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Abstract

In this paper we study Presentation Attack Detection

(PAD) in face recognition systems against realistic arti-

facts such as 3D masks or good quality of photo attacks.

In recent works, pulse detection based on remote photo-

plethysmography (rPPG) has shown to be a effective coun-

termeasure in concrete setups, but still there is a need for

a deeper understanding of when and how this kind of PAD

works in various practical conditions. Related works ana-

lyze full video sequences (usually over 60 seconds) to dis-

tinguish between attacks and legitimate accesses. However,

existing approaches may not be as effective as it has been

claimed in the literature in time variable scenarios. In this

paper we evaluate the performance of an existent state-of-

the-art PAD scheme based on rPPG when analyzing short-

time video sequences extracted from a longer video.

Results are reported using the 3D Mask Attack Database

(3DMAD), and a self-collected dataset called Heart Rate

Database (HR), including different video durations, spec-

trum bands, resolutions and frame rates.

Several conclusions can be drawn from this work: a)

PAD performance based on rPPG varies significantly with

the length of the analyzed video, b) rPPG information ex-

tracted from short-time sequences (over 5 seconds) can be

discriminant enough for performing the PAD task, c) in gen-

eral, videos using the NIR band perform better than those

using the RGB band, and d) the temporal resolution is more

valuable for rPPG signal extraction than the spatial resolu-

tion.

1. Introduction

Face recognition is one of the most extended biometric

traits together with fingerprint and iris. Biometric systems

based on human faces have interesting properties that dif-

ferentiate them from those based on fingerprint and iris, e.g.

the possibility to acquire the facial information at a distance,

and its non-intrusiveness [28]. At present, face is one of the

biometric traits with the highest economical and social im-

pact, being included in high impact products like Face ID

technology from Apple1. Due to this high level of deploy-

ment, attacks against face recognition systems have become

a real threat. Regarding that, it is worth noting that the fac-

tors that make face an interesting trait for person recogni-

tion, i.e. images can be taken at distance in a non-intrusive

way, also make it specially vulnerable to attackers who may

easily get and use facial biometric information in an illicit

manner.

In presentation attacks, an assailant presents to the sen-

sor an artifact for trying to impersonate a genuine user [15].

There are different spoofs and artifacts that a face recogni-

tion system may confront, and the same anti-spoofing tech-

nique may not be useful against all of them, each situation

normally needing a specific countermeasure. Techniques

for countermeasuring those attacks are also known as Pre-

sentation Attack Detection (PAD) methods [19].

Additionally to the ease of getting information of the

real users, face recognition systems are known to respond

weakly to presentation attacks for a long time [15, 17], and

are easily spoofed, for example using one of these three cat-

egories of attacks [11]: i) using a photograph of the user to

impersonate [24]; ii) using a video of the user to imperson-

ate (aka replay attack) [7]; and iii) building and using a 3D

model of the enrolled persons face, for example an hyperre-

alistic mask [9].

There are a high number of PAD measures in the liter-

ature for trying to deal with those three (and others) types

of presentation attacks [19, 11, 23]. For example, texture-

based techniques perform the analysis of the facial texture

to discover unnatural characteristics that may be related to

presentation attacks [7, 12, 1]. This type of approaches may

be useful to detect photo-attacks, video-attacks, and also

low quality mask-attacks. The major drawback of texture-

based presentation attack detection is that high resolution

input images are required in order to extract fine details

from the faces. These countermeasures will not work prop-

erly with bad illumination conditions that make the captured

images to have bad quality in general.

1https://support.apple.com/en-my/HT208108
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Another type of PAD techniques use the depth informa-

tion for detecting the spoofs. In photo and replay attacks the

artifacts are 2D surfaces that can be detected using depth

information. This depth information can be captured by

specialized sensors, like Microsoft Kinect2 or Intel Real-

Sense3. Recent works have shown that it is even possible

to extract depth information from a single RGB image [16].

Nevertheless, this type of countermeasures becomes ineffi-

cient when dealing with 3D presentation attack artifacts like

realistic masks.

Specifically when dealing with 3D mask attacks, in

which the attacker manages somehow to build a highly rea-

listic 3D reconstruction of a genuine face and presents it to

the sensor-camera [9, 13], it becomes difficult to find effec-

tive countermeasures due to the high realism of the spoofs.

As has been said before, the use of depth information be-

comes inefficient as the artifacts present the same volume

of a real face, and the texture information is also useless

when dealing with hyper-realistic masks that imitate the real

texture of the human skin. Social media and video stream-

ing web sites (e.g. Facebook and YouTube) contain a huge

amount of facial recordings of people, making easy to ac-

cess to the information required to manufacture 3D masks

or another face spoofs. Additionally, over the Internet there

exist a variety of online services (e.g. “ThatsMyFace”4) for

ordering a highly realistic 3D mask at an affordable cost

(200-300 USD).

Due to the easiness to perform this type of sophisticated

attack, efficient countermeasures against 3D mask attacks

are nowadays highly relevant. In this scenario, detecting

pulse from face videos using remote photoplethysmography

(rPPG) has proved to be an effective countermeasure against

3D mask attacks [18]. Even though rPPG-based PAD is

quite promising, all the current approaches still have their

limitations. They usually consist in taking a complete video

sequence for extracting its rPPG signal. In the databases

employed in published studies, the length of the video se-

quences uses to be long enough to give the rPPG system

sufficient data for making a robust estimation without ana-

lyzing the time interval size. Nevertheless, not in all situa-

tions will be possible to have a long video sequence (e.g. 1

minute) for making the analysis. In order to perform a low

latency/short-time study of the rPPG signal, where the se-

lected length of the videos is as short as possible, it becomes

necessary to study the performance when varying the video

length.

On the other hand, even when working with favorable

conditions: long enough videos, good illumination, high re-

solution, perfect face detection and tracking, etc, the pulse

2https://developer.microsoft.com/en-us/windows/kinect
3https://www.intel.com/content/www/us/en/architecture-and-

technology/realsense-overview.html
4http://thatsmyface.com/

detection algorithms must deal with variable scenarios, e.g.

an attacker that puts on a mask in the middle of the video,

in which case existing approaches may not be able to give

a consistent estimation of pulse and/or presentation attack

probability. In such cases, a short-time approach is more

adequate. Additional problems arise when these algorithms

are applied to real scenarios where they may also have to

deal with other factors like bad illumination conditions or

failures in the face detection module, making their perfor-

mance to drop significantly. With a short-time analysis of

the rPPG signal, the frames without a properly detected

face could be discarded without affecting the global perfor-

mance.

In this paper we: i) present a new dataset of photo at-

tacks with long video sequences, in visible (RGB) and Near

InfraRed (NIR); ii) study the performance of video-based

pulse detection depending on the length of the video se-

quences, both in an existing benchmark (3DMAD) and our

new dataset; and iii) simulate and test pulse-based PAD in a

scenario in which the attacking conditions vary over time.

The rest of this paper is organized as follows: Section 2

introduces Remote Photoplethysmography and summarizes

works that use it for pulse detection and/or face PAD. Sec-

tion 3 describes the proposed system. Section 4 describes

the employed databases and the experimental protocol. Sec-

tion 5 shows the results obtained. Finally, concluding re-

marks are drawn in Section 6.

2. Remote Photoplethysmography

Plethysmography refers to techniques for measuring the

changes in the volume of blood through human vessels.

This information can be used to estimate parameters such as

heart rate, arterial pressure, blood glucose level, or oxygen

saturation levels. The variant called Photoplethysmography

(PPG) includes low-cost and noninvasive techniques asso-

ciated with imagery and the optical properties of the human

body [2]. For example, human heart rate can be measured

detecting the periodic changes between oxygenated and de-

oxygenated blood through the veins.

Recently, related studies have proven that it is possible

to measure the changes in the amount of oxygenated blood

through facial video sequences [22]. These techniques are

called Remote Photoplethysmography (rPPG) and their op-

erating principle consists in looking for slight changes in

the skin color at video recordings using signal processing

methods. When applying this technique to a 3D mask at-

tack or a photo print attack, the estimated pulse signal is

highly different from a genuine pulse signal [18].

Table 1 summarizes related works in rPPG, from where

we can see that most research in this area use self-collected

datasets not publicly available. One of the few public

datasets available for 3D mask PAD is 3DMAD, which con-

tains RGB videos of genuine users and of 3D mask attacks.
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Method Type of Images Database used Video Length Parameter Estimated Performance

Garbey et al. 2007 [14] Thermal self-collected 120 secs Heart Rate Accuracy = 99%

Poh et al. 2011 [22] RGB self-collected 60 secs. Heart Rate RMSE = 5.63%

Tasli et al. 2014 [26] RGB self-collected 90 secs. Heart Rate MAE = 4.2%

Chen et al. 2014 [6] Hyperspectral self-collected 30-60 secs Stress Level Qualitative

McDuff et al. 2014 [20] Multiband (RGBCO) self-collected 120 secs Heart Rate Correlation = 1.0

Chen et al. 2016 [5] RGB + NIR self-collected 90 secs Heart Rate RMSE = 1.65%

Li et al. 2016 [18] RGB 3DMAD and self-collected 10 secs Face PAD EER = 4.71%

Present Work RGB & NIR 3DMAD and self-collected 10 & 60 secs Face PAD EER = 25% & 0%

Table 1: Related works that use different types of images to implement rPPG for pulse extraction and related tasks like face

Presentation Attack Detection or stress detection. For our system, performances obtained with RGB and NIR videos are

shown separately.

We decided to use 3DMAD to compare our results with

[18]. We also decided to acquire a supplementary dataset

to have larger RGB videos (1 minute) compared to the ones

from 3DMAD (only 10 seconds), what will help us with

our target of performing a time analysis of the PAD per-

formance. Our dataset also contains information from the

NIR spectrum band in order to allow us to compare perfor-

mances between both bands.

3. Proposed System

In this section we describe the general scheme of the pro-

posed framework. The purpose of the system is the follow-

ing: given a facial video sequence of a person, our system

decides if the video comes from a real face or if, on the

contrary, it is really a presentation attack.

As shown in Fig. 1, our system consists in three main

stages. The first stage processes a video, extracting tempo-

ral windows and measuring raw rPPG signals. The second

stage, extracts discriminant pulse-related features from the

rPPG signals. The third and last stage performs the match-

ing task comparing models of presentation attacks and real

faces with the extracted features. Our approach is largely

based in [18]. We chose it as reference because its excellent

performance for PAD shown in 3DMAD. There are slight

differences between the system from [18] and ours, and

between the process followed with the 3DMAD database

and with the HR database (our own self-collected database).

The differences are described below.

3.1. rPPG Signal Generation

The input of this stage is a temporal window extracted

from the original video. The window length T is config-

urable in order to perform a time dependent analysis. Each

video can be processed as a whole or extracting smaller

video sequences. The rPPG signal extraction stage is di-

vided into three steps, namely: face detection, ROI selec-

tion and tracking, and rPPG signal generation.

3.1.1 Face detection

For each RGB windowed video (or NIR if available) we per-

form face detection at the first frame using the Matlab im-

plementation of the Viola-Jones algorithm [29]. This algo-

rithm is known to perform reasonably well and in real time

when dealing with frontal faces, as in our case. There are

three possible outputs from the face detector: 1) One face is

detected and the detector returns a bounding box that con-

tains the face location. 2) Multiple faces are detected and

the bounding boxes of all them are returned. Sometimes,

there are false positive face detections and bounding boxes

without a real face inside them are returned. In these cases,

we decided to keep only the larger bounding box because in

the majority of cases it contains the real face. 3) No face is

detected so there is no output. This case is called Failed To

Acquire (FTA). The FTA rate of this specific work is 0% for

both databases as they contain good quality faces.

3.1.2 Face region selection and tracking

After the recognition stage, we selected a facial Region of

Interest. An example of this region (nose and cheeks) can

be seen in Fig. 1. Our ROI is different to [18], since they se-

lected a bigger ROI that includes also the mouth and chin.

We decided to use a smaller region because it is less af-

fected by objects like hats, glasses, beards or mustaches.

The next step consists of detecting corners inside that re-

gion for tracking them over time using the Kanade–Lucas–

Tomasi algorithm [27], also implemented in Matlab.

3.1.3 rPPG signal extraction

For the ROI of each frame from the video segment, we cal-

culate its raw rPPG value as the average intensity of the pix-

els inside the region. This sum is made separately for the

three available channels of the RGB images (Red, Green

and Blue) giving us three different rPPG values for each

RGB video segment (one value for NIR recordings). The

rPPG signal generation is executed at every frame of the
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Figure 1: Architecture of the proposed pulse-based face presentation attack detection. Given a facial video, the face is

detected and rPPG related features are extracted from the ROI in order to obtain an individual score of each video segment.

Then, the video segment is classified as an attack or a legitimate access based on its score considering a database of real faces

and mask attacks.

video segment, being its final output a temporal signal with

the raw rPPG values for the windowed recording.

3.2. Feature Extraction

3.2.1 rPPG signal postprocessing

The raw rPPG signal contains not only the light variations

due to the human pulse but also the mean environmental

illumination, changes in that environmental levels and noise

from other sources. Due to all those factors, a postproces-

sing stage is necessary.

The postprocessing method consists of three filters:

• Detrending filter [25]: this temporal filter is em-

ployed for reducing the stationary part of the rPPG

signal, i.e. eliminating the contribution from environ-

mental light and reducing the slow changes in the rPPG

level that are not part of the expected pulse signal.

• Moving-average filter: this filter is designed to elim-

inate the random noise on the rPPG signal. That noise

may be caused by imperfections on the sensor and in-

accuracies in the capturing process. This filter consists

in a moving average of the rPPG values (size 3).

• Band-pass filter: a regular human heart rate uses to

be between 40-240 beats per minute (bpm), which cor-

responds to signals with frequencies between 0.6 and

4 Hz approximately. All the rPPG frequency compo-

nents outside that range are unlikely to correspond to

the real pulse signal so they are discarded.

3.2.2 Frequency Domain Analysis

The input to this stage is a clean rPPG signal that should be

a robust estimation of the changes in skin tone due to the

blood level evolution. At this point, if we want to extract

the corresponding heart rate value for a video sequence, the

highest frequency peak inside the normal frequency range

should be selected. In our case, we did not want to extract

the exact value of the heart rate since our task is to distin-

guish between real faces and mask attacks. With that target

in mind, we have selected discriminant features from the

final rPPG signal’s spectrum.

The features we have decided to use are also the ones

from [18]. We transformed the signal from the spatial do-

main to the frequency domain using FFT and estimated its

power spectral density (PSD) distribution. An example of a

PSD can be seen in the feature extraction stage in Fig. 1.

From the PSD we selected the maximum power response

as the first feature P , and the ratio of P to the total power

in the 0.6 - 4 Hz frequency range as a second feature R.

This pair of features [P,R] have been extracted for the three

color channels in the case of the RGB videos, and for the

unique channel in the NIR case, resulting in feature vectors

of size 6 and 2, respectively.

3.3. Match Score Generation

The last block of the presentation attack detection sys-

tem is the comparator. Like in [18] we use Support Vec-

tor Machines (SVM) as our classifier. A Support Vector

Machine is a supervised algorithm based in a representa-

tion of the examples as points in a multidimensional space.

The training process consists in choosing a hyperplane that

maximizes the distance from it to the nearest data point of

each class. With this type of classifiers, it is interesting to

have the input data represented in a high-dimensional space

of uncorrelated features, what gives more freedom to find a

hyperplane with a minimum distance large enough to obtain

high classification rates. We have used the 6-dimensional
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(or 2-dimensional for NIR videos) feature vectors for train-

ing and testing the SVMs.

4. Databases and Experimental Protocol

4.1. Databases

In our experiments we have used two different databases:

the first dataset, the 3D Mask Attack Database (3DMAD)

has been used in related works of 3D mask PAD. We de-

cided to use 3DMAD to enable direct comparison with

related studies. The second dataset is a self-collected

database, called from now on HR (Heart Rate database).

The purpose of this dataset is to complement the results ob-

tained with 3DMAD with images of higher resolution, extra

spectrum bands and longer duration.

• The 3D Mask Attack Database (3DMAD) [8] is a

dataset collected and distributed by the Idiap Research

Institute. It contains frontal-view controlled record-

ings of 17 different users acquired using Microsoft

Kinect. For each user there are 3 different sessions,

with 5 videos for session. Two of the sessions include

legitimate user videos with a time delay of 2 weeks

between recordings, while the remaining session con-

sists of a 3D mask attack using the mask of each cor-

responding user.

The masks used for the attacks were obtained from

ThatsMyFace.com5, an online service that allows their

clients to create wearable hard-plastic realistic masks

with holes at the eyes and nostrils. To produce each

mask only 3 images of each user are needed (1 frontal

and 2 lateral). The pictures that were employed to cre-

ate each mask presented in the database are also in-

cluded in the 3DMAD corpus.

The duration of each recording is 10 seconds, cap-

tured at 30 frames per second, resulting in 300 frames

per video. The Kinect sensor makes possible to cap-

ture RGB and Depth images at the same time, so the

database contains both information for each recorded

frame. It also contains annotated eye positions for each

frame of the RGB videos.

Summarizing, 3DMAD is formed by 17 users × 3 ses-

sions/user × 5 videos/session × 300 frames/video =

76,500 RGB and 76,500 Depth frames, all of them

with a resolution of 640×480 pixels. One-third of

these frames (25,500) correspond to mask attacks and

two-thirds (51,000) to legitimate access attempts.

In our experiments we have only used the RGB infor-

mation of the database in order to compare our results

5http://www.thatsmyface.com/

Figure 2: HR Database. The figure shows some samples

from the HR database. The dataset contains information

from both RGB (left) and NIR sensors (right). The sam-

ples are splited into legitimate users (up) and photo attacks

(down).

with the ones in [18]. The Depth frames are not em-

ployed in this study, but they could be processed to

perform more robust face detection and tracking.

• The Heart Rate Database (HR) is a dataset self-

collected by our research group. It has not been re-

leased yet as we are now enlarging it for subsequent

research in this area. We will make it public at a

later stage when we finish the collection effort. It

is a database collected for complementing existing

databases like 3DMAD.

3DMAD is a large dataset but it presents some limita-

tions for performing a study like the one presented in

the present paper: i) it only has one type of face spoof-

ing artifacts; ii) the length of the videos is short, only

10 seconds; iii) it does not contain information of extra

spectrum bands, only depth information that is useless

for rPPG and that has been recorded using only one

type of sensor. To overcome these limitations, we cap-

tured HR.

For the preliminary experiments repeated in the

present paper, we use frontal-view controlled record-

ings of 10 different users. We have captured facial

RGB videos with a reflex digital camera NIKON

D5200 with 1920×1080 resolution. The database also

contains facial NIR videos, captured simultaneously to

the RGB video using a NIR camera with 1032×770

resolution. See Fig. 2 for an example of the database

images.
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The RGB and NIR videos are synchronized in order

to develop experiments that can take advantages of the

multiband information. In this work we compare both

types of videos.

The videos have a duration of 60 seconds, being cap-

tured at 25 frames per second for the RGB camera, and

30 frames per second for the NIR camera, resulting in

1,800 and 1,500 frames per video, respectively.

HR also contains face presentation attacks, in this case

not using 3D realistic faces, but using HQ color print-

ings of the attacked faces (see Fig. 2). This way are

able to measure the performance of face PAD based on

pulse detection with other type of easy-to-create spoof-

ing artifacts different to 3D masks. For each user we

have recorded two sessions: one legitimate access and

one photo print face attack.

Summarizing, HR contains recordings of: 10 users × 2

sessions/user × 1 videos/session × 60 seconds/video =

30,000 RGB and 36,000 NIR frames, from which one-

half (15,000 and 18,000 frames) correspond to attacks

and the other half to legitimate access attempts.

4.2. Experimental Protocol

4.2.1 3DMAD database

From the rPPG signal we extracted the six-dimensional fea-

ture vector (Pr, Rr, Pg, Rg, Pb, Rb) for each one of the fol-

lowing temporal window sizes: from 1 to 10 seconds (1 sec-

ond steps). For the Support Vector Machines we used linear

kernels with fixed cost parameter C = 1000 similarly to

[18].

The whole dataset is divided into legitimate samples as

the positive class and attack samples as the negative class.

For training and testing the classifier, we use a Leave-One-

Out Cross-Validation (LOOCV) protocol: for each one of

the 17 users in the 3DMAD database, we use all his fea-

ture vectors for testing against a SVM model that has been

trained with all the samples from the remaining 16 users.

The metric used to report results is the Equal Error Rate

(EER in %). EER refers to the value where the Impostor At-

tack Presentation Match Rate (IAPMR, percentage of pre-

sentation attacks classified as real) and the False Non-Match

Rate (FNMR, percentage of real faces classified as fake)

are equal6. For each window size, the EER has been cal-

culated independently for the 17 subjects (each one of the

LOOCV iterations). The 17 individual results are then av-

eraged to produce a single performance (mean and standard

deviation).

6As error measures we have mentioned IAPMR and FNMR as defined

and discussed by Galbally et al. [12]. Modifying the Decision Threshold

on the right of Fig. 1 until those error rates are equal we obtain the Pre-

sentation Attack Equal Error Rate, PAEER, defined and discussed in [12].

Here we follow [12] using PAEER to evaluate the presentation attacks, but

calling it as EER for simplicity.

4.2.2 HR database

For the experiments with HR we used a slightly different

experimental protocol in order to compare the information

from RGB and NIR videos. We distinguish between: i)

using only RGB videos, and ii) using only NIR videos.

For the scenario (i) we followed exactly the same exper-

imental protocol than the one explained for 3DMAD, with

the obvious changes in the total number of users and videos

and the possible sizes of the temporal windows, since the

higher duration of the recordings allowed us to have also

into account windows sizes of 20, 40 and 60 seconds.

For the scenario (ii) we also followed the same experi-

mental protocol but this time the feature vector only con-

sists of two features (P,R) as the NIR images only have

one color channel.

5. Results

The results obtained on 3DMAD and HR RGB are sum-

marized in Table 2. The EER has been computed for di-

fferent window sizes. The performance of the presenta-

tion attack detection becomes higher when increasing the

length of the processed video sequence. For short video

sequences (from 1 second to 5 seconds) the system shows

almost random behavior, close to 50% EER, improving for

longer videos. When dealing with those short recordings,

the rPPG sequence does not have enough complete pulse

cycles for extracting robustly the features from the signal

spectrum. As can be seen in Table 2, Li et al. [18] obtained

much lower EER results than ours when working with the

3DMAD database. Compared to their work our approach

is much simpler (as can be seen in Section 3.1.2). The fa-

cial ROI extracted in our experiments is smaller and our

extraction method is less robust to movement and illumina-

tion changes, affecting the final results. Despite that fact,

our target, which was analyzing to what extent the length of

the video affects to the final performance, is achieved.

Comparing the EER results obtained from 3DMAD data

with those obtained with HR, there is a gap between per-

formances, specially when using longer videos, achieving

always better performance when working with the 3DMAD

database. Though our self-collected dataset has been cap-

tured with higher resolution than 3DMAD (1900×1080

pixels vs 640×480 pixels), the frame rate is lower in HR

(25 fps vs 30 fps). This means that even though the detected

ROIs will contain a higher number of pixels, i.e. more spa-

cial information, for each temporal window, the videos will

contain less frames, i.e. less temporal information. This re-

sult indicates that for extracting a robust rPPG signal from

facial videos, the temporal resolution is more relevant than

the spatial resolution.

In Table 3 a comparison between the EERs obtained with

RGB and NIR videos on the HR database is shown. In this
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Video Length T [s] 1 2 3 4 5 6 7 8 9 10 10 (Li et al. [18])

3DMAD
Mean EER [%] 42.8 45.0 37.8 40.7 33.1 29.7 25 26.1 24.1 22.1 4.71

Std EER [%] 5.0 5.9 8.6 9.8 10.8 18.1 14.5 15.2 11.9 10.3 -

HR
Mean EER [%] 46.9 45.7 46.5 42.1 42.1 40.1 34.1 36.4 37.3 40.1 -

Std EER [%] 3.9 5.1 3.9 8.1 9.5 10.2 12.7 11.8 11.7 9.6 -

Table 2: EER of our implemented face PAD on 3DMAD and HR databases. The study has been performed changing the

length of the video sequences analyzed. The table also compares our results with [18] on 3DMAD. Values in %. Highlighted

in bold are the best EER results for each database.

Video Length T [s] 1 2 5 10 20 30 40 50 60

RGB videos
Mean EER [%] 46.9 45.7 42.1 40.1 40.0 40.0 36.6 30.0 25.0

Std EER [%] 3.9 5.1 9.5 9.6 14.0 21.1 20.5 25.8 26.3

NIR videos
Mean EER [%] 42.4 41.7 38.4 30.9 30.0 16.6 5.0 0.0 0.0

Std EER [%] 5.9 6.4 10.8 13.5 18.8 17.5 15.8 0.0 0.0

Table 3: EER of our implemented face PAD on HR database. The table shows EER values for video sequences of

increasing length T and also results using NIR videos. Values in %. Highlighted in bold are the best EER for each band.

case, longer video sequences (up to 60 seconds) have been

analyzed thanks to the higher duration of the recordings.

The overall performance obtained with NIR videos is much

better than in the RGB case, achieving a 0% EER with 50

seconds of window size.

In the process of extracting the rPPG information from

the facial videos, there are several factors that can affect

the final performance: head motion, ROI location, light

changes, frame rate, resolution or noise sources. The NIR

camera employed for acquiring the video sequences have a

higher frame rate (30 fps), and it adds less noise to the final

images thanks to the higher quality of its sensor. The NIR

spectrum band is also more robust to environmental light

variations than the RGB bands.

Once again, as in the comparison between the perfor-

mance obtained with HR and 3DMAD, the NIR videos have

lower spatial resolution than the RGB, but higher temporal

resolution, reinforcing the hypothesis that the spatial reso-

lution is not as critical as the temporal resolution in order

to achieve high performance when working with rPPG. It

is also remarkable the fact that the feature vector extracted

from NIR videos is only 2-dimensional versus the higher

dimensionality (6 features) from the RGB recordings.

Finally, Fig. 3 shows the temporal evolution of the anti-

spoofing liveness scores in a variable attack scenario (the

higher the scores the lower the estimated probability of pre-

sentation attack). In this scenario we wanted to simulate

a situation in which an imaginary attacker puts on and re-

moves the mask (or the printed HQ photograph) several

times during the same recording. Extracting the features

using the full video may not be enough for discerning be-

tween an attack and a real access in this situation due to

the intra-video variability. Using a short-time/low latency

approach, the PAD output will be able to evolve over the

video, which justifies the usefulness of a short-time rPPG

analysis. It can be seen how the liveness scores decrease

when the attacker puts on the mask and viceversa. In Fig.

3a the video windows analyzed are shorter (T = 5 seconds)

than the length of those in Fig. 3b and Fig. 3c, due to the

lower performance obtained with HR compared to 3DMAD

(see Table 2). Our future research will be oriented to inves-

tigating practical trade-offs towards short-time pulse detec-

tion and related liveness scores, and their integration in this

kind of time-variant attacking scenarios.

6. Conclusions

We analyzed time effects of Presentation Attack Detec-

tion (PAD) against face biometrics based on video pulse

detection (remote PhotoPlethysmoGraphy, rPPG). We an-

alyzed the performance of pulse-based face PAD using two

different databases, one public (3DMAD) and one self-

collected (HR), with various spectrum bands (RGB and

NIR), frame rates and resolutions. We also discussed a pos-

sible time-variant attack scenario in which the advantages

of a short-time rPPG analysis can be exploited.

While time holistic methods may fail to adapt their

decisions in variable situations, we advocate for short-time

PAD able to deal with quick changes in the attacking sce-

nario. For that, the video sequences must have a minimum

length in order to obtain a robust PAD score, and we have

provided some evidence on the performance of pulse-based

face PAD for small video durations.
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(a) Scores from 3DMAD RGB videos.
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(b) Scores from HR RGB videos.
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(c) Scores from HR NIR videos.

Figure 3: Temporal evolution of the scores in a variable attack scenario. The attacker puts on and removes the mask

several times inside the video. Results using data from 3DMAD and HR are shown. In (a) the video sequences analyzed are

shorter (5 seconds) than the length in (b) and (c), due to the lower performance obtained on HR compared to 3DMAD.

Our implemented rPPG PAD method works better with

higher frame rate recordings in the NIR spectrum band.

This is due to the temporal changing nature of the rPPG

signal, that favors the temporal resolution against the spa-

tial resolution, and also due to the higher robustness against

illumination variations of the NIR spectrum band.

This is the first in-depth research of the temporal de-

pendence of pulse detection for PAD. The proposed short-

time analysis has potential to be generalized into many real-

world use case scenarios in which a low latency analysis of

the video sequence is necessary.

Future work includes: 1) Improving the baseline sys-

tem for getting lower EER with short videos (e.g. using

video magnification techniques [3]). 2) Temporal integra-

tion of individual scores for performing continuous PAD

[21]. 3) Capturing a larger database with a higher number

of users, more variate spoofing artifacts and maybe employ-

ing sensors that combine RGB and NIR information (like

Intel Real-Sense) for improved PAD based on multiple evi-

dences [4, 10]. And 4) accomplishing a more in depth study

of the performance when changing spatial and temporal re-

solution.
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