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Abstract

Registration of curves is a necessary component of sta-
tistical shape analysis. The goal of registration is to align
collections of shapes so that common features are appro-
priately matched for further comparison and subsequent
analyses. Traditional methods for registration typically rely
on optimizing an energy functional over a set of appropri-
ate shape-preserving transformations (i.e., rotations and re-
parameterizations). These functionals typically rely on the
standard L2 metric. In certain applications, it may make
sense to use a more flexible metric which can align shapes
most preferably with respect to a local shape feature (i.e.,
a certain curve segment selected from the overall shape).
In this work, we define a weighted shape metric which al-
lows for emphasis on local shape features. Registration can
be performed with respect to this metric. We demonstrate
the registration procedure using simulated curves as well as
real data, and show the dependence of the optimal rotation
and re-parameterization on the specified weights, as well as
the resulting deformation path from one shape to another.

1. Introduction

Statistical shape analysis is the study of data sets which
consist of outlines of objects, generally extracted from im-
ages. This type of data is available in numerous applica-
tions, including computer vision, biology, anatomy, med-
ical imaging, biometrics, and forensic analysis. A major
challenge in shape analysis is establishing equivalence of
shape, which can be defined as a property which is un-
changed after applying various shape-preserving transfor-
mations (generally translation, scale, and rotation). In order
to analyze shape data, one must respect these invariances,
as objects which appear different can still be identically-
shaped. Thus, developing a suitable shape representation
is crucial to shape analysis. Once found, a metric between
shapes is defined, allowing for further statistical inference.

The two most general classes of shape representations
are landmark-based and function-based. Landmark meth-

ods represent a shape using a finite set of labeled points,
known as landmarks [6, 4, 12, 2]. These points are se-
lected mathematically (e.g., points of extreme curvature)
and/or anatomically (as meaningful points to the function of
the object of interest). This allows for a finite-dimensional
approximation of shape, and opens up multivariate analy-
sis techniques for statistical inference. More recently, re-
searchers have worked on function-based methods, since an
object’s shape is generally thought of as a function rather
than a discrete set of points. By treating the outline of an ob-
ject as a continuous function, shape can also be thought of
as being preserved even if the function is re-parameterized.
Parameterization-invariance can be introduced by standard-
izing all parameterizations to arc-length; however, this has
been shown to be sub-optimal, as it forces a correspondence
of features between shapes that may not necessarily be ap-
propriate [20, 7]. An alternative approach is to optimize
over the space of valid re-parameterization functions. This
allows for more appropriate shape matching (known as reg-
istration), and underlies what are known as elastic represen-
tations of shape [19, 10, 13].

Recently, Strait et al. [18] combined the two approaches
discussed into a landmark-constrained elastic shape repre-
sentation (also see [, 9] for related methods). This allows
for treatment of an object’s outline as a function, while also
providing for subject expertise input in the way of anno-
tated landmarks on the outline. In medical imaging, land-
marks often represent important anatomical features to the
structure; marking them places extra emphasis on these fea-
tures of interest. Strait et al. [18] showed improvements
in statistical performance in cases where landmarks provide
useful information. Marking landmarks on an outline seg-
ments the shape into “pieces”, which are then used for sub-
sequent registration steps. Registration relies on the L2 met-
ric between square root velocity functions (defined in [13]),
which is rewritten into a sum of integrals over each shape
segment. Naturally, one might wonder if allowing for flexi-
ble weighting of each of these integrals over particular seg-
ments can further improve statistical performance. By up-
weighting the outline of a bird’s beak, perhaps one can see
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improvements in identifying bird species with vastly differ-
ent beak structures. Our goal is to formulate a method for
registration of full shapes dominated by smaller-scale (i.e.,
local) features, and induce a distance which scrutinizes the
highly-weighted local features of interest.

In this paper, we introduce a metric which allows for
flexible weighting of local features, based on the landmark-
constrained representation in [18]. In Section 2, we outline
the landmark-constrained representation and introduce the
weight function. We show how this impacts registration of
shapes as well as the shape metric and geodesic. Section
3 demonstrates weighted registration on four sets of simu-
lated curves. We then apply this new framework to three
sources of real shape data in Section 4, and conclude with
summarizing remarks and future directions in Section 5.

2. Mathematical Framework

In this section, we describe the main shape representa-
tion framework used throughout this work; further details
can be found in [13, 18]. Once the representation is devel-
oped, methods for shape registration and computation of a
shape metric and geodesic are introduced.

2.1. Square Root Velocity Function

Let 3 : D — R< be the absolutely continuous curve
representing the object of interest’s outline. D is the curve
domain, taken to be [0, 1] for open curves and S* for closed
curves. For the time being, we will focus on open curves
in d = 2 dimensions (i.e., planar curves); however, there
are natural extensions of this method to closed curves and
curves of higher dimension. A popular shape representation
for (3 is the square root velocity function (SRVF) [13]:

%2)‘ if B is differentiable at £ and | 3(£)| # 0

0 otherwise

q(t) =

(D
where | - | is the Euclidean norm and f3 is the time-derivative
of 3. The SRVF has numerous benefits. First, ¢ encodes
all local information about [3: the instantaneous speed and
direction of 5 can be written explicitly in terms of ¢. In
addition, given starting point B ( ) of B there is a smooth
bijection between ¢ and §: G(t) 0)+ fo s)| ds.
Since the SRVF is a function of B, 1t is automatlcally in-
variant to translation. Scale invariance can be introduced
by re-scaling [ to unit length. In particular if the unit
length constraint fol 1B(t)] dt = fo lg(#)|? dt = 1 is im-
posed, the space of corresponding SRVFS is the infinite-
dimensional unit Hilbert Sphere called the pre-shape space
C={q:[0,1] — R2|f0 lq(t)|? dt = 1}. If one wishes
to analyze size-and-shape of an object, the re-scaling step
is skipped, and SRVFs lie in the pre-size-and-shape space

Cs = {q : [0,1] — R?} (i.e., the space of all square inte-
grable functions). For this work, we consider SRVFs in the
ambient space Cs. In order to proceed, we must introduce
rotation and re-parameterization invariance.

2.2. Weighted Metric on C,

Suppose that we are provided an open curve 5 with k
landmark locations marked, denoted {8(61),...,8(0k)} €
R2. Without loss of generality, assume 0 < 6; < ... <
0, < 1. Specifying k landmarks splits /3 into k + 1 curve
segments. These can be identified by partitioning the curve
domain D: define S; = [0,61),52 = [01,02),...,5, =
[0r-1,0%), Sk+1 = [Hk, 1]. Notice that these sets do form a
partition, as D = U S and S;NS; = () fori # j. Then,
the i curve segment of [ is the absolutely continuous func-
tion (¥ : S; — R? defined as the restriction 3 := g,
(with corresponding SRVF segment ¢(*)). In practice, land-
marks are specified manually by the researcher to capture
important local shape features, using a discretized curve
which is arc-length parameterized; see [!8] for further de-
tails. In the case where landmark locations are unknown,
automatic detection may be necessary; see [11, 16, 15, 3].

To weight curve segments, define weight function
w : [0,1] = R by w(t) = wilyes,y, with w; >
0Vi, >, w; = k+ 1. This assigns weight w; to segment
B, Note that this weight function is discretely defined; a
continuous weight function may be desirable in certain ap-
plications, and is left as future work. Also note the weight
sum restriction, which is one way to standardize weights
(and allows for equally weighted segments to be a special
case). We require weights to be non-negative for mathe-
matical reasons described below. Weights can be selected
to emphasize local shape features that are of interest, and
impacts shape registration, as described in the next section.

Given two curves (31, (2 with corresponding SRVFs
q1, q¢2 € Cs and common landmark locations 61, ..., 0,
define the weighted L2 inner product between their SRVFs,

(g @2))® = / w(t){gs (1), g (1)) dt
k+1 ()

—Zwi/ (1), q2(t)) dt,

where (-,-) is the Euclidean inner product. This in-
duces the weighted landmark-constrained pre-size-and-
shape (WLCP) metric:

k+1
de” (q1,q2) = (sz/ g1 ()

Notice that when w; = 1V 4, d(c

1/2
- q2 |2 dt) 9 (3)

7;0)((11,(&) = de,(q1,2)
(i.e., the original, unweighted L2 metric defined in [18]).
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The WLCP metric satisfies required properties for distance
functions only if w; are strictly non-negative for all .

A question which arises is why this metric involves
SRVFs ¢1, qo, rather than the original curve func-
tions 1, B2. The L? metric between 1 and fs
is not appropriate, as the action of re-parameterization

is not by isometries: (fol 1B1(t) — Baft)|? dt)l/2 =

(S 1B1(3(8) — Ba(v(£))[2 dt)"* does not hold for all
valid re-parameterization functions vy (defined in the next
section). However, the L2 metric with SRVFs is invariant
under common re-parameterization. In addition, the metric
involving SRVFs is related to the elastic metric [19, 5, 13],
a Riemannian metric measuring bending and stretching en-
ergies required to deform one curve into another.

2.3. Locally Weighted Registration

One may note that Section 2.2 assumes that a given pair
of curves g1 and g2 share common landmark locations along
their respective arc-length parameterizations. This is gener-
ally not true: if 617 is the i landmark on the j™ curve
(for j = 1,2), then 91(1) #* 91(2) in most cases. This
means that the integration in Equations 2 and 3 is not well-
defined due to the mismatch in integration bounds. In or-
der to fix this, landmark constraints are initially matched
by finding a suitable re-parameterization function 7, such
that mm(9§1>) = 952) fori =1,...,k. This function should
be an element of the group of re-parameterization functions
T = {7:10.1] = [0,1]}y(0) = 0.7(1) = 1,0 < 4 < o0}
(the set of all orientation-preserving diffeomorphisms of the
unit interval). We choose to initialize with a piecewise lin-
ear function (with arc-length parameterization) between the
matched landmarks. While this function is not a mem-
ber of I' (due to the required differentiability), it is gener-
ally a good approximation. If smoothness is desired, one
can use the initialization step found in [17]. We define the
landmark-matched second SRVF ¢2 1m := (g2 © Yim) v/Yim-

While the landmarks are now matched, segments be-
tween landmarks are not. To align (or register) the shapes,
we optimally match one shape to the other. This is done
by minimizing the WLCP metric over the set of all valid
rotations and re-parameterizations. We take into account
rotation and re-parameterization invariance by defining the
transformation groups of interest below. Let SO(2) be the
group of 2 X 2 rotation matrices. Since landmarks on both
shapes are now matched, valid re-parameterization func-
tions must fix these points. Thus, define the landmark-
constrained re-parameterization subgroup I'y = {y €
T|v(6;) = 0;, i =1,...,k}. The actions of O and I'y com-
mute (see [14] for proof): applying rotation O € SO(2)
and re-parameterization v € I'y to a SRVF ¢ yields the
transformed SRVF O(q o v)y/3. Define the landmark-
constrained size-and-shape space Sy = C;/(SO(2) x T'y).

This quotient space consists of equivalence classes [q] =
{O(q o Y)VAlg € Cs,O0 € SO(2),y € Ty} which
equate SRVFs that are only different by a rotation and/or
re-parameterization. Thus each equivalence class uniquely
identifies the object’s size-and-shape.

To register ¢; and g2 jm, we solve:

argmin d(clf)(qho(qumOV)\ﬁ)- )
0€S0(2),7€T,

(0%,77) =

Solving Equation 4 is done by fixing ¢;, and searching
for the rotation and re-parameterization which best matches
g2,im, With respect to the WLCP metric. The solution can be
approximated marginally, i.e., by finding O* and v* sepa-
rately and iterating until a stable solution is obtained.

2.3.1 Optimizing over SO(2)
Given a re-parameterization function ¥, define g2 := (g2 1m©

) \/% The minimizing rotation is,

0" = argmin i (g1, 0) = argmax {(q:, %))
0e50(2) ° 0€50(2)
1
= argmax/ w(t){q1(t), Oga(t)) dt
0€50(2) Jo

1
s [ [ om0,
0€50(2) 0
@)

where ¢1 ., (t) := w(t)gi1(¢). The last line of Equation 5 is
solved by finding the singular value decomposition (SVD)
of A= fol q1.0(t)32(t)T dt = UXV'T, where the columns
of U and V are singular vectors with corresponding singular
values (in descending order) in diagonal matrix >. Then,
the optimal rotation is given by O* = UV T (with the last
column of V' changing sign if det(A) = —1). Note that this
will differ from the optimal rotation under equal weights, as
the SVD is impacted by the weight function w(t) through
the derived “weighted” SRVF ¢ ,,. By introducing variable
weighting along the registered curves, the optimal rotation
is dominated by the highest-weighted segments.

2.3.2 Optimizing over Iy

Given a rotation O, define Gy := Oqg,lm. The optimal re-
parameterization is given by:

~* = argmin dgj) (g1, (@2 07) ﬂ)

v€lo
k+1
= argmax 3w, [5 {a1(8),32(2(0) VA .

v€lo i=1 i

(6)
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Figure 1. Curves (51 and B2 for Simulations 1-4 from Section 3
(size of curves not shown proportionally across simulations); land-
mark denoted by green circle.

The final expression in Equation 6 is linear along each curve
piece, and thus can be optimized by maximizing each inte-
gral over S; separately. This results in the weights drop-
ping out of the optimization, meaning that optimizing over
T"p under the WLCP metric is equivalent to the same prob-
lem under the unweighted I.? metric. The solution can be
obtained by employing a dynamic programming method
for each piece separately, and “gluing” the solutions to-
gether (as discussed in [18]) or through gradient-descent
[17], which ensures that the optimal re-parameterization
is smooth everywhere (including at landmark constraints).
Note that the optimal rotation and re-parameterization de-
pend on each other; different weight functions will produce
varying optimal rotations, which will impact the best cor-
respondence of points between curves. Thus, in practice,
it is suggested that one solves for the optimal rotation first
before finding the optimal re-parameterization.

2.3.3 Weighted Metric on S,

Once the optimal rotation and re-parameterization pair
(O*,~*) is found (via Sections 2.3.1 and 2.3.2), let ¢5 :=
O*(q2,1m ©v*) \/~* be the optimally-aligned second SRVF
to the first SRVF. Since the action on SO(2) x 'y commutes
and is by isometries on Cs, Ss inherits the WLCP metric
on C,, and thus the weighted landmark-constrained size-
and-shape (WLCS) metric between two size-and-shapes

[q1], [go] is,

S (@), la2)) = 45 (a1, 43), (7)

i.e., the minimizing distance over all possible rotations and
re-parameterizations in Cs. Note that introducing weights
allows one to meticulously compare shapes according to lo-
cal features. Upweighting certain segments allows for these

features to dominate registration. Then, the weighted dis-
tance calculated in Equation 7 will magnify any shape dif-
ferences along the upweighted segments, allowing one to
further scrutinize local shape differences.

2.4. Geodesic Paths

The WLCS metric can be interpreted as describing the
amount of deformation required to go from one shape to the
other (with respect to the selected weights). One can as-
sociate with this metric a locally shortest path in S that
shows how this deformation occurs. Mathematically, let
Qq1.00 ¢ [0,1] x [0,1] — R? be a path connecting g; to
g2 in Cg (with the subscript sometimes dropped for conve-
nience), i.e., «(0,t) = ¢1(¢) and «(1,t) = ¢2(t), and let
‘P be the space of all paths from g; to g2 in Cs. Under the

WLCP metric, the geodesic path dfﬁ)@ is,

1
a4, =argmin [ ((a(s.).a(s, )
aceP 0

= aggern;n/ol /01 w(t){a(s,t), a(s,

= argmin/olw(t) [/01<d(s7t),o'<(s,t)> ds| dt

acP

t)) dt ds

= Qg ,q2»

®)

where ¢ is the derivative of a with respect to the first ar-
gument s and Gy, ¢, (-, 1) = argmln fo (s,t), (s, t)) ds
cP

is the geodesic path between ql( ) and ¢2(t) under the un-
weighted metric. We know that this path is linear, and so
the geodesic path in Cj is given by:

éé(w) (57 ) =

q1,92

(1-5)gi+sq, 0<s<1. (9
The corresponding geodesic path in Ss is a( )*, where
g5 is the optimally aligned SRVF defined 1n Section
2.3.3. The WLCS metric given in Equation 7 is the
geodesic distance, which is the length of the geodesic
path. In practice, visualization of the geodesic path oc-
curs by sampling G equally-spaced points along &), i.e.,

@(w)(07 Y, @(w)(ﬁ’ Yy @(w)(%, ~)7d(w)(1, ).

2.5. Closed Curves

Thus far, the weighted registration framework is defined
for planar open curves. Closed curves impose an extra clo-
sure condition ([, B(t) dt = 0), which results in a dif-
ferent shape space than for open curves. This occurs be-
cause, unlike open curves, closed curves do not have well-
defined starting and ending points. However, landmark
specification allows one to approximate closed curves as
“unwrapped” open curves, where the first landmark 6; acts
as a natural “starting point” for the curve 8. Specifying k
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| Weights [[ Sim1 [ Sim2 | Sim3 [ Sim4 |
[1.9,0.1] || 86.68 | 88.96 | 87.62 | 87.35
[1.5,0.5] || 71.33 | 83.43 | 78.18 | 71.92

(1,1 | 4508 | 70.92 | 58.77 | 45.35
[0.5,1.5] 18.86 | 43.94 | 29.23 | 18.77
0.1,1.9 || 353 | 866 | 532 | 334

Table 1. Optimal clockwise rotation angle 6* under different
weight settings for Simulations 1-4 (all angles in degrees).

landmarks now splits a closed curve into k segments, which
can be identified by partitioning the curve domain S' into
Sy = [01,02),52 = [02,03),...,Sk-1 = [0k—1,0k), Sk =
[0, 01) (the last segment connects the final specified land-
mark back to the starting point). The curve domain S'
is commonly identified with the unit interval [0,1]. The
weight function defined in Section 2.2 is defined similarly to
open curves, except with the constraint ), w; = k, and all
registration procedures are identical. We approximate the
geodesic path for closed curves using Equation 9 for open
curves; however, in general, one can perform path straight-
ening to find the actual solution computationally [13].

3. Simulated Curves

In this section, we illustrate the impact of weighting on
registration of artificial curves. Figure | shows four pairs
of two-peaked curves to be compared. All four simula-
tions compare an original curve with both peaks oriented
in the same way, to a second curve where one of the peaks
is rotated by 90 degrees counterclockwise. In Simulation
1, all peaks are of equal size. At least one of the curves
in each of Simulations 2—4 feature a peak which is three
times higher than the other. In Simulation 2, the higher
peak is simply rotated by 90 degrees to produce the sec-
ond curve. Simulation 3 compares equally-sized peaks
to a curve which has the higher peak rotated by 90 de-
grees. Lastly, Simulation 4 rotates the left peak by 90 de-
grees and switches the high and low peaks. For all ex-
amples, one landmark was specified to separate the two
peaks, yielding two curve segments. Curves were not stan-
dardized to remove scale variability (in order to preserve
the magnitude of peaks), so we are interested in compar-
ing size-and-shapes. For all four simulations, registration
was performed under the WLCP metric, under five different
weight settings [w1 , wo] corresponding to the two curve seg-
ments: [1.9,0.1],[1.5,0.5],[1,1],[0.5,1.5],[0.1,1.9]. The
optimal rotation matrix O* = [f(:ﬁ?e)) ig;((z*))} (with op-
timal clockwise rotation angle #*) and re-parameterization
function v* were found. Table 1 shows 6* for all simu-
lations under the five weight settings. Figure 2 shows the
corresponding v*. Figure 3 shows geodesic paths under the
various weights, with geodesic distances listed in Table 2.

Sim 1 Sim 2
1 1
08 08 /
06 06
04 0.4
02 02
0 0
0 05 1 0 05 1
Sim 3 Sim 4
1 , 1
0.8 / 08
056 06
04 04
0.2 0.2 /
0 0
0 05 1 0 05 1

Figure 2. Optimal re-parameterization v* for Simulations 1-4.
Colors for different weight settings: black = [1.9,0.1], magenta
=[1.5,0.5], blue = [1, 1], red = [0.5, 1.5], green = [0.1, 1.9].

| Weights [[ Sim1 [ Sim2 | Sim3 [ Sim4 |
[1.9,0.1] [[ 0.573 ] 0.565 | 1.574 | 1.694
[1.5,0.5] || 1.234 | 1.288 | 1.811 | 2.226

[1,1] || 1468 | 1.756 | 1.954 | 2.460
(0.5,1.5] || 1.233 | 1.823 | 1.704 | 2.224
0.1,1.9] || 0.581 | 1.035 | 0.842 | 1.690

Table 2. Geodesic distance dg‘s’) ([q1], [g2]) under different weight
settings for Simulations 1-4.

In Simulation 1, the optimal rotation is approximately
45° for equal weighting. This is clear, since neither peak
dominates registration, meaning the best rotational align-
ment of the second curve is equally impacted by the perfect
alignment of the second peak and the 90° rotation of the first
peak. However, due to the symmetry of the matching, as the
weight of one of the peaks is increased, the optimal rotation
is pulled to match that particular peak (e.g., for w; = 1.9,
the second shape is rotated by 86.68° to align with the first
peak of the first shape). Also notice that the optimal re-
parameterization function v* changes due to the weights.
The blue line (with equal weighting) is roughly similar be-
fore and after the separation point of the two peaks. How-
ever, increasing a peak’s weight pushes v* to be almost lin-
ear for parameter values corresponding to that peak, and
drastically changes it for the other peak to compensate. The
geodesic paths found in Figure 3 suggest that deformation
occurs differently depending on the weights as well. Con-
stant weighting preserves peak structures equally well. Up-
weighting one peak forces the deformation path to preserve
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Figure 3. Geodesic paths for Simulations 1-4 under different weight settings; G = 7 sampled points along the path are displayed.

that particular peak as well as possible, while sacrificing the
structure of the downweighted peak (e.g., notice how the
second peak for w; = 1.9 shrinks and becomes asymmetric
before growing and regaining symmetry towards the end).

Since the left peak is much larger in Simulation 2, this
segment does not have to be weighted as strong as in Simu-
lation 1 in order to optimally align this feature — w; = 1.5
recovers most of the rotation required to go from the first
to second curve. However, in order to align with respect
to the smaller feature, the segment must be upweighted
strongly to overcome the first peak’s contribution to the op-
timal registration. Notice that again, v* varies by choice
of weights. Finally, a result of note in Simulation 2 oc-
curs when w; = 0.5. In all of the other simulations,
the variable-weighted geodesic distance is smaller than the

equally-weighted geodesic distance, but in this case it is
not. The optimal rotational alignment found does not match
shapes very well at this setting, and so both peaks are quite
different between the two curves. This raises an important
point: the weighted metric is not guaranteed to be smaller
than the unweighted metric, as the optimal rotation and re-
parameterization functions will change! Thus, it does not
make sense to compare distances across different weight
settings, as changing weights influences registration.

In Simulations 3 and 4, peak sizes vary between the two
curves. For Simulation 3, we again observe that the optimal
rotation is mainly impacted by the dominant left peak in the
second curve. As the left peak is upweighted, the optimal
rotation will approach 90°; however, this does not occur
as “quickly” as in Simulation 2, since the first curve does
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not have the same left-peak dominance. Notice the change
point in the optimal re-parameterization which occurs at the
point between the two peaks. This makes sense, since a
larger portion of the second overall curve must be traversed
in the same amount of time as the first half of the first curve.
Also note that in the geodesic paths, the size of the first
peak drastically changes in comparison to the second peak
as the first peak is weighted higher; however, upweighting
the second peak results in much slower evolution of the rel-
ative peak sizes. Simulation 4 alters the size of both the
first and second peaks; optimal rotations reflect what is ex-
pected with the specified weights, and the geodesic paths
display some symmetry (after rotation is factored out) with
respect to weighting of the two peaks.

4. Examples

In this section, we perform pairwise weighted registra-
tion on objects from real data sets. As we are interested in
shape (rather than size-and-shape), all objects are rescaled
to lie on the unit Hilbert sphere C. However, the extrinsic
WLCS metric (Equation 7) is still used for comparison.

4.1. MPEG-7 Shapes from Computer Vision

We first demonstrate the impact of weighted registration
on shapes from the MPEG-7 data set!, which features com-
plex shapes from computer vision. Figure 4 shows two sets
of shapes for comparison: bones, with one “healthy” and
one fractured bone, and half-circles, where there is approxi-
mate symmetry in one versus asymmetry in the other. In the
bone example, £ = 6 landmarks were selected, as shown at
the top of the figure. Registration and geodesic calculation
was done using three weight settings: (1) [1,1,1,1,1,1]
(equal weights), (2) [1.9,1.9,0.1,0.1,0.1, 1.9] (right side),
and (3) [0.1,0.1,1.9,1.9,1.9,0.1] (fractured left side). No-
tice that while the equal weight geodesic path looks like a
natural deformation, perhaps it makes more sense to regis-
ter with respect to the healthy part of the bone or the frac-
ture. In real settings, this may allow a doctor to diagnose
the severity of the fracture with more confidence. The ro-
tational alignment differs significantly depending on which
bone segment is upweighted (and this is also reflected in
the optimal re-parameterizations). Notice that (2) seems to
fix the healthy part of the bone and only slowly bend the
left part to create the bend fracture. Optimal rotation angles
are 0* = 0.66°, 9.53°, and 15.41°, respectively. For the
half-circle, £ = 3 landmarks were selected and weight set-
tings were as follows: (1) [1,1,1], (2) [2.8,0.1,0.1], and
(3) [0.1,2.8,0.1]. The equally-weighted geodesic shows
some rotational alignment in order to match the asymmetry
of the left side more closely, while sacrificing the flat seg-
ment at the base. However, if the flat segment is upweighted

Uhttp://www.dabi.temple.edu/ shape/MPEG7/dataset.htm]

Sk [N

Wts | Geodesic Dist

O | NSNS LA, 032
@ | NN LK 048

3 | NONAAA A A | 0383
M | OOV Y Y NN 0193
@ | O N T 0.066

3 | (YOO Y] 0205

Figure 4. Top: Bone and half-circle shapes being compared — seg-
ments between landmarks are labeled. Bottom: Geodesic path and
distance for different weight settings.

(as in (2)), this feature is preserved and the asymmetry is
formed with respect to this feature. (3) upweights the left
side, which forces a stronger rotational alignment in order
to match the curvature of this segment as much as possible.
Optimal rotation angles for (1), (2), and (3) are §* = 9.18°,
0.76°, and 16.97°, respectively. The left panel of Figure 6
shows optimal re-parameterizations for this example.

4.2. Mice Vertebrae

This section looks at shape of the second thoracic verte-
bra of mice from the ‘shapes’ package in R, developed and
referenced by [4]. Further discussion of vertebra anatomy
and grouping of mice can be found in [18]. A comparison of
two mice vertebrae is shown in Figure 5, with £ = 2 land-
marks specified to separate the neural spine (the “tail” on
the right side) from the rest of the structure. Weighted regis-
tration was performed using weights (1) [1, 1], (2) [1.9,0.1]
(ignoring neural spine), and (3) [0.1, 1.9] (favoring neural
spine alignment). Notice that in cases (1) and (2), since
the neural spine is a small-scale feature as compared to the
full shape, the optimal rotation is found to match the rest of
the vertebrae (68* = 19.25° and 21.87°, respectively). This
seems to ignore the tilt difference in the neural spine. How-
ever, by upweighting the neural spine, we are able to align
based on this local shape feature (6* = 9.35°), allowing the
researcher to compare the vertebrae most predominantly us-
ing the neural spine. By aligning according to this feature,
one could potentially form clusters of mice vertebrae based
on the neural spine’s tilt, allowing for improved symmetry
analysis of the structure.
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Figure 5. Top: Mice vertebrae and signatures being compared —
segments between landmarks are labeled. Bottom: Geodesic path
and distance for different weight settings.

4.3. Handwriting Samples

Figure 5 also shows a comparison of a signature for the
name ‘Ren.” This type of data is relevant in forensic anal-
ysis, where the goal is to discriminate between legitimate
signatures and forgeries. The data used here come from the
SVC 2004 data set?, which contains 40 samples of 40 sig-
natures each (including legitimate ones and forgeries) — see
[8] for further details. Signatures can benefit from weighted
registration, as in the unweighted case, registration may be
dominated by a single large letter (e.g., the first one in a
name); this could lead to misalignment of the full signature.
By downweighting the first letter, we can align based on the
majority of the letters in the signature and scrutinize those
letters more carefully. For this example, the first signature is
legitimate, while the second is a forgery. One landmark was
placed at the end of the letter ‘R’, and we compute optimal
registrations and geodesics under weight settings (1) [1, 1],
(2) [1.9,0.1] (emphasizing ‘R’ matching), and (3) [0.1, 1.9]
(emphasizing ‘en’ matching). Notice that in the unweighted
case (1), the rotational alignment appears off (6* = 14.11°)
because the first letter dominates. As expected, upweighting
the first letter will induce a stronger rotation (6* = 21.35°)
to improve that letter’s alignment even more. However,
downweighting the first letter (as in (3)) corrects for the
overcompensation due to the first letter, and better aligns
the rest of the signature (* = 5.60°). The right panel of
Figure 6 shows optimal re-parameterization functions for
the weight settings; notice the similarities since the opti-
mal rotational alignments are fairly similar across weights.
Even when accounting for variability in orientation due to

Zhttp://www.cse.ust.hk/svc2004/download.html
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Figure 6. Optimal re-parameterization " for half-circle (L) and
signature (R) examples. Colors for different weight settings, re-
spectively: magenta = [2.8,0.1,0.1] (L)/[1.9,0.1] (R), blue =
[1,1,1] (LY/[1,1] (R), black = [0.1,2.8,0.1] (L)/[0.1,1.9] (R).

the first letter, we still obtain a relatively large distance, indi-
cating that the two signatures are different. Further scrutiny
of individual letters in a signature can be done by manu-
ally placing landmark(s) to segment the particular letter of
interest.

5. Summary and Future Work

In this work, we have demonstrated the ability to register
shapes via local features by introducing a weight function.
The optimal registration depends on selected landmarks and
weights. By finding the optimal alignment, one can then
compute pairwise distances between shapes (or size-and-
shapes) using a weighted .2 metric between SRVFs. This
metric also minimizes the registration energy, and produces
a weighted geodesic path which illustrates shape deforma-
tions. For shapes with significant features that are rotation-
ally misaligned, introducing weights can alter the optimal
rotation by a large amount, which then impacts the opti-
mal re-parameterization function. We demonstrated this on
simulated curves where rotational misalignments were arti-
ficially introduced. Noticeable differences are also found in
real shape data.

As this is an introduction to weighted registration, there
are ample opportunities for future work. A natural concern
is of choice of weights. Alternatively, one could learn the
weights, given selected landmarks, by optimizing over a
task of interest (e.g., classification performance). By do-
ing this, the researcher can infer the most important local
features as those with the highest weights. Establishing a
weighted metric opens up the ability to look at mean calcu-
lation, variability assessment, and further inference under
this new metric, and examine robustness to the choice of
weights. Notice that in some examples, certain weight set-
tings do not significantly impact registration. If any selec-
tion of weight yields a similar optimal rotation and align-
ment, then this could be thought of as a way of assess-
ing heterogeneity in a population of shapes. The seam-
less incorporation of automatic landmark detection (in cases
where landmarks are not pre-specified) for classes of similar
shapes is also an important future direction for this work.

478



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

(1]

[12]

(13]

[14]

[15]

[16]

(17]

M. Bauer, M. Eslitzbichler, and M. Grasmair. Landmark-
guided elastic shape analysis of human character motions.
Inverse Problems and Imaging, 11(4):601-621, 2017. 1

F. L. Bookstein. Size and shape spaces for landmark data in
two dimensions. Statistical Science, 1(2):181-222, 1986. 1
K. Domijan and S. P. Wilson. A Bayesian method for auto-
matic landmark detection in segmented images. In Interna-
tional Conference on Machine Learning, 2005. 2

I. L. Dryden and K. V. Mardia. Statistical Shape Analysis:
with Applications in R, Second Edition. Wiley, New York,
2016. 1,7

S. H. Joshi, E. Klassen, A. Srivastava, and I. H. Jermyn.
A novel representation for Riemannian analysis of elastic
curves in r"*. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 1-7, 2007.
3

D. G. Kendall. Shape manifolds, Procrustean metrics, and
complex projective shapes. Bulletin of London Mathematical
Society, 16:81-121, 1984. 1

E. Klassen, A. Srivastava, W. Mio, and S. H. Joshi. Analysis
of planar shapes using geodesic paths on shape spaces. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
26(3):372-383, 2004. 1

S. Kurtek and A. Srivastava. Handwritten text segmentation
using elastic shape analysis. In International Conference on
Pattern Recognition, 2014. 8

W. Liu, A. Srivastava, and J. Zhang. Protein structure align-
ment using elastic shape analysis. In ACM International
Conference on Bioinformatics and Computational Biology,
2010. 1

P. W. Michor, D. Mumford, J. Shah, and L. Younes. A met-
ric on shape space with explicit geodesics. Matematica E
Applicazioni, 19:25-57, 2007. 1

C. Prematilake and L. Ellingson. Evaluation and prediction
of polygon approximations of planar contours for shape anal-
ysis. Journal of Applied Statistics, pages 1-20, 2017. 2

C. G. Small. The Statistical Theory of Shape. Springer, 1996.
|

A. Srivastava, E. Klassen, S. H. Joshi, and I. H. Jermyn.
Shape analysis of elastic curves in Euclidean spaces. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
33:1415-1428,2011. 1,2,3,5

A. Srivastava and E. P. Klassen. Functional and Shape Data
Analysis. Springer-Verlag, 2016. 3

J. Strait, O. Chkrebtii, and S. Kurtek. Automatic land-
mark detection and uncertainty quantification of landmarks
on elastic curves. arXiv:1710.05008, 2017. 2

J. Strait and S. Kurtek. Bayesian model-based automatic
landmark detection for planar curves. In IEEE CVPR Work-
shop on Differential Geometry in Computer Vision and Ma-
chine Learning, 2016. 2

J. Strait and S. Kurtek. A novel algorithm for optimal match-
ing of elastic shapes with landmark constraints. In Interna-
tional Conference on Image Processing Theory, Tools, and
Applications, 2017. 3, 4

(18]

(19]

(20]

479

J. Strait, S. Kurtek, E. Bartha, and S. MacEachern.
Landmark-constrained elastic shape analysis of planar
curves. Journal of the American Statistical Association,
112(518):521-533, 2017. 1,2,4,7

L. Younes. Computable elastic distance between shapes.
SIAM Journal of Applied Mathematics, 58(2):565-586,
1998. 1,3

C. T. Zahn and R. Z. Roskies. Fourier descriptors for plane
closed curves. IEEE Transactions on Computers, 21(3):269—
281, 1972. 1



