
Realtime Quality Assessment of Iris Biometrics under Visible Light

Mohsen Jenadeleh1,2, Marius Pedersen2, Dietmar Saupe1

1University of Konstanz, Konstanz, Germany
2Norwegian University of Science and Technology, Gjøvik, Norway

mohsen.jenadeleh@uni-konstanz.de, marius.pedersen@ntnu.no, dietmar.saupe@uni-konstanz.de

Abstract

Ensuring sufficient quality of iris images acquired by

handheld imaging devices in visible light poses many chal-

lenges to iris recognition systems. Many distortions affect

the input iris images, and the source and types of these

distortions are unknown in uncontrolled environments. We

propose a fast no-reference image quality assessment mea-

sure for predicting iris image quality to handle severely

degraded iris images. The proposed differential sign-

magnitude statistics index (DSMI) is based on statistical

features of the local difference sign-magnitude transform,

which are computed by comparing the local mean with the

central pixel of the patch and considering the noticeable

variations. The experiments, conducted with a reference iris

recognition system and three visible light datasets, showed

that the quality of iris images strongly affects the recogni-

tion performance. Using the proposed method as a quality

filtering step improved the performance of the iris recogni-

tion system by rejecting poor quality iris samples.

1. Introduction

Since the stability of iris patterns over a human lifetime

and their uniqueness were noticed in 1987 [11], iris images

are used more frequently for identifications and authenti-

cations in biometric security applications [7]. Most of the

commercially available iris recognition systems use near in-

frared (NIR) images, but due to the popularity of consumer

cameras, iris recognition systems using images acquired un-

der visible light were also developed [37, 49, 39, 40].

Image quality is a key factor that affects the performance

of iris recognition systems [48, 47, 3]. There are many dis-

tortions that may affect the quality of iris images, including

Gaussian blur, motion blur, impulse noise, Gaussian noise,

and over-exposure. There are also other quality factors that

depend on the content of iris images, including glare, oc-

clusion, and iris deformation. The performance of an iris

recognition system under visible light suffers from all of

these distortions. To overcome this problem, recently some

iris recognition systems have considered the quality of the

input iris image [1, 35, 53, 44, 9, 27] in different ways.

However, these systems suffer from two major weaknesses:

∙ The types of distortions considered are limited. Usu-

ally only some frequently seen distortions such as

Gaussian blur, noise, motion blur, and defocus are con-

sidered. However, real-world iris images, especially

images taken by handheld devices, may also suffer

from other types of distortions simultaneously.

∙ In related works, usually the quality assessment is ap-

plied to accurately segmented iris images, but the qual-

ity of iris images also effects the performance of the

segmentation. Incorrect iris segmentation increases the

false rejection rate.

One of the main goals of this paper is to introduce a general

fast image quality assessment method to assess the distor-

tions of the input iris image that can be used to rapidly reject

iris samples with poor quality. Also, we investigated the

effect of iris image quality on the performance of a refer-

ence iris recognition system on three challenging iris image

datasets acquired under visible light. Figure 1 shows the

general overview of the proposed framework for handheld

iris recognition systems under visible light.

The main contributions of this paper are as follows:

1. We introduce a no-reference image quality assessment

measure for iris biometrics. First, sign and magnitude

patterns are derived. Then, the statistical features of

these patterns are analyzed for studying their sensitiv-

ity to iris image distortions. Further, statistical features

of a specific coincidence sign-magnitude patterns with

high sensitivity to image impairment are computed. A

weighted nonlinear mapping is applied to the features

to form the iris image quality score.

2. We conducted extensive experiments on three visible

light datasets from the ��2 multi-modal biometric

database [25] to analyse the effect of iris image qual-

ity filtering on the performance of an iris recognition

system. In this study, OSIRIS version 4.1, [32] was
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Figure 1. General overview of the suggested framework for handheld iris recognition systems. The proposed image quality measure can

be used as a pre-processing step to pass only iris images with sufficient quality to further processing in the iris recognition systems. This

approach helps to reduce false negative and false positive authentication due to low image quality. In the figure, � is the image quality score

predicted by the proposed DSMI measure, �� is the minimum suitable quality, � is the features matching score, and �� is the threshold of

the iris recognition system for accepting or rejecting the pattern matching.

used as a reference iris recognition system. We used

three methods to measure the performance improve-

ments: Daugman’s decidability index [5], AUC (area

under the curve), and EER (equal error rate). The ex-

periments showed the proposed framework provided

significant improvements on the performance by re-

jecting poor quality iris samples.

2. Related Work

Recently, research has been reported to improve the per-

formance of iris recognition systems by considering image

quality, however with certain limitations. Some iris image

quality measures are based on fusion of multiple quality

measures. The authors in [18, 20] combined quality mea-

sures including motion blur, defocus, off-angle, occlusion,

etc. to an overall iris quality score. These methods were

designed for NIR-based iris recognition systems and thus,

cannot be used directly for iris images under visible light. Li

et al. [21] proposed a method for predicting an iris match-

ing score based on a feature vector of quality measures such

as focus, motion blur, illumination, off-angle, occlusions,

and dilation. This method needs iris segmentation result for

computing quality factors such as dilation and occlusions.

Recently, many machine learning based image quality

methods were proposed for quality assessment of natural

images [29, 16, 24, 17, 51]. Liu et al. [25] studied some of

these methods for filtering low quality iris images. Their ex-

periments showed inconsistencies, i.e., removing more low

quality images did not always increase the performance of

iris recognition systems.

Belcher et al. [1] measured occlusion and dilation dis-

tortions in iris images, and then combined them to a total

image quality score to study the correlation between iris

images quality and iris recognition accuracy. Their experi-

ments showed that image quality could be used for predic-

tion of iris matching score.

Some researches investigated iris image quality con-

sidering only specific quality factors such as out-of-focus

[50, 45], sharpness [4], and JPEG compression [2]. So they

are not generalizable for assessing quality of iris images in

presence of a mixture of iris distortions.

In [30], the authors proposed an iris segmentation

method, based on the segmentation results, a real time iris

quality measure was introduced. This measure cannot be

used for estimating iris quality before segmentation.

Happold et al. [14] compute a feature vector of qual-

ity related factors, and then labeled the iris images in the

training database with their corresponding matching scores.

The model can predict the matching scores using the feature

vector of certain quality factors. For computing the quality

factors the output of the iris segmentation is needed. There-

fore, the method cannot be used to measure quality in the

iris recognition system pipeline before segmentation.

The fast iris recognition (FIRE) system for images ac-

quired by mobile phones under visible light was proposed

by Galdi et al. [12]. It is based on the combination of three

classifiers exploiting the iris color and texture information.

A method based on rejecting low quality iris images in

visible light was proposed by Proenca [37]. In this method,

image degradations such as defocus, motion blur, image

angle, iris occlusions, and pupillary dilation are measured

from accurately segmented iris patterns. Then, the effect of

image quality on feature extraction and matching is consid-

ered. The results showed significant performance improve-

ment of the iris recognition system. However, the method

has drawbacks. It requires accurately segmented irises, and

only a limited number of distortion types are considered.

Recently, OSIRIS version 4.1, an open source iris recog-
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nition system was proposed by Othman et al. [32]. This

method follows the Daugman method [6] with improve-

ments in four different modules of OSIRIS, consisting of

segmentation, normalization, encoding, and matching. For

iris and pupil segmentation, the Viterbi algorithm is used

for an optimal contour detection. For normalization a non-

circular iris normalization is performed using the coarse

contours detected by the Viterbi algorithm. The encoding

module is based on 2-D Gabor filters computed at various

scales and resolutions. Finally, the matching module com-

putes the global dissimilarity score between two iris codes

using Hamming distance. We used this method as a refer-

ence iris recognition system.

An efficient deep learning based iris recognition method

was proposed by Zhao et al. [52]. The proposed methods

includes two sub-networks. MaskNet network for identify-

ing iris regions, and FeatNet for iris feature extraction. For

extracting effective iris features by FeatNet, a new Extended

Triplet Loss function have been proposed for incorporating

a bit-shifting operation into the original loss function for

Triplet networks. This method was trained and tested on

NIR iris databases.

Some of the iris quality assessment methods such as

[18, 20] were proposed for traditional NIR imaging systems

and consider a limited distortions. Other methods, such as

[37, 14, 30], were introduced for assessing the iris images

quality in presence of a limited number of distortion, and

they also need the output of the segmentation module of iris

recognition systems for generating their quality features. In

addition, these systems suffer from a lack of generality re-

quired to assess the quality of iris images for unknown dis-

tortions in an unconstrained real-world environment.

Iris recognition systems based on images acquired by

handheld devices in visible light will broaden the scope of

applications of iris recognition and requires more research

for suitable fast image quality measures.

3. Proposed Quality Measure

In this section, we present a fast and general method for

assessing impairment of iris images acquired by handheld

devices under visible light.

Local binary patterns (LBP) and their derivatives im-

proved many pattern recognition applications such as tex-

ture classification [22, 23, 13], image retrieval [10, 31], ob-

ject recognition [42, 43], and biometric recognition [33, 19,

26, 46, 36]. Most of the LBP based biometric recognition

methods use statistical analysis of the local patterns for their

feature extraction. Severities of the image distortions could

change these statistics.

We propose an image quality measure to assess the im-

age quality based on the changes on the statistics of a certain

coincidence sign-magnitude pattern. The iris image quality

measure exploits the observation that low quality iris im-

ages have significantly fewer of these patterns compared

with those in high quality iris images.

Our quality measure uses statistical features extracted

from uniform patterns of a local difference sign-magnitude

transform (LDSMT) which decomposes the image into sign

and magnitude components [13]. Then the locally weighted

statistics of a specific sign-magnitude coincidence patterns

are used for formulating the quality score.

These patterns were chosen after statistical analyses of

the sign-magnitude patterns of completed local binary pat-

terns [13] representation of an image. In this paper, for

simplifying the method, we formulate the selected statistics

and do not explain the general procedure of the completed

local binary pattern. The patterns were analysed using 4-

neighborhood with radius 1 of the central pixel of a local

patch.

Let � = {(�, �)∣� = 0, ...,� − 1, � = 0, ..., � − 1} be

the set of pixels of an image � . Replace the grayscale image

� by its normalized version �̂:

�̂(�) =
�(�)− �min

�max − �min

, � ∈ � (1)

Let the 4-neighborhood of a pixel in position (0,0) be � =
{(1, 0), (0, 1), (−1, 0), (0,−1)}. For all pixels � ∈ � not

on the boundary:

∙ Compute local maxima and store them in the �1(�):

�1(�) =

{

1 �̂(�) > max(�̂(�+ �)∣� ∈ �)

0 otherwise
(2)

∙ Compute pixels with local differences with respect to

threshold � and store them in significance map �2(�):

�2(�) =

{

1 � > max(�̂(�)− �̂(�+ �)∣� ∈ �)

0 otherwise

(3)

The threshold � is determined adaptively, here it is the

averaged grayscale difference in the entire image.

The statistics of the coincidence pattern of the sign �1(�)
and magnitude �2(�) is computed as follows:

�(�) =

{

1 �1(�) = 1 and �2(�) = 1

0 otherwise
(4)

The local variance of the normalized image is:

�2(�) = var�̂(�+ �)∣� ∈ � (5)

The normalization by the local variance emphasizes the

value of the significant local maxima. We define the locally

weighted statistics of the coincidence pattern as follows:

� = �(
1

∣�∣

∑

�∈�

�(�)

�2(�) + �2
) (6)
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where � normalizes the scores to [0, 1) for ease of interpre-

tation of the quality scores.

� : [0,∞) → [0, 1)
� 
→ 1− �−��

where �2 is a small constant to prevent division by zero, and

� is a constant for adjusting the nonlinear mapping. � = 0
denotes the lowest image quality and � ≈ 1 refers to the

highest image quality. � is used as our DSMI iris image

quality measure. The parameters �2 and � were set to be

equal to 0.00025 and 0.01, respectively.

To investigate the discrimination ability of the pro-

posed measure, we generated a synthetically distorted iris

image database from 600 high quality reference iris im-

ages. These iris images were selected from the Warsaw-

BioBase-Smartphone-Iris v1.0 [49], UTIRIS [15], and ��2

databases [25]. 3-12 samples of each eye from 75 individ-

uals were selected as reference iris images. These fully de-

pict the irises, and were selected from individuals with high,

medium, and low degrees of iris pigmentations. All refer-

ence images were segmented accurately by the reference

iris recognition system.

We distorted the reference iris images by five fre-

quently seen distortions with different severities. The

distortion types are Gaussian blur, motion blur, Gaussian

noise, impulse (salt & pepper) noise, and over-exposure.

We used the following MATLAB functions to gen-

erate the distorted versions of a reference image �:

Gaussian blur (�����������(�, �����)), impulse noise

(�������(�,′ ����&������′, �������)), overexposure

(I+c), motion blur (� = ��������(′������′, ���, �ℎ���);
��������(�,�,′ ���������′)), and white Gaussian noise

(�������(�,′ ��������′, 0, � )). The parameters, and the

number of distorted versions of each reference image for

each distortion type are described briefly in Table 1.

To analyse the discrimination ability of the proposed

measure, we plotted in Figure 2 the normalized histogram

of the DSMI scores for the reference iris images versus the

normalized histogram of the DSMI scores for the distorted

iris images for each distortion type separately. Also, the

histogram intersection (ℎ�) between these two histograms

is computed for assessment of the discrimination ability of

the quality measure. Smaller values indicate better ability

for the DSMI scores to discriminate between high quality

images and their distorted versions.

4. Experimental Results

We investigate whether filtering poor quality iris im-

ages improve the performance of an iris recognition system.

Most of the existing iris image quality measures need accu-

rately segmented irises for quality assessment [37] and iris

image quality could lead to poor iris segmentation. There-

fore, in our approach, we reject images in the beginning of

the iris recognition pipeline i.e., before segmentation.

Table 1. A brief description of the artificially distorted iris images

dataset. In the table, if the kernel has two parameters (e.g. A and

B), we showed their intervals using A:B format.
Reference iris images

Severity of iris

pigmentation

Number of individuals Number of all iris

images

High 25 200

Medium 25 200

Low 25 200

Distorted iris images

Distortion type Kernel interval Distorted versions of

each reference image

All distorted iris

images

Gaussian blur 0.5-5 10 6000

Impulse noise 0.05-0.6 12 7200

Overexposure 10-100 10 6000

Motion blur 10-60:10-60 36 21600

WGN 0.002-0.02 10 6000

We compare our proposed DSMI measure with two

state-of-the-art image quality measures, BRISQUE [28] and

WAV1 [34]. BRISQUE uses the statistics of pixel intensi-

ties subtracted from local means and normalized by local

contrasts to train a regression model for image quality as-

sessment. Pertuz et al. [34] compared 15 methods that can

be used for estimating the blurriness of an image. In this

study, WAV1 performs best for predicting the blurriness of

an image. WAV1 is a quality measure based on statistical

properties of the discrete Wavelet transform coefficients.

In our experiments, we illustrate the improvements in

the performance of the reference iris recognition system for

each image quality measure being used for filtering iris im-

ages with poor quality. The experiments were conducted on

three iris image datasets acquired under visible light.

4.1. Databases for Iris Images

Five iris image databases acquired under visible light

are widely used in iris recognition research: UTIRIS [15],

UBIRIS [38], MICHE [8], and VISOB [41]. The UTIRIS

iris images were acquired with an optometric framework

and in a controlled environment that resulted in high quality

images.

UBIRIS iris images were acquired from moving sub-

jects and varying distances which resulted in more hetero-

geneous images compared with UTIRIS. Still the images

have a good quality, better than typically attained by smart-

phones in uncontrolled environments. The MICHE and VI-

SOB databases are challenging databases for iris recogni-

tion systems including images with different degrees of iris

pigmentation and with eye makeup. Moreover, the quality

of the images is affected by lacking focus, occlusions due to

prescription glasses, different illumination conditions, gaze

deviations, specular reflections, and motion blur.

Instead of the above, we chose the multi-modal biomet-

ric database ��2 [25] because it includes more authenti-

cally distorted iris images that typically may occur when

users capture iris images with their smartphones in uncon-

trolled environments. Also, the number of images per eye
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Figure 2. Red solid lines show the normalized histogram of the DSMI quality scores for high quality iris images, and the dotted blue lines

show the histograms for the distorted versions with different distortion types. ℎ� is the histogram intersection value.

Table 2. Summary of ��2 database
Datasets REFLEX LFC PHONE

Number of Subjects 48 49 50

Total images 1422 1454 1379

samples per eye 12-15 13-15 12-15

Matching pairs 9457 10045 9092

Non-matching pairs 975450 1056485 941039

Camera Canon D700 Light field camera Phone nexus

in ��2 is larger than in the other databases and the images

show a wider range of iris image impairment.

We used three datasets from ��2. The iris images in

these three datasets were captured in different lighting con-

ditions and with different cameras in uncontrolled environ-

ments at varying distances and from subjects with different

degrees of iris pigmentation. The first dataset, REFLEX,

was captured using a Canon D700 camera with Canon EF

100mm f/2.8L macro lens (18 megapixels). It contains 1422

iris images from 48 subjects. 12 to 15 samples were taken

per eye (left and right). The second dataset, LFC, contains

iris images captured by a light field camera. It contains

1454 iris images of the left and right eyes of 49 subjects,

and 13 to 15 samples were taken per eye. The third dataset,

PHONE, was captured by a smartphone (Google Nexus 5,

8 megapixels) and contains 1379 iris images of both eyes of

50 subjects. 12 to 15 samples were taken per eye.

We compare one iris image against all iris images from

the same dataset. Table 2 summarizes these datasets and

shows the number of matching and non-matching pairs.

4.2. Iris Recognition Performance Analysis

To evaluate the performance improvement in the iris

recognition system achieved due to iris quality filtering us-

ing an image quality metric, we used three methods: the

Daugman’s decidability index [5], the area under the re-

ceiver operating characteristic curves (AUC), and the equal

error rates (EER). Three thresholds for the respective met-

ric were chosen so that 1/4, 1/2, 3/4 of the iris images with

lowest quality were rejected. In thiy way, we compared the

performance of our proposed DSMI metric with BRISQUE

and WAV1. In our experiments, the reference iris recogni-

tion system, OSIRIS, version 4.1, was used.

4.2.1 Daugman’s Decidability Index

Daugman’s decidability index [5] is widely used for assess-

ing the performance of iris recognition systems [5, 37, 25].

The index (�′) measures separation of the distribution of

the matching iris scores from the distribution of the non-

matching iris scores:

�′ =
∣�� − �� ∣

√

1

2
(�2

�
+ �2

�
)

(7)

where �� and �� are the means and �� and �� are the stan-

dard deviations of the distributions of scores of the match-

ing and the non-matching iris pairs. Larger values corre-

spond to better discrimination in iris recognition systems.

In OSIRIS, version 4.1, the fractional Hamming distance

of the feature vectors gives the dissimilarity score between

pair of iris images. We plot the matching and the non-

matching normalized histograms of the Hamming distances

of iris pairs. For visualization, normal distributions were

fitted to the histograms (Figure 3).

Rejecting samples with minimum quality moves the dis-

tributions of Hamming distances for the matching irises to

the left, but has little effect on the distribution for the non-

matching iris distances (Figure 3(a)). This right-shift of the

matching distribution increases the decidability index and

improves the iris recognition performance. In the remaining

parts of the figure, we removed the distributions of the non-

matching scores and plotted only the normal distributions

fitted to the histograms of the matching scores for clarity.

Also, the corresponding Daugman’s decidability index (�′)

values are shown in the figure.

In Figure 3 (c) BRISQUE was used for quality filtering,

and in Figure 3 (d) WAV1 was used for rejecting the im-

ages with poorest quality. As can be seen in the figures, fil-

tering the poor quality images using DSMI and BRISQUE

improve the performance of the reference iris recognition

system in the REFLEX dataset, but WAV1 deteriorates the

performance. We performed the same experiments for the

LFC and PHONE datasets using three image quality mea-

sures for rejecting iris image with minimum quality.

From the decidability index values in the three testing

datasets as shown in Figure 3, we can conclude that filtering
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Figure 3. The normal distributions fitted on the normalized histograms of the fractional Hamming distances for the matching irises, and

non-matching irises according to iris images quality filtering are illustrated for the REFLEX dataset. Also, the Daugman decidability

index (�′) value corresponding to each quality threshold is computed. Because the non-matching distributions do not change with quality

filtering, only the matching score distributions are illustrated for better visualization. For DSMI and WAV1, a higher score indicates a

better quality, where for BRISQUE a lower score indicates better quality.

the iris images with poor quality using the proposed DSMI

measure, improves the recognition accuracy of the reference

iris recognition system. The BRISQUE measure performs

well in the REFLEX dataset, but it is not consistent for qual-

ity filtering in LFC and PHONE datasets. WAV1 is not con-

sistent on all the testing datasets.

4.2.2 Receiver Operating Characteristic Curve

The area under the curve (AUC) of the receiver operating

characteristic (ROC) is widely used for comparing the ac-

curacy of iris recognition systems. With this approach, the

system with the larger AUC is considered more accurate.

For visualizing and measuring the improvements on the

performance of the reference iris recognition system due

to quality filtering of iris images, we created ROC curves

for each dataset by plotting the true acceptance rate against

the false acceptance rate at various fractional Hamming dis-

tance threshold settings (Figure 4). We computed the AUC

values, listed in the figure legends.

Without quality filtering the AUC value (red solid lines)

for REFLEX dataset is 0.9061, 0.8861 for LFC, and 0.8226

for PHONE. This shows that the PHONE dataset is the most

challenging one for the reference iris recognition system.

Figure 4 also shows how the AUC values change with dif-

ferent iris image quality filtering thresholds on the three test

datasets using the three different image quality measures.

From the results, we conclude that the performance of

the reference iris recognition system improved increasingly

by rejecting more and more iris images with poorest qual-

ity, when using the DSMI measure. In contrast, BRISQUE

is consistent for quality assessment only for the REFLEX

dataset, but not on the other two datasets. WAV1 shows

inconsistent performance in all test datasets.

4.2.3 Equal Error Rate Measure

The equal error rate (EER) is the rate at which both ac-

cept and reject errors are equal. EER is used for comparing

the accuracy of classification systems with different ROC

curves. With the EER approach, the system with the lowest

EER is considered the most accurate.

Figure 5 shows the false positive rates versus the false

negative rates for iris pairs for the REFLEX, LFC, and
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Figure 4. The area under the curve (ROC) curves corresponding to the iris images quality filtering. Red solid line, blue dashed line, dot-

dashed green line, and the dotted black line were plotted for all images, after filtering a quarter, half, and three quarters of the iris images

with minimum quality respectively. We performed the quality filtering using (a) DSMI, (b) BRISQUE, and (c) WAV1.

PHONE datasets. We computed the EER values, listed in

the figure legends and shown as bullet points on the curves.

The results confirm that rejecting poor quality images

using DSMI improves iris recognition performance consis-

tently, while this does not hold for BRISQUE and WAV1.

In summary, for all of the test sets (REFLEX, LFC,

PHONE) and all of the evaluation methods (Daugman’s de-

cidability index, AUC, EER) the performance of the ref-

erence iris recognition system (OSIRIS, Version 4.1) in-

creased consistently by filtering iris images with minimum

quality using the proposed DSMI quality metric. In con-

trast, for the other two image quality metrics (BRISQUE,

WAV1), the experiments showed inconsistencies, i.e., re-

moving more low quality images did not always increase

performance.

4.3. Computational Complexity

The computational complexity of the proposed DSMI

measure can be roughly estimated using its run time. For

this aim, we assessed the quality of four sets of iris images

with different resolutions from the testing datasets using the

proposed DSMI measure.

We used a T430 Lenovo laptop with an Intel Core i5

processor and 6GB RAM with MATLAB version 2017a in

Ubuntu 16.04.3 LTS to run the DSMI metric, and the aver-

age run time and frames per second for each set with differ-

ent resolutions are reported in Table 3.

The results show that the proposed method can be used

to assess the quality iris images in interactive applications

such as handheld based iris recognition systems.
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Figure 5. The equal error rate (EER) curves corresponding to the iris images quality filtering. Red sold line, blue dashed line, dot-dashed

green line, and the dotted black line were plotted for all images, after filtering a quarter, half, and three quarters of the iris images with

minimum quality respectively. We performed the quality filtering using (a) DSMI, (b) BRISQUE, and (c) WAV1 quality measures.

Table 3. Average run time (seconds) on four sets of iris images.
Image resolutions 453× 303 625× 417 822× 548 1352× 920

Average run time 0.015 0.024 0.041 0.106

Frames per second 66 40 24 9

5. Conclusions and Future Work

In this paper, we presented a new training free, general,

and realtime image quality measure, based on statistical fea-

tures of the sign-magnitude transform to estimate the qual-

ity of iris images acquired by handheld devices under visi-

ble light.

We suggest that this method can be used for rejecting

poor quality iris images from the iris recognition pipeline

to improve the recognition rate of the reference iris recog-

nition system. Experiments showed that the proposed ap-

proach improved the accuracy of a reference iris recognition

system.

We remark, however, that the inclusion of the quality fil-

tering step in an iris recognition system (see Figure 1), may

increase the computational cost; and some iris images may

be rejected unnecessarily. This could be caused by a failure

of the quality measure or by a setting of the quality thresh-

old that is too conservative.

In our future work, we will propose a performance mea-

sure for iris recognition systems that considers all these fac-

tors together.
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