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Abstract

Iris recognition systems may be vulnerable to presenta-

tion attacks such as textured contact lenses, print attacks,

and synthetic iris images. Increasing applications of iris

recognition have raised the importance of efficient presenta-

tion attack detection algorithms. In this paper, we propose a

novel algorithm for detecting iris presentation attacks using

a combination of handcrafted and deep learning based fea-

tures. The proposed algorithm combines local and global

Haralick texture features in multi-level Redundant Discrete

Wavelet Transform domain with VGG features to encode the

textural variations between real and attacked iris images.

The proposed algorithm is extensively tested on a large iris

dataset comprising more than 270,000 real and attacked

iris images and yields a total error of 1.01%. The exper-

imental evaluation demonstrates the superior presentation

attack detection performance of the proposed algorithm as

compared to state-of-the-art algorithms.

1. Introduction

Iris recognition systems are being rapidly deployed in

several commercial applications for authentication pur-

poses. In the literature, tremendous growth has been ob-

served and several covariates such as off-angle and qual-

ity variations are well-researched [1]. However, challenges

such as ophthalmic disorders [2, 3] still require additional

research. Similarly, the introduction of vulnerabilities such

as presentation or spoofing attacks to gain unauthorized ac-

cess or evade one’s own identity is a major risk factor. Due

to its negative impact, detection of presentation attacks has

become a key research topic. Several presentation attack de-

tection (PAD) frameworks have been developed in the liter-

ature which focus on developing algorithms for one specific

presentation attack.

As shown in Figure 1, typical iris presentation attacks

include textured contact lens [4, 5], print attack [6, 7], and

synthetically generated iris images [8]. These attacks are

(a)

(b)

(c)

Figure 1. Samples with iris presentation attacks: (a) textured con-

tact lenses, (b) printed iris images, and (c) synthetic iris images.

Image sources: [4], [6], [7], [8], and [9].

described below:

• Textured contact lenses: The artificial texture pattern

in cosmetic contact lenses can significantly conceal

the original iris texture of the eyes and hence, may be

utilized for intentional or unintentional identity eva-

sion. To detect iris images containing such contact

lenses, Zhang et al. [10] developed an altered local bi-

nary pattern based algorithm termed as weighted LBP

(WLBP). Yadav et al. [4] demonstrated the perfor-

mance of modified LBP on two different databases

containing contact lens iris images. Several other al-

gorithms have been proposed which utilize different

handcrafted features [9] and deep learning features

[11] to encode variations between real iris images and

textured contact lens iris images.

• Printed iris attack: In this attack, a printed iris image is

presented to the iris sensor for impersonating another
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Figure 2. Proposed Multi-level Haralick and VGG Fusion (MHVF) algorithm for iris presentation attack detection.

individual’s identity. Gupta et al. [6] demonstrated

the efficacy of different handcrafted features in detect-

ing such attacks. LivDet2013 [7] and LivDet2017 [12]

competitions also contained samples of print iris attack

and different participants showcased the performance

of their approaches in classifying printed iris images.

• Synthetic iris: Galbally et al. [8] developed a genetic

algorithm based approach to create synthetic iris-like

texture patterns. Recently, Kohli et al. [13] utilized

the generative adversarial network to produce realistic

looking synthetic iris images.

As mentioned previously, existing presentation attack

detection techniques generally focus on accurately detect-

ing a specific type of iris presentation attack but in real-

world scenarios, iris recognition systems should be able to

handle and detect multiple types of iris presentation attacks.

In the literature, there is a lack of algorithms which are de-

signed to detect multiple iris presentation attacks. Kohli et

al. [14] proposed an algorithm to detect a medley of iris

presentation attacks and demonstrated the performance on

a combined database of 21,525 iris images. To simulate the

realistic environment, it is critical to develop presentation

attack detection algorithms which are evaluated on a larger

database with variations across acquisition sensors and mul-

tiple presentation attacks. With these objectives, the key

contributions of this paper are:

• Proposed a novel framework utilizing representation

encoding using handcrafted and deep learning based

features for iris presentation attack detection.

• Demonstrated results on the Combined Iris database,

prepared by combining the images from multiple

publicly available databases. It contains more than

270,000 iris images with multiple presentation attacks.

• Compared the performance with several state-of-the-

art PAD algorithms.

2. Proposed Multi-level Haralick and VGG Fu-

sion (MHVF) Algorithm

Figure 2 illustrates the proposed Multi-level Haralick

and VGG Fusion (MHVF) algorithm for iris presentation

attack detection. The proposed algorithm has two compo-

nents which are described in detail subsequently:

1. Iris representation encoding using handcrafted features

2. Iris representation encoding using deep learning based

features

2.1. Encoding iris Representation using Multi­Level
Haralick Features

Haralick features [15] are popular statistical feature de-

scriptors for encoding textural information in images. They

have been successfully utilized in various applications such

as texture classification [16], medical imaging classifica-

tion [17], and face presentation attack detection [18]. Har-

alick features are based on computation of gray level co-

occurrence matrices (GLCM) which are defined as the dis-

tribution of co-occurring pixel intensity values in an image

(I) at a specific offset (∆p,∆q) at location (x, y). Thus,

GLCM∆p,∆q(x, y) is computed as:

n
∑

p=1

m
∑

q=1

{

1,if I(p, q) = x ; I(p+∆p, q +∆q) = y

0,otherwise.
(1)

After computation of GLCM, Haralick statistical fea-

tures are calculated from the GLCM for encoding the textu-

ral information in the image. The 13 Haralick features cor-

respond to angular second moment, contrast, correlation,

inverse difference moment, sum variance, sum of squares

variance, sum average, entropy, sum entropy, difference

variance, difference entropy, and two information measures

of correlation.
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Figure 3. RDWT decomposition of a real iris image and textured contact lens iris image: (a) approximation subband, (b) horizontal subband,

(c) vertical subband, and (d) diagonal subband.

In the proposed MHVF algorithm, Haralick features

are extracted from redundant discrete wavelet trans-

form (RDWT). Along with its shift-invariance property,

RDWT achieves multi-scale decomposition along with

over-complete encoding. RDWT decomposition is per-

formed to obtain four sub-bands with the size same as the

original image: horizontal (Hh), vertical (Hv), diagonal

(Hd), and approximation (Happrox). n-level RDWT de-

composition is performed by utilizing the previous level’s

Happrox output. Multi-level RDWT decomposition pro-

vides complementary information about image features at

different scales. Figure 3 shows sample RDWT decomposi-

tion of real and attacked iris images.

In the proposed MHVF algorithm, the input iris image

is resized to 640 × 480 and is converted to the RDWT do-

main. Given the resized iris image, Haralick features are

computed on the four sub-bands of the first and second level

RDWT domain. Haralick features are also computed on the

original grayscale image. Thus, the input iris image pro-

duces 117-dimensional Haralick feature descriptor. Next, to

learn local textural information, features are extracted from

segmented iris region. For faster computation, only a coarse

iris segmentation is performed by first detecting the pupil

and then approximating the iris region around it. The pupil

detection utilizes retinex based image normalization and

finding circular contours to detect pupil. Haralick features

of the segmented iris region are computed on the grayscale

intensity values and in first level RDWT domain since the

textural information of the iris region is highlighted in the

first level. This produces the local Haralick feature vector

of size 65. Thus, Haralick features in multi-level RDWT of

the global iris and Haralick features in single-level RDWT

of the coarsely segmented localized iris region encode the

minuscule textural variations between real and attacked iris

images.

2.2. VGG Iris Feature Extraction

Convolutional neural networks (CNNs) have demon-

strated the ability to effectively encode image representa-

tion in various visual recognition tasks. VGG-16 [19] is

a popular 16-layer CNN architecture which utilizes 3 × 3
filters and achieves exceptional performance on the large

ImageNet database. As the architecture is trained on more

than a million images, it is capable of learning rich feature

encodings of various objects. In the proposed MHVF al-

gorithm, the input iris image is resized to 224 × 224 and
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Table 1. Characteristics of the Combined Iris Database and its constituent databases.
Database No. of Iris Images Type(s) of Iris Images

LivDet2013 (Warsaw Subset) [7] 1,667 Print and Real

Combined Spoofing Database [14] 21,525
Real, Print, Textured Contact Lens, and

Synthetic Iris

NDCLD-2013 [4]
4,200 (LG4000) and 900

(AD100)
Real and Textured Contact Lens

NDCLD-2015 [9] 7,300 Real and Textured Contact Lens

ND-Iris-0405 64,980 Real

ND-CrossSensor-Iris-2013
117,106 (LG2200) &

29,845 (LG4000)
Real

ND-TimeLapseIris-2012 6,796 Real

CASIA-Iris-Thousand 20,000 Real

Combined Iris Database 274,319
Real, Print, Textured Contact Lens, and

Synthetic Iris

pre-trained VGG model is utilized to extract deep learning

based features. Principal component analysis is performed

to reduce the resultant 4096 feature vector to an underlying

low dimensional space of 117 size.

2.3. Feature Fusion and Classification

Multi-level Haralick and VGG features encode inherent

textural, edge and shape information of the input iris im-

age. Thus, feature-level fusion is performed to combine the

features by concatenating 117-dimensional multi-level Har-

alick feature of the global iris, 65-dimensional single-level

Haralick feature of the segmented iris, and reduced dimen-

sion VGG feature. This fused feature vector is utilized as

the input to a three-layer artificial neural network (ANN) to

classify the input iris image as real or attacked.

3. Experimental Evaluation

3.1. Combined Iris Database

Various iris presentation attack databases exist in the lit-

erature which contain iris images pertaining to a specific

presentation attack. However, there is a scarcity of iris

databases consisting of multiple presentation attacks. Kohli

et al. [14] created Combined Spoofing Dataset (CSD) which

was a combination of multiple publicly available spoof-

ing databases. It contained 11,368 attack iris images and

9,325 real iris images from different iris databases. In-

spired by CSD, we present the largest iris presentation at-

tack database, Combined Iris database, containing more

than 270,000 real and attacked iris images. A key feature of

this database is that it comprises iris images acquired from

different sensors, subjects of different ethnicities, and mul-

tiple presentation attacks. The constituent databases of the

Combined Iris database are:

• LivDet2013 (Warsaw Subset) [7] contains 1,667 real

and printed iris images.

• Combined Spoofing Database (CSD) [14] comprises

various iris presentation attack images such as textured

contact lenses, print attack, and synthetic iris images as

well as real iris images from different databases [4, 6,

8, 20]. The total number of images is 21,525.

• NDCLD-2013 [4] consists of real and attacked im-

ages acquired from two sensors: LG4000 and AD100.

4,200 images have been captured with LG4000 iris

sensor while 900 images are acquired with AD100 iris

sensor is 900. This database contains iris images with

textured contact lens iris images from different manu-

facturers.

• NDCLD-2015 [9] contains iris images with textured

contact lens and real iris images. The total number of

images in the database is 7,300.

The above-mentioned databases contain both, real and

attacked iris images. For increasing the real samples in the

Combined Iris database, the following databases are also

added which contain only real iris images: ND-Iris-0405

[21], ND-CrossSensor-Iris-2013 [22], ND-TimeLapseIris-

2012 [23], and CASIA-Iris-Thousand [24]. The charac-

teristics of the Combined Iris database and its constituent

databases are summarized in Table 1. Figure 4 shows sam-

ple iris images from different constituent databases of the

Combined Iris database along with their image type (real or

attack).

3.2. Experimental Setup

The performance of the proposed MHVF algorithm is

evaluated on the Combined Iris database. For experimental

evaluation, each constituent database is split into five cross-

validation folds and merged to form the five folds of the

Combined Iris database. It is ensured that the subjects in the

training and testing partitions are disjoint in every fold. Ta-

ble 2 shows the number of real and attacked iris samples in
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Figure 4. Sample iris image types from various constituent databases of the Combined Iris database.

Table 2. The number of real and attacked iris images in each fold

for the Combined Iris database.

Fold
Training Partition Testing Partition

Real Attack Real Attack

1 210,339 9,760 51,698 2,522

2 208,973 9,513 53,064 2,769

3 209,282 9,324 52,755 2,958

4 209,633 9,427 52,404 2,855

5 211,601 9,424 50,436 2,858

the training and testing partitions of each fold. Comparative

analysis is performed with existing PAD algorithms: LBP

[6] , WLBP [10], DESIST [14], and the two components

of MHVF algorithms: Multi-Level Haralick (MH) features

and VGG features. The presentation attack detection per-

formance is evaluated using the following metrics:

• Total Error: Error rate of all misclassified iris images.

• Attack Presentation Classification Error Rate

(APCER): Error rate of misclassified attacked

iris images.

• Bonafide Presentation Classification Error Rate

(BPCER): Error rate of misclassified real iris images.

Table 3. Iris presentation attack detection performance (%) of the

proposed MHVF and existing algorithms on the Combined Iris

database.
Algorithm Total Error APCER BPCER

LBP [6] 22.94 80.00 20.00

WLBP [10] 52.75 48.18 53.00

DESIST [14] 4.13 77.48 0.20

MH 3.36 59.96 0.32

VGG [19] 1.53 21.83 0.44

Proposed MHVF 1.01 18.58 0.07

3.3. Results on Combined Iris Database

The average total error, APCER, and BPCER values

across the five cross-validation folds of the Combined Iris

database are summarized in Table 3. It is observed that

the proposed MHVF algorithm yields the best results with

a minimum total error of 1.01%. It achieves 18.58% error

in detecting presentation attack iris images and 0.07% error

in detecting real iris images.

Comparative analysis of the proposed MHVF algorithm

is also performed with existing iris PAD algorithms: LBP

[6], WLBP [10], and DESIST [14]. It is observed that the

MHVF algorithm outperforms the existing algorithms on

the Combined Iris database. It achieves 3 − 21% lower to-

tal error as compared to LBP, WLBP, and DESIST. With

respect to detecting attacked iris images, MHVF achieves
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Figure 5. Sample classification outputs by Multi-level Haralick (MH), VGG, and the proposed Multi-level Haralick and VGG Fusion

(MHVF) algorithm.

Table 4. Iris presentation attack detection performance (%) of the proposed MHVF and existing algorithms on various constituents of the

Combined Iris database.

Database Metric
Presentation Attack Detection Algorithms

LBP WLBP DESIST MH VGG MHVF

LivDet2013 (Warsaw) [7]

Total Error 4.86 7.28 7.20 4.05 0.49 0.00

APCER 4.74 6.86 2.71 0.32 0.98 0.00

BPCER 4.97 7.70 10.83 7.69 0.00 0.00

Combined Spoofing Database [14]

Total Error 8.01 19.04 12.49 5.73 1.33 1.23

APCER 12.27 24.94 25.58 8.11 2.11 1.82

BPCER 4.62 14.39 2.47 3.87 0.75 0.78

NDCLD-2013 (LG4000) [4]

Total Error 0.25 1.33 0.50 0.08 0.00 0.00

APCER 0.00 2.00 0.50 0.25 0.00 0.00

BPCER 0.38 1.00 0.50 0.00 0.00 0.00

NDCLD-2013 (AD100) [4]

Total Error 7.67 12.33 1.67 0.33 0.33 0.33

APCER 0.00 9.00 2.00 0.00 1.00 1.00

BPCER 11.50 14.00 1.50 0.50 0.00 0.00

NDCLD-2015 [9]

Total Error 25.58 23.02 17.52 14.57 1.08 1.01

APCER 6.15 50.58 29.81 21.73 1.54 1.92

BPCER 38.70 4.41 9.22 9.74 0.78 0.39

29−61% lower APCER as compared to existing algorithms.

Similarly, in detecting real iris images, it yields at least

0.13% lower BPCER as compared to the other algorithms.

The proposed MHVF algorithm involves feature-level

fusion of local and global handcrafted multi-level Haral-

ick features and deep learning based VGG features. Thus,

for analyzing the contribution of each constituent, the per-

formance of multi-level Haralick (MH) features with ANN

classifier and VGG features with ANN classifier is reported

in Table 3. Sample classification outputs by the three PAD

algorithms are shown in Figure 5. It is observed that MH

with ANN classifier yields 2.35% higher total error as com-

pared to the proposed MHVF algorithm. On the other hand,

VGG with ANN classifier yields 0.52% higher total error

as compared to the proposed MHVF algorithm. These re-

sults highlight the improvement in the performance of the

proposed algorithm due to feature fusion.

3.4. Results on Constituent Databases

The performance of the proposed MHVF algorithm is

also analyzed on different constituent databases of the Com-

bined Iris database. For this experiment, the databases

containing both types of iris images (real and attack) are

selected, i.e. LivDet2013, Combined Spoofing Database,

NDCLD-2013, and NDCLD-2015. The training of the pro-

posed MHVF algorithm is performed using the respective

training partition of each constituent database and the re-

sults are summarized in Table 4. For comparative analysis,

the performance of LBP, WLBP, DESIST, MH, and VGG is

also reported.

With respect to the total error, it is observed that the

proposed MHVF algorithm demonstrates improved perfor-

690



mance as compared to the other PAD algorithms on all the

databases. It also achieves the lowest APCER value on

LivDet2013, CSD, and LG4000 subset of NDCLD-2013.

Likewise, it yields the lowest BPCER value on LivDet2013,

NDCLD-2013 (both subsets), and NDCLD-2015 databases.

Additionally, deep learning based VGG features showcase

the second best PAD performance on different constituent

databases.

4. Conclusion

Existing studies in the iris presentation attack detection

literature are based on the assumption that the system en-

counters a specific iris presentation attack. However, this

may not be true in real-world scenarios where the iris recog-

nition system may have to handle multiple kinds of pre-

sentation attacks. To address this challenging scenario, we

propose a framework for detecting multiple presentation at-

tacks. For this, we develop the largest iris presentation at-

tack database by combining several databases. The Com-

bined Iris database contains more than 270,000 real and

attacked iris images. The proposed MHVF algorithm is

developed by fusing handcrafted and deep learning based

features to encode variations between real and attacked iris

images. Experimental evaluation reveals that the proposed

algorithm outperforms state-of-the-art iris presentation at-

tack detection algorithm by achieving 1.01% total error on

the Combined Iris database.
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