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Abstract

Majority of CNN architecture design is aimed at achiev-

ing high accuracy in public benchmarks by increasing the

complexity. Typically, they are over-specified by a large

margin and can be optimized by a factor of 10-100x with

only a small reduction in accuracy. In spite of the increase

in computational power of embedded systems, these net-

works are still not suitable for embedded deployment. There

is a large need to optimize for hardware and reduce the size

of the network by orders of magnitude for computer vision

applications. This has led to a growing community which

is focused on designing efficient networks. However, CNN

architectures are evolving rapidly and efficient architectures

seem to lag behind. There is also a gap in understanding the

hardware architecture details and incorporating it into the

network design. The motivation of this paper is to system-

atically summarize efficient design techniques and provide

guidelines for an application developer. We also perform a

case study by benchmarking various semantic segmentation

algorithms for autonomous driving.

1. Introduction

The complexity of Convolution Neural Networks (CNN)

architectures have been growing consistently. However for

industrial applications, there is a computational bound be-

cause of limited resources on embedded platforms. It is

essential to design efficient models which fit the run-time

budget of the system. There are many papers which demon-

strate large runtime improvements with minimal loss of ac-

curacy by using various techniques. An overview of effi-

cient CNN from a hardware perspective is provided in [36]

and guidelines for design of small networks is provided in

[16]. A comparison of accuracy of networks normalized to

complexity is presented in [3]. Figure 1 reproduced from

this paper illustrates that there is large variability in the ef-

fective capacity of different networks. Huang et al [14] per-

form a detailed accuracy/performance trade-off comparison

of various meta-architectures like Faster R-CNN, R-FCN

and SSD.

Figure 1. Illustration of large disparity in the efficiency of net-

works measured by an accuracy metric normalized to number of

parameters. Figure is reproduced from [3].

The authors observe three main gaps in the current liter-

ature on efficient CNNs: (1) Most of these studies use rela-

tively older networks like AlexNet or VGG16, (2) Different

papers exploit different techniques and there is no system-

atic study of combination of optimization methods and (3)

Most of the methods attempt to reduce the number of oper-

ations which may not lead to efficient mapping on hardware

architectures. The motivation of this paper is to summarize

efficient design techniques, share benchmarks of common

network architectures and design guidelines for semantic

segmentation.

The rest of the paper is structured as follows. Section 2

provides a short overview of the building blocks and design

techniques of CNN. Section 3 provides a taxonomic survey

of efficient CNN design and optimization techniques. Sec-

tion 4 provides an overview of hardware (HW) architectures

focusing on optimization trade-offs specific to hardware.

Section 5 discusses a case study on semantic segmentation

for autonomous driving and summarizes commonly used ef-

ficient design techniques. Finally, section 6 summarizes the

paper and provides potential future directions.
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Figure 2. Typical encoder-decoder architecture of CNN based se-

mantic segmentation network.

2. CNN architecture design concepts

In this section, we provide an overview of building

blocks of CNN and their design aspects. Although the focus

is on semantic segmentation architectures, most concepts

are generic and applies to other visual perception tasks like

bounding box object detection.

Encoder-Decoder architecture: Semantic segmenta-

tion architectures typically have an encoder and a decoder

as shown in Figure 2. The encoder extracts features from the

image which is then decoded to produce semantic segmen-

tation output. ImageNet pre-trained networks are typically

used as encoder. In early architectures [1] [31], decoder

was a mirror image of encoder and had the same complex-

ity. Newer architectures use a relatively smaller decoder.

There can also be additional connections from encoder to

decoder. For example, Segnet [1] passes max-pooling in-

dices and Unet [31] passes intermediate feature maps to de-

coder.

Baseline FCN: The simplest CNN encoder is a linear

cascade of convolution operators typically known as Fully

Convolutional Networks (FCNs). The standard design is

to progressively reduce the resolution of feature maps and

increase the number of channels. A systematic empirical

evaluation of all the hyper-parameters and design criteria

of FCN is provided in [28]. Modular design of replicating

building blocks is quite popular and it has been successfully

demonstrated in ResNet and GoogleNet. The image width

and height are powers of 2 typically and thus a progres-

sive down-sampling by a factor of 2 is efficient. A typical

FCN network is illustrated in Figure 3 and it is considered

as a baseline network. Other key design ideas which can be

built on top of this are abstracted out based on the survey of

various networks and discussed below.

Cross channel filters: Cross channel filters can model

functional dependencies across channels. This is typically a

faster approximation of a more generic 3D convolution fil-

ter. Inception network successfully demonstrated this idea

first and XceptionNet (Figure 5 (a)) optimized it for effi-

ciency even further [5].

Cross layer connections: ResNet skip connections pass

the previous layer output to the next layer via a summa-

tion junction. DenseNet took this further where all the lay-

ers have connections to their previous ones as illustrated in

Figure 5 (b). HighwayNet employs a similar idea but al-

Figure 3. Baseline network with convolution blocks (/2 indicates

downsampling, the last number indicates number of channels)

Figure 4. Illustration of various strategies for handling different

sizes of objects. Figure on the top illustrating model variations

is re-produced from [2]. Figure on the bottom illustrates dilated

convolutions which is an alternative way to handle scale.

lows data-driven learning of relevant connections [35]. The

cross layer connections provide exponential number of con-

nections from input to output as it passes through several

layers.

Wider bank of filters: The general trend to improve

the CNN capacity is to add deeper layers. In contrast, [39]

shows that 16 wider layers can attain similar capacity of

100s of layers. This design can have advantages of paral-

lelism for training and inference. It can also enable fea-

ture dependent gating. Figure 5 (c) illustrates progressively

wider bank of filters.

Split branching and summation joining: The simplest

form was introduced by ResNet for skip connections. It is

more efficient than concatenation joining which increases

feature dimensionality. ResNeXt extended the idea for more

parallel paths [40] and PolyNet (shown in Figure 5 (d)) gen-

eralized it further to achieve higher efficiency [43].

Handling scale of objects: Detecting objects at differ-

ent scale is very important for many applications like au-

tonomous driving. CNNs are not scale invariant and there

is plenty of empirical evidence which illustrates explicit

handling of scale [2]. Figure 4 illustrates different strate-

gies to handle scale. For segmentation, dilated convolutions

are commonly used for handling multiple scales. How-

ever, they are not efficient for embedded implementation as

they access non-contiguous data. Outputs of different layers

of CNN naturally express scale and the efficient approach

would be to share multi-scale feature maps from different

layers to the decoder [24].
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Figure 5. Canonical examples of design extensions - (a) cross channel filters [5], (b) cross layer connections [13], (c) wider bank of filters

and (d) Split branching and summation joining [43]

3. Optimization Techniques

There have been various approaches to reduce the com-

plexity of CNNs. In this section, we discuss some of the

important techniques that are relevant for embedded plat-

forms.

3.1. Quantization

The standard data format for CNN models is 32-bit float-

ing point but full precision (fp32) operations are computa-

tionally intensive, both for training and inference. The need

to make inference predictions scalable with real time low

resource embedded systems has boosted research on reduc-

ing the precision of data representation. This quantization

process can cover both the weights and the activations, re-

ducing both computational cost and memory needs. There

is plenty of empirical evidence showing that it is possible to

reduce pre-trained networks with fp-32 weights and activa-

tions to a lower resolution such as INT8 with minimal loss

in accuracy. This has led to customized 8-bit CNN hardware

such as Google TPU. Model conversion for 8-bit inference

is now largely supported by DL frameworks such as Google

Tensorflow and Nvidia Tensor RT [46].

A better alternative to quantize trained network is to di-

rectly train network with low resolution. Low resolution can

be either applied just to weights/activations or even gradi-

ents. Compared to offline low resolution conversion, train-

ing neural networks with low precision results in larger ac-

curacy loss. Different levels of quantization can be consid-

ered, binary networks are the extreme case. XNOR-Nets

[30] show peaks improvements of 58x faster operations and

32x memory savings with only 2.9 percents accuracy loss

on AlexNet. Accuracy is more sensitive to low resolution

activations than low resolution weights and even more sen-

sitive to quantization of gradients. More generic Quantized

Neural Networks [15] offers better quantization scheme and

1-2-6 bit quantization (weight-activation-gradient) seems to

be a optimum balance when exploring full quantization.

3.2. Efficient architecture design principles

Compared to fully connected network architecture, FCN

networks drastically save a huge number of parameters and

computational cost by introducing local connections and

parameters sharing. However, CNNs still have huge redun-

dancy which can be reduced by exploring the rich space of

more advanced architecture design techniques than original

vanilla structure. Decreasing model size by limiting depth

and/or feature maps number is trivial but not optimal strat-

egy since it directly impacts the model accuracy.

3.2.1 Scaling the model size through architecture hy-

perparameters

From the first CNN success namely AlexNet to ResNet ar-

chitecture, ImageNet challenge accuracy has mostly been

powered by the constant increase of the number of layers

and feature maps per layer resulting in over parametrized

models. The first basic idea towards efficiency is to bet-

ter balance model size and accuracy by limiting these high

level architecture hyperparameters :

• Network depth : As it is now commonly known, in-

creasing network depth helps to learn hierarchically

high level features to better detect semantic patterns

and thus enable better predictions.

• Channels per layer : Iandola [16] illustrates a con-

trolled way of limiting the number of input channels

for a convolutional layer referred to as channel reduc-

tion. Channel reduction reduces memory footprint and

computational cost.

• Input image size : Input image resolution and early

downsampling stage can also help to reduce computa-

tion and at some lower level to decrease memory ded-

icated to temporaries.

As an early attempt, Reddie [47] built an efficient de-

sign of a vanilla CNN architecture with both few computa-

tions and few parameters. His tiny-darknet model achieves
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same accuracy as AlexNet with 60x and 2x less parame-

ters and operations respectively. Comparing tiny-darknet

and SqueezeNet efficient designs, it was pointed out that

SqueezeNet is efficient only for parameter count but re-

quires as much computation as AlexNet. This illustrates

that efficiency has to be considered in both aspects of mem-

ory and computation. Power consumption is a third im-

portant aspect of efficiency but is more related to hard-

ware architecture than network design. Most recent archi-

tectures targeting real time embedded application such as

MobileNet [11] and ShuffleNet [44] provide a family of

parametrized architecture designs with different input res-

olution (to limit computations) and channel depth (to limit

memory and computational costs).

3.2.2 Filter redundancy and kernel reduction

Filter kernels spatial size: The design of the very first

deep convnets such as AlexNet[22] and ZF-Net[42] relied

on using larger receptive fields kernels especially in the

first few layers. Simonyan et al [34] democratized the use

of smaller 3x3 kernels with VGG-16. They argued that

stacking three 3x3 convolutional layers corresponds to

an effective 7x7 receptive layer but can achieve this with

less parameters and computation. This has been a way to

introduce regularization by forcing kxk layers to have a

decomposition through 3x3 layers (with some additional

non linearity in between).

Filter kernel spatial factorization: There exist more

efficient ways to decompose kxk convolutions by the se-

quence of separable 1D convolutions (1xk and kx1 kernel)

as illustrated in [29]. Spatial factorization into separable

asymmetric convolutions has also been considered in

the upgraded version of inception module [37]. For 3x3

convolution, Szegedy et al. have evaluated that a factorized

two-layer solution (using a 3x1 convolution followed by

a 1x3 convolution) is 33% cheaper for the same number

of output filters, if the number of input and output filters

are equal. In practice, they showed that this approximation

provided good results only in the early layers. Ioannou

and al in [18] referred to this factorization as sequential

separable filters and gave an insight of a more generic way

of defining low-rank filters decomposition as learning a set

of small basis of filters.

Regularizing filter kernel through activation func-

tions: More recently, some strategies to compute multiple

features maps with the same filter kernel have been pre-

sented as a way to reduce filter redundancy. Based on this

idea, Shang et al. built new advanced activation function

called Concatenated Rectified Linear Unit (CReLU) [33].

They observed that early conv layers of well-know convnets

such AlexNet capture both negative and positive phase

information through learning pairs of negatively correlated

filters. CReLU exploits this redundancy by duplicating

linear response of convolution and negating the copy before

concatenating it with the original response. This process

which makes more efficient use of trainable parameters

has been adopted by Kim et al. in the initial layers of the

PVANet architecture [21] to build lightweight network for

real-time object detection.

Regularizing filter kernel through symmetry: Simi-

lar filter weights reuse to reduce redundancy has been taken

advantage of by Cohen and Welling with Group equivari-

ant Convolutional Neural Networks (G-CNNs) [6] by ex-

ploiting symmetry. CNN equivariance to translation is then

extended to G-CNN equivariance to rotation and even re-

flection.

3.2.3 Convolution design

Different strategies have been elaborated to alleviate effi-

ciency constraints using advanced convolutions design such

as feature maps dimensionality reduction by 1× 1 convolu-

tion, group convolution or more recently exploited separa-

ble convolutions.

1x1 convolutions as low dimensional feature maps

embeddings: Number of parameters involved in the com-

putation of a single convolution is directly linked to the

number of channels of the previous layer. Different strate-

gies have been elaborated to compress input feature maps

in a lower dimensional space and almost every recent con-

vnet architecture relies on 1 × 1 convolution, most often

integrated in processing blocks called bottlenecks.

Standard convolution operates layer by layer to filter ex-

isting features in order to produce new representations. 1×1
convolutions are in some way different from larger ker-

nel convolutions since they will build new features through

computing linear combinations of existing ones.

Iandola et al. in [17] explicitly formalized the non linear

dimensionality reduction within their micro-architectural

fire modules composed of two sub-layers called squeeze

layers and expand layers. Their reasoning is very el-

ementary but yet ultra efficient : The total quantity of

parameters in this layer is (number of input channels) ×

(number of filters) × (k × k). So, to maintain a small total

number of parameters in a CNN, it is important not only to

decrease the number of k×k filters, but also to decrease the

number of input channels to the k×k filters. Using squeeze

layers (1 × 1 conv) they can decrease the number of input

channels for k × k filters the way they want. Now most

architectures widely rely on this strategy, often referred as

bottlenecks.

Very recent Mobilenet V2 [32] paper further discuss the
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impact of ReLU non linearities coupled with 1 × 1 con-

volutions. They explain that the manifold of interest (the

encoded information) should lie in a low-dimensional sub-

space of the higher dimensional activation space, if not the

ReLu non linearities could hurt the accuracy. As a result,

their model rely on thin bottleneck layers (which can be

seen as the capacity of the network at each layer) coupled

with intermediate expansion layer (seen as the expressive-

ness) on which they build non-linear convolutional blocks.

Filter Groups: Another similar way to minimize in-

volved parameters in a given layer is filter groups. This very

old concept dates back to 2012 AlexNet [22] implementa-

tion whose architecture was specifically designed with two

separate convolutional filter groups across most of the lay-

ers with the main motivation of enabling training across two

GPUs to overcome memory constraints. What has been

seen during many years as an engineering trick has more

recently been presented as an efficient technique to remove

parameters and learn better representations.

Filter groups design a model where filters operate on

a fraction of this input volume by creating g independent

groups of filters with associated groups of feature map in-

put channels. (Each filter sees only a fraction of the feature

map channels within the input volume reducing filter di-

mensions in the channel extent from k∗k∗Ci to k∗k∗Ci/g).

This change does not affect the dimensions of the input and

output feature maps but significantly reduces computational

complexity and the number of model parameters.

ResNeXt architecture [40] proposed a model which in-

tegrates group convolution within ResNet building blocks.

Huang et al. in [12] combined it with filter pruning to in-

troduced learned group convolution. They both achieved

state-of-the-art architecture regarding model efficiency.

Depth-wise Separable Convolutions: Some similar

approach to efficiently reduce the channel extent of filter

kernel size is the use of depth-wise separable convolution

which pushes it to the extreme case where every single

filter sees a single input channel. These convolutions were

first used in the Xception model [5] and consists in a

depth-wise spatial convolution performed independently

over each channel of an input, followed by a point-wise

1x1 convolution, i.e. a 1x1 convolution, projecting the

channels output onto a new channel space. In other words,

they split a standard 3D convolution into two successive

layers: first one filters and second on combines outputs

from first layer.They can be interpreted as an extreme

version of the GoogleNet Inception module but they differ

in two ways: the channel-wise spatial convolution is

performed first and there is no ReLU. Mobilenets [11]

propose hyper-parametric model to propose light model for

resource restricted application that can trade-off latency

and accuracy.

Figure 6. Efficiency: Depth-wise Separable Convolutions vs

Group Convolutions

Efficiency - Depth-wise Separable Convolutions vs

Group Convolutions: Compared to standard convolution,

separable convolution and group convolution have respec-

tively a 1

N
+ 1

k2 and a g parameters reduction. Same reduc-

tion ratio is valid for computation. In separable convolu-

tion all the complexity is then related to 1x1 convolutions.

Combining it with group convolution within 1x1 conv layer

provides even more efficient architecture. This combined

strategy inside a ResNet bottleneck with additional shuffle

channel to maintain information flow has been illustrated by

Zhang et al. with ShuffleNet in [44]. In practice, separable

convolutions theoretical computation savings are difficult to

achieve on HW implementation due to low arithmetic inten-

sity (ratio of operations to memory accesses).

3.3. Model Compression

3.3.1 Weight Pruning

Most of the key concepts of deep compression have been

introduced by Song Han et al. building compression frame-

work around the very basic idea of weight pruning [9], try-

ing to learn both weights and connections in a three steps

process. The fact that regularization loss pushes parameters

towards zero value lead the author to the conclusion that

parameters with value close to zero characterizes connec-

tions which are not important for the learned model. Their

3-steps method first learns a model in a classical manner;

then prunes unimportant connections based on their weight

value and finally performs a last step which fine-tunes the

remaining connections. This technique lead to impressive

compression results by reducing the number of parameters

of Alexnet by a factor x9 with no loss in accuracy. The

main motivation of deep compression is to reduce model

size mainly for network transfers or for small internal mem-

ory architectures like FGPA. The major drawback of this
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technique is that the resulting compressed model is sparse

and that the gain in computation speed on classical HW is

far below the parameter reduction factor. Indeed most com-

mon computation platform do not take benefit of sparsity

with their highly parallel dense matrix computation scheme.

To alleviate sparsity constraint, Song Han presented in [8]

an efficient inference engine relying on sparse matrix-vector

multiplication with weight sharing. The resulting computa-

tion speed achieves x189 and x13 gain when compared to

CPU and GPU implementations of the same CNN without

compression. Model compression also enables networks to

fit in the on-chip SRAM which reduces energy consumption

per memory read by a factor x120 compared from fetching

weights from DRAM.

3.3.2 Filter Pruning

A very similar approach to weight pruning is filter prun-

ing. Whereas weight pruning results in sparse connectivity

pattern, removing whole filters and their associated feature

maps preserve dense connectivity. Consequently computa-

tion cost reduction does not rely on sparse convolution li-

braries or dedicated hardware and existing efficient BLAS

libraries for dense matrix multiplication can be further used.

Wen et al. [38] proposed filter pruning using model struc-

ture learning using group lasso which is an efficient regu-

larization to learn sparse structures. In fact their method

is even more general than filter regularization since the

Structured Sparsity Learning (SSL) method can regularize

any structure (i.e., filters, channels, filter shapes, and layer

depth) of CNNs. This learning technique acts like a com-

pression method to learn compressed model from bigger

CNN reducing computation cost without hurting the com-

putation pipeline by generating hardware friendly struc-

tured sparsity. Experiments proved an average speedup of

x5.1 and x3.1 against CPU and GPU on reference AlexNet.

More recent Condensenet architecture presented by [12]

rely on learned grouped convolutions, which are based on

filter groups coupled with Group Lasso learning strategy

which enabled to automatically select important connec-

tions and subsequently prune away a fraction of unimpor-

tant filters for which weights have the lowest magnitude.

Huang et al. presented in [23] another pruning approach

not based on filter magnitude. The method rely on Rein-

forcement Learning to train a pruning agent which makes

a set of binary actions to decide to remove each filter or

not. It maximizes a reward function which combines two

terms, the accuracy term (ensuring the performance drop

is bounded) and the efficiency term (encouraging to prune

more filters away).

3.3.3 Network Distillation

Another method to produce compressed networks is distil-

lation introduced in [10] by Hinton et al. Basic concept is

to transfer knowledge from a cumbersome trained model

(teacher network) to a smaller model (student network).

Training is supervised with a loss function not computed

from training labels but instead from teacher network output

distribution. In a classification task, student will be trained

to fit teacher output softmax layer class probability values.

In other works, student network will try to imitate the out-

puts of the teacher without using the data of the original

training. Using teacher output distribution as soft targets

rather than true labels as hard targets, distillation improves

generalization. When true labels are available, this target

distribution could be fine tuned.

4. Hardware Accelerators for CNN

Majority of the CNN inference run-time and optimiza-

tions are reported on Nvidia platforms. The optimization

techniques can be highly dependent on the type of proces-

sor. Thus we provide an overview of various architectures

from the perspective of CNN deployment.

4.1. GPUs

GPU (Graphics Processing Unit) was traditionally de-

signed for graphics acceleration. GPUs excel at perform-

ing matrix operations (primarily matrix multiplications) that

underlie graphics, AI, and many scientific algorithms. Ba-

sically, GPUs are very fast and relatively flexible. They

are slowly being re-targeted to be used as additional re-

source for vision algorithms through OpenCL. With respect

to Vision algorithms, CUDA (Compute Unified Device Ar-

chitecture) of Nvidia is significantly more powerful than

other GPUs provided by ARM (Mali), PowerVR (SGX)

and Vivante. CUDA uses SIMT (single instruction multiple

threads) with threading done in hardware. It has a limitation

of dealing with load/store intensive operations which is im-

proved by high data-bandwidth provided to it. GPU archi-

tecture is most widely used for training CNNs. However, lot

of optimization techniques discussed in the previous section

may not be efficient/supported on the GPU. Sparse matrix

multiplications would not be efficient on the GPU. Quanti-

zation could also not be supported initially as most GPUs

only supported floating point (fp32) operations. However,

the recent GPUs provide flexibility of using integer opera-

tions and thereby obtain speedup by the use of quantization.

4.2. ASICs

ASIC (Application Specific Integrated Circuit) imple-

ments the entire algorithm in hardware with minimal flexi-

bility like modification of parameters coded via register set-

tings. Google’s Tensor Processing Unit (TPU) is an accel-
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erator specifically designed by Google for its TensorFlow

framework, which is extensively used for CNNs. It fo-

cuses on a high volume of 8-bit precision arithmetic. The

first generation of TPU was focused on the inference, while

the second generation increased capability to support neural

network training also. Recently introduced by Intel Ner-

vana, the NNP (Neural Network Processor) is a proces-

sor built specifically for neural networks. The NNP ar-

chitecture optimizes memory bandwidth utilization, uses

Flexpoint numerics and includes high speed serializer/de-

serializer which enable more than a terabit-per-second of

bidirectional offchip bandwidth. The high bandwidth en-

ables model parallelism in addition to data parallelism.

However, ASIC architectures for deep learning is not highly

preferred as the field is still evolving and hence, flexibility

and programmability is preferred.

4.3. FPGA

FPGAs (Field-programmable gate arrays) are a natural

choice for implementing neural networks because they can

combine computing, logic and memory resources in a single

device. FPGA’s combine two processing regions, DSP and

ALU logic. The unique flexibility of the FPGA allows the

logic precision to be adjusted to the minimum that a partic-

ular network design requires. With the deep-learning field

evolving and the network architectures changing frequently,

having the flexibility to reprogram the hardware is very es-

sential. FPGA’s have been impractical for wide spread use

in complex algorithmic-based systems due to the traditional

low-level hardware programming environments. However,

recently Intel FPGA SDK for OpenCL solves this problem,

making FPGA useful for accelerating complex algorithms

including CNNs. Intel has shown that using their OpenCL

framework, Arria 10 FPGA can run Alexnet twice as fast

compared to the Xeon CPU at one third power and 2X bet-

ter performance to power ratio compared to Titan X GPU.

For detailed benchmarks refer to whitepaper [45]. Opti-

mization techniques such as quantization and pruning can

be efficiently supported on the FPGAs.

4.4. SIMD type architectures

SIMD engines are quite popular in the application areas

of image processing. This is because the input data is 8-

bit fixed point and the initial stages of image processing are

typically embarrassingly parallel. These processors are typ-

ically designed to be power-efficient by avoiding floating-

point and having a simplified processing pipeline. For in-

stance, performance/watt of TI’s Embedded Vision Engine

(EVE) [26] is ∼8X than that of A15. TI has efficiently

mapped CNNs for performing real time semantic segmen-

tation on EVE. For more details about the implementation,

you can refer to [27]. Also, for performance boosts, some

of the strategies like quantization and sparsity which we dis-

cussed earlier are extensively used to get a big boost in real

time performance.

5. Results and discussion

Evaluating exhaustively all the previously described ef-

ficient designs and optimizations would be a tremendous

work as most of the approaches are orthogonal and could

be implemented jointly. To illustrate the concept of ef-

ficiency we propose to discuss using semantic segmenta-

tion for autonomous driving as a case study, focusing on

a single HW and exploring several combinations of meta-

architecture and feature extraction designs with different

level of efficient optimizations.

5.1. Case Study: Semantic Segmentation Bench
marking

In this section, a comparative evaluation of different se-

mantic segmentation architectures is presented. We present

an evaluation of diverse kinds of networks, both in terms of

accuracy and speed to highlight efficiency. Some efficient

networks that has not been evaluated before on the seman-

tic segmentation for automated driving are also presented.

Other architectures such as DeepLab[4] achieving state of

the art accuracy in segmentation are not included in the

comparison since they are computationally inefficient. This

can guide further decisions on what would best fit in the au-

tomated driving system. Evaluation metrics used are mean

intersection over union(IoU) and per class IoU. The running

time for inference is computed in seconds. The different ar-

chitectures are evaluated on a GTX TITAN GPU with im-

ages of resolution 480x360. The comparison is shown in

Table 1.

The architectures that are primarily evaluated are : (1)

Unet [31] (2) Xception [5] which are classification networks

that were not used in the segmentation problem before. (3)

Dilated FCN16s, an architecture that was designed to be

computationally and memory efficient with reasonable ac-

curacy. (4) FCN8s [25]. (5) Segnet Basic [1]. (6) Dilation8

[41]. (7)Enet [29], which is the most efficient architecture

for semantic segmentation. A unified framework with the

first five architectures is going to be publicly available to

help further research. While the results of the last two ar-

chitectures are reported from their work. Note that the mean

class IoU is computed over all classes, even the ones not in-

cluded in the Table 1. But, only the classes of interest were

the ones mentioned in Table 1.

Although Dilation8 outperforms all previous architec-

tures in mean IoU it has the largest running time. This

renders it as an inefficient solution to semantic segmenta-

tion for automated driving. However, the dilated convolu-

tion idea can be adapted in a shallower network. It uses

dilated convolution to increase receptive field while main-

taining the resolution of the segmentation. Dilated FCN16s
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Table 1. Semantic Segmentation Results on CamVid. Running time in seconds, mean IoU, and perclass IoU is shown. Some of the 11

classes are shown due to limited space.

Run-time (s) Mean Class IoU Per-Class IoU

Sky Building Road Sidewalk Vegetation Car Pedestrian

FCN16s Dilated 0.07 46.7 86.3 69.1 87.8 63.7 60.8 63.6 21.4

Xception[5] 0.02 42.8 81.9 68.9 86.6 62.9 61.6 60.8 19.8

Segnet-Basic[1] 0.03 46.4 87.0 68.7 86.2 60.5 52.0 58.5 25.3

FCN8s[25] 0.33 49.7 87.6 75.5 87.2 67.2 70.6 76.4 27.7

Unet[31]+BN[19] 0.56 53.9 90.2 72.6 89.1 67.2 67.7 74.7 34.1

Dilation8[41] 0.6474 65.3 89.9 82.6 92.2 75.3 76.2 84.0 56.3

Enet[29] 0.047 51.3 95.1 74.7 95.1 86.7 77.8 82.4 67.2

is an adapted version of FCN-16s as originally introduced

in [25]. Two pooling layers are removed along with the con-

volutional layers in between them and conv4/conv5 layers

are reduced to two dilated convolution layers with dilation

factors of 2 and 4 respectively. This leads to a decrease

in the size of the network and its running time for real-

time applications. Another architecture used for medical

image segmentation was experimented on CamVid which

is called Unet. It turned to work second best on CamVid,

but the running time is still not practical for real deploy-

ment. Xception [5] is an architecture that is mainly rely-

ing on depthwise separable convolution, that separates the

spatial convolution from depthwise convolution. Although

the network is designed for classification, it has been trans-

formed to a fully convolutional network for the purpose of

segmentation. The network mean IoU was much lower than

other architectures, with a very small improvement in the

running time against Segnet. Although Segnet is not con-

sidered as the state of the art in segmentation, but it turned

out to provide a good balance between mean IoU and speed.

In our experiments using batch normalization [19] turned to

be effective in training both Segnet and Unet. It turned to

converge faster, and it got better mean IoU of 47.3% in case

of Segnet. It is worth noting that in case of FCN8s, we were

able to reproduce similar results to the work in[7]. But this

is less by 2% than what was reported in [20].

5.2. Design Exploration & Guidelines

Some good design choices that are accepted with-in the

community are presented:

(1) The use of 3x3 convolutions similar to VGG architec-

tures [34] turned to be useful experimentally, especially in

scenarios where you care about the resolution of your input

such as segmentation.

(2) The dilated convolution is considered to be the best prac-

tice in segmentation as it increases the receptive field with-

out downgrading resolution.

(3) Batch normalization [19] turned to be a very useful trick

for better convergence during training in our experiments

due to the reduction of change in distribution of network

activations.

(4) The resolution of the input image largely affects the seg-

mentation, although it seems as a tiny detail. We found

that higher input image resolution can help with segment-

ing small objects like pedestrian. Also, using random crops

to help reduce the class imbalance can further help the seg-

mentation.

6. Conclusion

We provided an overview of various optimizations for

CNN implementation, de-constructing a wide array of CNN

architectures into its constituent building blocks and dis-

cussed efficient design techniques in a taxonomic way.

Then we detailed various hardware architectures focusing

on how to construct an efficient CNN for the particular hard-

ware. Finally, we performed a case study by benchmarking

semantic segmentation for autonomous driving and shared

our results. The case study showed that the efficient design

techniques used were limited and there is a need to sys-

tematically explore and evaluate a combination of various

efficient design techniques shared in the survey.
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