n, which constitute

the Grassmann manifold Gn,p. For notational simplicity, we

denote the observability matrices Ω̂φ, Ω̂φi
and Ω̂φj

by Ω, Ωi

and Ωj respectively. Then, a natural metric ζ2(Ωi,Ωj) be-

tween action segments φi and φj is given by [35]

ζ2(Ωi,Ωj) = p− tr(ΩT
j ΩiΩ

T
i Ωj). (6)

Density Estimation on the Grassmann Manifold: Us-

ing Nφ(πs), the set of samples from P(φ|πs), we now es-

timate the conditional density using non parametric density

estimation techniques [8], as

P̂(φ|πs) = c1
∑

φi∈Nφ(πs)

Ψ(M− 1
2 (Id − Ω⊤

i ΩΩ
⊤Ωi)M

− 1
2 )

(7)
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where Ψ(T ) = exp(tr(−T )) for T ∈ R
p×p, tr(.) is the

matrix trace operator, M ∈ R
p×p is a smoothing matrix and

c1 is the normalization factor to ensure that the probability

density integrates to unity.

3.2. Statistical Inference on the Estimated Density

Having formulated the conditional density for the action

segment given the test pose, we now estimate statistical

information from it. The block diagram of the proposed

method in shown in Figure 3.

Mode Estimation: Given a pose πs, the likely future

motion can be predicted by finding the most probable ac-

tion segment φ∗(πs), which is the mode of the distribution

P(φ|πs). Non-parametric techniques have been recently

developed for mode seeking on analytic manifolds [36, 5].

In particular, Cetingul and Vidal [5] computes the mode on

the Grassmann manifold using iterative optimization. It in-

trinsically locates the modes of the distribution via consec-

utive evaluations of a mapping. For the Grassmann man-

ifold, these evaluations constitute an efficient gradient as-

cent scheme, which avoids the computation of expensive

exponential mappings. However, this algorithm will only

compute the LDS parameters of the most probable action

segment. It is not possible to generate the frames of the

action segment from the LDS parameters. Hence, in appli-

cations where a valid action segment with high probability

of occurrence is required, a more efficient scheme is to di-

rectly select the action segment with the highest conditional

density from Nφ(πs).

φ̂(πs) = argmax
φi∈Nφ(πs)

P̂(φi|πs) (8)

By similar analysis, we can also obtain φ̂(πs, πe), the

most probable pose trajectory given a start pose πs and an

end pose πe, by using the samples from Nφ(πs,πe). Here,

Nφ(πs,πe) denote the set of training action segments, whose

start and end poses are nearest neighbors of πs and πe re-

spectively.

φ̂(πs, πe) = argmax
φi∈Nφ(πs,πe)

P̂(φi|πs, πe) (9)

where P̂(φi|πs, πe) is given by P̂(φ|πs, πe) =

c1
∑

φi∈Nφ(πs,πe)
Ψ(M− 1

2 (Id − Ω⊤
i ΩΩ

⊤Ωi)M
− 1

2 )

with c1,Ψ(·) and M denoting similar quantities as in (7).

Entropy Estimation: To estimate the entropy of

P(φ|πs) from the samples Nφ(πs), we use the resubstitu-

tion estimate of entropy [2] as follows

Ĥ(φ|πs) = −
1

|Nφ(πs)|

∑

φi∈Nφ(πs)

log P̂(φi|πs) (10)

where P̂(φi|πs) is obtained from (7). Under mild condi-

tions, this estimate has been proved to be consistent in the

first and second order means [2].

Figure 4. Motion prediction using the proposed method. Note that

the predicted motion is performed by a different subject, since

there is no overlap between training and testing subjects.

4. Experiments
In this section, we empirically evaluate the proposed

method on action datasets of varying complexity, namely

the Weizmann activity dataset [12] with clean background

and fixed view point, INRIA XMAS (IXMAS) dataset [43]

where actors freely change their orientation and the UCF

Sports Activity dataset [27] with large changes in scene and

view points.

The dynamic information associated with a given human

pose can benefit several computer vision problems like mo-

tion prediction from still images, and semi-supervised still

image action recognition. For human motion prediction

from still images, we represent the future poses in terms of

a sequence of images of humans, as shown in Figure 4.The

proposed method for predicting action segments can act as a

natural way of propagating labels from the labeled training

images to the unlabeled video data. For each labeled train-

ing pose, we find the most probable action segments from

the unlabeled video data, as explained in Section 3.2. If the

original training poses are discriminative, the retrieved ac-

tion segments will belong to the same action. Hence, we

add these action segments as additional training samples.

Additionally, one could use DDI to propagate labels from

just the informative training poses. To evaluate the method

under large variations in training and testing conditions, we

perform a cross dataset experiment using unlabeled videos

from the Weizmann dataset and test images from the CMU

action dataset [20]. The poses are represented by HOG [10]

features, and action segments by the finite observability ma-

trix Ω⊤
m in the LDS model. Given a test pose πs, Nπs

is

created by identifying the k nearest neighbors in the HOG

feature space from the gallery. Unless specified, we fixed

k in all our experiments to the average number of repeti-

tions of actions in the unlabeled videos, which is roughly

the number of subjects in the unlabeled videos. Our exper-

iments suggest that the proposed method works well over

a wide range of k. The bin size and cell size of the HOG

features are both set to 8, with 2× 2 cells forming a block.

4.1. Perceptual Evaluation on Manga Images

In this section, we estimate the amount of dynamic in-

formation in the Hokusai Manga image database, which we
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Figure 5. The priest and dancer images in the Hokusai Manga col-

lection are displayed in the increasing order of their DDI, with the

indices in the sorted order indicated in the top left of each pose.

The priest images are marked in red, and the dancer images having

the most unstable poses, where the human is standing on a single

leg are marked in blue. Observe that most of the priest images (in

red) have lower DDI values, while most of the dancer images in

unstable poses (in blue) have higher DDI values, reflecting the the

perceptual results in [26].

compiled from web-sources. This database consists of 45

images belonging to two groups namely the priests and the

dancers. The same set of images had been used by Osaka et

al. [26] in their experiments, which reported that the un-

stable poses in the dancer images activated the motion sen-

sitive regions of the visual cortex, while the priest images

did not. This indicates that the dancer images have higher

dynamic information compared to the priest images.

Since the Manga images have wide variations in human

poses, we use the SFU skating dataset [42] for training.For

each Manga test image, we do a simple thresholding to ob-

tain a binary image and extract the HOG features. Using

the SFU training data, we obtain the DDI values for each

Manga image. The Manga images are then sorted in in-

creasing order of DDI and are displayed in Figure 5. The

priest images are highlighted in red. As can be observed,

most priest images have low DDI values indicating low

amounts of implied motion. Furthermore, among the dancer

images, the most unstable poses are the ones where the hu-

man is standing on one leg. Such images are highlighted

in blue. Based on the studies in [26], such unstable poses

should have higher implied motion. These images come to-

wards the end of the sorted order in Figure 5, indicating that

the DDI values are higher in them. Thus, most of the stable

poses have lower DDI values, and most of the unstable ones

have higher DDI values, thereby empirically verifying that

the proposed measure is perceptually meaningful.

4.2. Human Motion Prediction from still images

We predict motion given a single pose on the IXMAS

dataset. We used the first nine subjects in the first view as

training data and predicted future motion for each pose of

the last subject. The predicted motion of some of the test

poses are shown in Figure 4. We can observe that the pre-

dicted motion mostly agrees with ones expected by humans.

To evaluate the prediction accuracy, we used the mo-
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Figure 6. Motion prediction error in IXMAS dataset using the

nearest neighbor-based and the proposed methods. Due to outliers

in the nearest neighbor poses, the NN-Based method leads to lower

performance with more nearest neighbors. However, since the pro-

posed method of mode computation is insensitive to outliers, the

motion prediction error is reduced with more nearest neighbors by

the proposed method.

tion prediction error, which is defined as the difference be-

tween the true action segments for each test frame and the

predicted action segment. We use the distance metric be-

tween action segments defined in (6). We plot this error

for the proposed method for different values of k in Fig-

ure 6. The baseline method (NN-Based) consists of using

the mean of the k retrieved action segments as the predicted

motion. Using the first nearest neighbor as the prediction

motion, the prediction error is 0.47. The proposed method

decreases this prediction error considerably achieving an er-

ror of 0.39 using 6 nearest neighbors. Also, the simple base-

line of averaging the retrieved nearest neighbor action seg-

ments leads to higher prediction error for higher values of

k. We attribute the improvement in performance to the fol-

lowing. Due to errors in pose matching, the nearest neigh-

bor poses and their associated motion are often erroneous.

These erroneous motion normally form outliers and do not

contribute to the most probable motion. Since mean is not

robust to outliers, averaging the retrieved action segments

lead to poor performance. However, the mode is not sensi-

tive to outliers. Hence, by finding the mode of the nearest

neighbor action segments, the proposed method improves

the robustness of the motion prediction algorithm to errors

in pose matching.

4.3. Semi-supervised single-image action recogni-
tion

In this section, we evaluate the label propagation tech-

nique for semi-supervised activity recognition from a single

image. We used the UCF Sports Activity dataset in our ex-

periments. We considered nine out of the thirteen actions,

avoiding the classes differing only in motion. Action classes

which differ only in their motion signature cannot be distin-

guished in still images, even by humans. The classes used

in our experiments are shown in Figure 7. We used 2 sub-

jects for training, 2 for testing and 8 as unlabeled data with
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no overlap. We chose 8 images at random of the 2 training

subjects to form the training data. No labels or temporal

segmentation is assumed for the unlabeled data. We used

HOG features for representing human poses and the near-

est neighbor classifier for activity recognition, similar to the

approach introduced in [34].

We compared the proposed method of label propa-

gation with the nearest neighbor classifier using the la-

beled data alone (supervised algorithm) and three popu-

lar semi-supervised algorithms namely Self-Training [6],

Semi-Supervised SVM (S3VM) [30] and Single View Co-

Training [7]. In Self-Training, the classifier trained on the

labeled data is applied on the unlabeled data and the L (fixed

as 20 in our experiments) most confident images are added

to the training set as additional labeled data, using the pre-

dicted labels. Test samples are classified using this extended

training set. We used one-versus-all classification for multi-

class classification. We used the Multiple Switching algo-

rithm in [30], which iteratively labels the unlabeled data and

switches the labels to reduce the optimization cost. The Sin-

gle View CoTraining algorithm automatically splits the fea-

ture vectors into two views, and uses the most confident

samples in one view to retrain the other view. In the pro-

posed method for label propagation, for each labeled im-

age, we added the k most probable action segments from

the unlabeled data into the training set. We used k = 8
in our experiments, since unlabeled data contained each ac-

tion roughly 8 times, performed by each of the 8 subjects.

Recognition of test samples were done as before using the

extended training set.

Method Accuracy (%)

Supervised 49.3

Self-Training 51.9

Semi-Supervised SVM 51.7

Single View CoTraining 53.5

Proposed Method 57.9

Table 1. Activity Recognition accuracy on the UCF dataset.

The recognition accuracies using 8 action segments are

shown in Table 1 . We include the corresponding confu-

sion matrices in Figure 7. The proposed method provides

a significant improvement of 8.6%, compared to the su-

pervised algorithm. Also confusion with wrong classes is

considerably reduced. We show some of the test images

and the nearest neighbors obtained by the supervised algo-

rithm and the proposed method in Figure 8. Comparison

between nearest neighbor poses added by Self-Training and

those added by the proposed approach for the ‘Diving’ ac-

tion can be seen in Figure 9. We also plot the variation in

accuracy with the number of action segments added in Fig-

ure 10. As can be observed, the accuracy increases with

action segments till 9 (close to 8, the average number of

Figure 7. Confusion matrices for action recognition on UCF

dataset show significant improvements. In the proposed method,

confusion remains mainly between Golf Side and Kicking which

have similar leg poses (legs far apart), and among walk, run and

kicking, which differ mainly in the rate of execution of the action.

Figure 8. For each test image, the nearest neighbors obtained us-

ing the supervised method and the proposed method are shown.

Erroneous results are encircled in red.

Figure 9. Illustration of the proposed label propagation approach

for semi-supervised action recognition, for the diving action. The

correctly retrieved nearest neighbor poses are in red. While some

of the nearest neighbors belong to incorrect activities due to errors

in pose matching, the most probable action segment belongs to

the correct class. Furthermore, the poses added by the proposed

method are clearly different from the test pose. Hence, the training

set is greatly enriched by the proposed label propagation method.

repetitions in the unlabeled data) and then falls gradually.

4.4. Cross-dataset dynamic inference

To evaluate the robustness of our method, we consider

the scenario where the test pose whose motion is to be in-

ferred, is significantly different from the unlabeled videos

available for learning the conditional density. Specifically,

we picked poses from the CMU dataset [20] and learned
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Figure 10. Variation of recognition accuracy with the number of

action segments added per training image.
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Figure 11. Variation of recognition accuracy with the number of

nearest neighbors in the CMU cross-dataset experiment.

conditional density using the videos from the Weizmann

dataset. We then propagated action segments from the

Weizmann dataset into the training set as explained before.

Test poses in the CMU dataset were recognized using this

extended training set. Out of the four actions in the CMU

dataset which are also present in the Weizmann dataset,

we use “jumping jack”, “one handed wave” and “pickup”

for our experiment. We avoid the fourth action, namely,

the “two handed wave”, since it closely resembles jumping

jack in still images. The entire Weizmann dataset is used

for learning the conditional density, without any labeling or

temporal segmentation.

Method Accuracy (%)

Supervised 44.0

Self Training 44.8

Semi-Supervised SVM 45.9

Single View CoTraining 45.2

Proposed Method 50.5

Table 2. Activity Recognition accuracy on the CMU dataset.

We picked one image per action for training from the

CMU dataset and tested on frames from the remaining

videos. For each training image, we added the most prob-

able action segments for the Weizmann dataset. To reduce

the cross-dataset variations, before recognition, we learned

a Partial Least Squares(PLS) subspace, using the training

samples from the CMU dataset and then added action seg-

ments from the Weizmann dataset. PLS-based latent spaces

have been used to handle cross-dataset and cross-model

recognition [29]. We observed the method to be robust to

the subspace dimension and chose half the original feature

dimension in our experiments. We present the recognition

accuracies in Table 2, and plot the performance with vary-

ing number of nearest neighbors (k) in Figure 11.

5. Conclusion

In this paper, we proposed methods to model the im-

plicit motion information contained in a human pose. We

introduced a probabilistic framework to infer this dynamic

information, by posing this inference as a density estima-

tion problem on non-Euclidean manifolds. Direct model-

ing of the density is difficult and prone to error due to the

large variation in human poses. Hence, we have developed

a non parametric data-driven approach for estimating the

density and the associated statistics. Utilizing the proposed

model, we predicted the most probable future sequence of

poses and the amount of dynamic information conveyed by

a given image. We showed the utility of the proposed frame-

work in human motion prediction and activity recognition.

Future work include exploring other useful statistics within

the proposed framework. We will evaluate the increase in

probability as more frames are added. This will enable us to

determine the minimal number of frames needed to detect

an activity at a pre-specified probability of detection. We

will also study the influence of scene and object context on

the dynamic information conveyed by human poses.
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