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Abstract

In recent years, dynamic vision sensors (DVS), also

known as event-based cameras or neuromorphic sensors,

have seen increased use due to various advantages over

conventional frame-based cameras. Using principles

inspired by the retina, its high temporal resolution

overcomes motion blurring, its high dynamic range

overcomes extreme illumination conditions and its low

power consumption makes it ideal for embedded systems on

platforms such as drones and self-driving cars. However,

event-based data sets are scarce and labels are even

rarer for tasks such as object detection. We transferred

discriminative knowledge from a state-of-the-art frame-

based convolutional neural network (CNN) to the event-

based modality via intermediate pseudo-labels, which are

used as targets for supervised learning. We show, for

the first time, event-based car detection under ego-motion

in a real environment at 100 frames per second with a

test average precision of 40.3% relative to our annotated

ground truth. The event-based car detector handles motion

blur and poor illumination conditions despite not explicitly

trained to do so, and even complements frame-based CNN

detectors, suggesting that it has learnt generalized visual

representations.

1. Introduction

Dynamic vision sensors (DVS), also known as event-

based cameras or neuromorphic sensors [3, 14], are a class

of biologically-inspired sensors which capture data in an

asynchronous manner. When a pixel detects a change in

luminance above a certain threshold in log scale, the device

emits an output (an ‘event’) containing the pixel location,

time and polarity (+1 or -1, corresponding to an increase

or decrease in luminance respectively). Such sensors have

a temporal resolution on the order of milliseconds or less,

making the device suitable for high speed recognition,

tracking and collision avoidance. Other advantages of

dynamic vision sensors include a high dynamic range and

power efficiency, making it ideal for outdoor usage on

embedded systems in robotics.

Frame-based labeled data sets are widely available,

contributing to the tremendous advancements in frame-

based computer vision in recent years. However, event-

based computer vision is still in the process of maturing,

and current event-based data sets are quite limited,

especially in the case of object detection. Event-based

data sets have been released for robotics applications such

as simultaneous localization and mapping (SLAM), visual

navigation, pose estimation and optical flow estimation [2,

17, 27, 30], and comprise of mostly indoor scenes with

simple objects and occasional outdoor scenes. For object

recognition and detection, some data sets were created by

placing a dynamic vision sensor in front of a monitor and

recording existing frame-based data sets [10, 20]. Moeys

et al. [16] recorded scenes of a predator robot chasing

a prey robot in a controlled lab environment with some

background objects.

In the long run, dynamic vision sensors might be

integrated in platforms such as drones and autonomous

vehicles which work in complex, outdoor environments.

The DAVIS Driving Dataset 2017 (DDD17) [4] is

the largest data set as of writing which captures such

environments, with over 400 GB and 12 hours worth of

driving data spread across over 40 scenes at a resolution

of 346 × 260 pixels. These scenes are varied over the

times of the day (day, evening, night), weather (dry, rainy,

wet) and location (campus, city, town, freeway, highway),

and includes vehicle details like velocity, steering wheel

angle and accelerator pedal position. The DAVIS is a

camera model which contains a dynamic vision sensor

synchronized with a grayscale frame-based camera (also

known as the active pixel sensor, or APS).

High speed object detection under ego-motion from

dynamic vision sensor data serves a few purposes.

First, dynamic vision sensors overcome problems which
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Figure 1. Schematic of the proposed pseudo-labeling and supervised learning method. Top frame: Image from the APS sensor is passed

through a CNN to get the pseudo-labels. Bottom frame: Since the dynamic vision sensor is synchronized with the APS (grayscale) camera,

the pseudo-labels from the previous step is treated as ground truth to train a supervised learning method which takes dynamic vision sensor

data as inputs.

ordinary frame-based cameras typically encounter. At

high speeds, frame-based cameras suffer from motion blur

and collision avoidance is limited, placing a speed limit

on the platform which the camera is mounted on. In

extreme illumination conditions, frame-based cameras have

difficulty capturing features of objects. Since dynamic

vision sensors output changes in luminance, the data is

a sparse representation which can be processed faster,

compared to the output of frame-based cameras which

contains (potentially redundant) background information.

Also, detections from dynamic vision sensor data can be

used to complement detections from frame-based cameras,

as we will show from our experiments. Last, detection

under ego-motion is required because dynamic vision

sensors mounted on platforms will inevitably have ego-

motion, and the output of the sensors will include some

background information as a result, creating distractions

which the detection algorithm must overcome.

Like most objects in event-based data sets however,

objects in the DDD17 are not labeled. In this paper, we

take advantage of the mature state of frame-based detection

by using a state-of-the-art CNN to perform car detection

on the grayscale (APS) images of the DDD17. These

detections, hence termed ‘pseudo-labels’, are shown to be

effective when used as targets for a separate (fast) CNN

when training on dynamic vision sensor data in the form of

binned frames. A schematic of this method can be found in

Figure 1.

Contributions

1. We trained a CNN on pseudo-labels to detect cars

from dynamic vision sensor data, with a test average

precision of 40.3% relative to annotated ground truth.

This is the first time that high-speed (100 FPS) object

detection is done on dynamic vision sensor data under

ego-motion in a real environment, whereas previous

works have only focused on recognizing/detecting

simple objects in a controlled environment or detecting

objects without camera ego-motion.

2. We show that a CNN trained on pseudo-labels can

detect cars despite motion blur or poor lighting, even

though pseudo-labels were not generated for these

scenarios. This CNN even complements the original

frame-based CNN that was used to generate the

pseudo-labels, suggesting that our trained CNN learnt

generalized visual representations of cars.
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1.1. Related work

Pseudo-labels & cross modal distillation Pseudo-

labeling was introduced by Lee [12] for semi-supervised

learning on frame-based data, where during each weight

update, the unlabeled data picks up the class which has the

maximum predicted probability and treats it as the ground

truth. Pathak et al. [22] used automatically generated masks

(pseudo-labels in their context) from unsupervised motion

segmentation on videos, and then trained a CNN to predict

these masks from static images. The trained CNN learnt

feature representations and was able to perform image

classification, semantic segmentation and object detection.

For data sets with paired modalities (e.g. RGB-D data

contains RGB data of a scene synchronized with depth

data of the same scene), cross modal distillation [8] is a

scheme that transfers knowledge from one modality, which

has a lot of labels, to another modality, which has very

few labels. In [8], mid-level representations of a CNN

trained on RGB images were used to supervise training for

another CNN to perform object detection and segmentation

on depth images. In [1], the visual modality of videos was

used to generate pseudo-labels from CNNs and used to train

a separate 1-D CNN to classify scenes from sound inputs.

Our work is inspired by these cross modal methods, and we

leverage on the fact that the DDD17 is a large data set with

synchronized DVS and APS modalities.

Event-based object detection Object detection on

dynamic vision sensor data is relatively new since labeled

event-based data sets are scarce. Liu et al. [15] performed

object detection on the predator-prey data set [16]. They

used dynamic vision sensor data as an attention mechanism

for a frame-based CNN, and compared it to using a CNN to

perform detection on the entire grayscale image. Including

particle filter for both methods to aid tracking, the former

method is 70X faster than the latter, with an accuracy of

90%. Li et al. [13] proposed a method which adaptively

pools feature maps from successive frames (generated

by binning dynamic vision sensor data over time) to

create motion invariant features for object detection. They

demonstrated hand detection with performance scores

averaging from 61.3% to 76.0% depending on the variant

of the method used. Hinz et al. [9] demonstrated a tracking-

by-clustering system which detects and tracks vehicles on

a highway bridge. Both [13] and [9] did not benchmark

their methods on dynamic vision sensor data under camera

ego-motion.

2. Generating pseudo-labels for dynamic vision

sensor data

We overcome the lack of labeled dynamic vision sensor

data by using cross modal distillation with pseudo-labels

on the DDD17 data set (see Figure 1 for a brief outline).

Since the DAVIS sensor has a frame-based camera (APS)

synchronized with a dynamic vision sensor, the ground

truth in one camera is the same as the ground truth in the

other camera. The grayscale (APS) images are fed into

a state-of-the-art CNN which generates outputs (pseudo-

labels). These pseudo-labels with confidence above a

threshold are treated as ground truth and used to train

a supervised learning method, which takes the dynamic

vision sensor data as inputs. Though the pseudo-labels

are noisy, Pathak et al. [22] argues that in the absence

of systematic errors, such noise are perturbations around

the ground truth, and since supervised learning methods

like neural networks have a finite capacity, it cannot learn

the noise perfectly and it might learn something closer

to the ground truth. In the context of our experiments

(car detection), the pseudo-labels are bounding boxes while

the supervised learning method is also a CNN. Pseudo-

labeling is not limited to object detection–it should work for

other computer vision tasks like image segmentation, image

recognition and activity recognition.

Implementation Details We chose the Recurrent Rolling

Convolution (RRC) [25] CNN as the object detection

CNN for APS images because as of writing, it is the

best-performing model on the KITTI Object Detection

Evaluation benchmark [6]. The APS images are in

grayscale and due to domain shift, the original RRC trained

on the KITTI data set (which is in RGB) might not produce

high quality pseudo-labels. As such, we also use another

model of the RRC which is fine-tuned over 1000 iterations

on a grayscale-converted KITTI data set. This will allow us

to investigate how pseudo-labels of differing quality affect

the performance of the trained DVS detector. As the RRC

takes in images of a different aspect ratio than the APS

images, we scaled the APS images to the largest possible

size while preserving the aspect ratio, and padded the

remainder of the image with zeroes. By keeping predictions

that have at least a 0.5 confidence score, we produced about

330k and 400k pseudo-labeled images from the original and

fine-tuned RRC respectively for various day and evening

scenes (the RRC might not produce accurate detections for

the night scenes). The scenes are split into train/val/test sets

in the ratio 71/15/14 by their recording length, with each set

covering a variety of conditions and scenes (more details in

the supplementary material). We focused only on detecting

cars, but this method can easily be extended to other classes.

3. Supervised learning with pseudo-labels

Implementation Details We adopt a frame-based

approach to the dynamic vision sensor data for object

detection, because frame-based object detection is mature.

The dynamic vision sensor data are converted to images

by binning the dynamic vision sensor outputs in 10 ms

intervals, and each pixel takes the value
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σ(x) = 255 ∗
1

1 + e−x/2
, (1)

where x is the sum of the polarities of the events in the 10

ms interval. We refer to this as the sigmoid representation

of the dynamic vision sensor data, chosen because it is a

simple way to ensure that all values will lie in [0, 255].

While there exist various image representations of DVS

data [7, 16] which could affect the final performance of

our detector, we leave such optimization to future work.

10 ms bin size was chosen for 2 reasons: (i) We aim to

achieve detection at 100 frames per second (FPS), about an

order of magnitude above most state-of-the-art CNNs. (ii)

Ideally we would set the bin size to be as small as possible

to reduce the effects of motion blur, but this is limited by

the accompanying method which must handle the data at

the right frame rate. 10 ms is a reasonable bin size given

these considerations.

We used the tiny YOLO architecture [23, 24] for the

DVS detector because it was shown to run at 207 FPS on

a Geforce GTX Titan X GPU (Maxwell) with a decent

performance of 57.1% mean average precision on the VOC

2007+2012 benchmark. It requires about 7 billion multiply

and accumulate operations, which is at least 100 times less

than that of the RRC. We started with this CNN pre-trained

on the VOC 2007+2012 benchmark and fine-tuned it using

the pseudo-labels generated, in steps of 10k iterations, up

to 150k iterations (including the 20k iterations from pre-

training). As we want to show that the object detection CNN

performs well as a result of the effectiveness of pseudo-

labels rather than the result of optimizing hyper-parameters,

we only changed the subdivisions from 8 to 4 and batch

size from 64 to 128, and kept the other settings as provided

in [23, 24].

3.1. Quantitative results

The scenario that we are tackling (high-speed object

detection in a real environment from dynamic vision

sensor data under camera ego-motion) is the first of its

kind, so there are no other state-of-the-art algorithms for

comparison. As such, we hope that this work serves as a

benchmark for future methods tackling the same scenario.

Since there is no ground truth data for the objects in

DDD17, we measure performance relative to the RRC

pseudo-labels during the model validation step. The model

with the highest average precision on the validation set will

then be evaluated on the test set. We use an intersection-

over-union (IoU) threshold of 0.5 for this step.

Evaluation against ground truth We randomly selected

1000 frames from the test set for manual annotation, and

all performance figures reported henceforth are obtained

by evaluation on this subset. Similar to the KITTI object

detection benchmark, we only consider objects that have a

Modality Arch. AP@0.5 AP@0.7

APS RRC 44.1% 39.6%

DVS t.YOLO 36.9% 18.3%

APS+DVS RRC+t.YOLO 55.6% 39.9%

APS RRC(ft) 53.7% 47.2%

DVS t.YOLO(ft) 40.3% 19.9%
APS+DVS RRC+t.YOLO(ft) 62.2% 47.7%

Table 1. Evaluation results of our experiments, at IoU thresholds of

0.5 and 0.7. Keys: Arch.=Architecture, ft=fine-tune, AP=average

precision, t.YOLO(ft)= tiny YOLO model trained on pseudo-

labels produced by RRC (fine-tuned). We can see that the DVS-

only detector has higher performance when trained on pseudo-

labels by RRC (fine-tuned) compared to that of RRC (original).

Also, the combination of the APS (grayscale) and DVS cameras

help achieve a higher performance than either modality alone.

minimum height of 25 pixels. A summary of the results can

be found in table 1 and the corresponding precision-recall

curves can be found in Figure 2. The test average precision

of the DVS-only detector is 36.9% and 40.3% for pseudo-

labels generated by the RRC (original) and the RRC (fine-

tuned) respectively, at an IoU threshold of 0.5. This effect

will be explained later. As a comparison, the tiny YOLO

architecture achieves a mean average precision of 57.1%

when trained on real labels (VOC 2007+2012 benchmark).

Note that the RRC’s performance on our test set is much

lower than that reported for the KITTI data set (87.4% for

the hard setting, IoU threshold at 0.7) because the data set

we are using has a lower resolution (346 × 260 vs 2560 ×

768 for KITTI).

Complementing DVS and grayscale detections We

evaluated if the combination of DVS and grayscale

detections can improve the overall performance, listed as

APS+DVS in table 1. We combined the detections of

the DVS-only detector and the RRC, and applied non-

maximum suppression with an IoU threshold of 0.4 to

remove duplicates. At a detection IoU threshold of 0.5, such

a combination yielded an average precision of 62.2% on

our annotated ground truth data set, roughly a 16% increase

over using only the RRC. This is despite the fact that the

DVS-only detector is trained only on knowledge generated

by the RRC, showing that the DVS-only detector has learnt

generalized representations of cars. A similar effect was

observed in [8] for the RGB and depth modalities.

Given the current state of hardware, the RRC is not

a real-time detector and the specific combination of the

detections mentioned above is not practical yet. However,

we hope that this experiment will inspire future work on

using detections from the DVS to complement detections

from the APS.

We notice that at an IoU threshold of 0.7, the benefit

from combining the detectors is marginal. This is because
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Figure 2. (Best viewed in color) Precision-recall curves for various modalities at IoU thresholds of 0.5 and 0.7.

the RRC architecture is specifically designed to work well

at high IoU thresholds, whereas the tiny YOLO architecture

is designed assuming that it will be evaluated at an IoU

threshold of 0.5.

Comparing DVS and grayscale detections We

measured the correct detections made by the detectors,

regardless of the confidence score, as a fraction of the

total number of ground truth objects (i.e. the recall) in

table 2. We also take a look at the union and intersection

of these detections. At 0.5 IoU threshold, the DVS-only

detector picked out 60.1% of the objects while the RRC

picked out 64.2% of the objects. 10.6% of the objects

were detected by the DVS-only detector but not by the

RRC, reinforcing the fact that the DVS-only detector learnt

general representations of cars, though it was trained on

the knowledge from the RRC. We notice that fine-tuning

the RRC did not change the fraction by much for the DVS

and APS∪DVS modalities though it improved the average

precision in table 1–This might be due to the fine-tuning

process increasing the confidence of correct detections

rather than the number of correct detections made by the

DVS-only detector.

Correctness of pseudo-labels We evaluated the

correctness of pseudo-labels by taking the RRC predictions

which have above 0.5 confidence (the criteria for selecting

pseudo-labels), and calculated the precision and recall

relative to the annotated ground truth in table 3. We

observe that at least 79.9% of the pseudo-labels are correct

(precision). Also, the pseudo-labels only highlight 51.4%

of all ground truth objects (recall) at best, however this is

not a problem since we exclude frames with no detections

during training. Notice that fine-tuning actually decreases

Modality Arch. Frac.@0.5 Frac.@0.7

APS RRC 55.8% 49.5%

DVS t.YOLO 61.4% 33.0%

APS∩DVS RRC+t.YOLO 41.7% 25.2%

APS∪DVS RRC+t.YOLO 75.4% 57.3%

APS RRC(ft) 64.2% 55.1%

DVS t.YOLO(ft) 60.1% 32.4%

APS∩DVS RRC+t.YOLO(ft) 49.5% 27.1%

APS∪DVS RRC+t.YOLO(ft) 74.8% 60.4%

Table 2. Correct detections made by the detectors as a fraction

of all the actual objects (recall), for IoU thresholds of 0.5 and

0.7. Keys: Arch.=Architecture, ft=fine-tune, Frac.=fraction,

t.YOLO(ft)= tiny YOLO model trained on pseudo-labels produced

by RRC (fine-tuned). Notice that the DVS detected some objects

which are not detected by the RRC.

the precision but increases the recall, which means that

the RRC (fine-tuned) produced more labels which cover

more ground truth objects than the RRC (original), at the

expense of making more false detections. Reconciling this

with the results in table 1, we conclude that the increased

performance of the DVS detector (trained on pseudo-labels

produced by the RRC (fine-tuned)) is attributable to a larger

training set, and not due to more accurate labels. This

agrees with the intuition of Pathak et al. mentioned in the

beginning of section 2 that neural networks can overcome

noise from pseudo-labels.

Run-time analysis The DVS detector was run on the

entire test set on a GeForce GTX Titan X (Maxwell) GPU

and averaged at 7 ms per image, or 142 FPS.
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ft Prec.@0.5 Rec.@0.5 Prec.@0.7 Rec.@0.7

No 88.4% 38.0% 82.6% 35.5%

Yes 87.3% 51.4% 79.9% 47.0%

Table 3. Precision and recall of RRC detections with confidence

above 0.5, for IoU thresholds of 0.5 and 0.7. This gives us

an idea of the correctness of pseudo-labels. Keys: ft=fine-tune,

Prec.=precision, Rec.=recall. At least 79.9% of the pseudo-labels

are correct (precision). Fine-tuning decreases the precision and

increases the recall.

3.2. Qualitative results

Though we used the sigmoid representation for training

our detector, the following images from the dynamic vision

sensor are displayed in the binary representation for easier

viewing, where each pixel in the frame takes the value

of 0 if the sum of the polarities of the events in the

10 ms interval is 0, and 255 otherwise. The numbers

above the bounding boxes indicate the confidence, and

the threshold for displaying the bounding boxes on the

following images and videos is 0.5. All bounding boxes

shown are a result of the fine-tuned RRC and the DVS

which is trained on its pseudo-labels. Links to videos can

be found in the supplementary material, and the reader

is strongly encouraged to randomly sample clips from all

videos to gauge the performance of the DVS-only detector.

Daytime and evening detections Randomly sampled

images from the test sets are shown in Figure 3. While the

CNN is able to detect cars in the near-field, cars in the far-

field and cars moving at the same velocity as the camera

(hence zero relative velocity) only show up on the DVS

images as thin outlines at best and as such are not detected

by our CNN. This is the main drawback of the DVS.

Overcoming motion blur In the first pair of row 2 and

second pair of row 6 of Figure 3, we see the high temporal

resolution of the dynamic vision sensor in action. The

camera is moving fast and as a result, the features captured

by the frame-based camera are blurred, whereas the features

captured by the dynamic vision sensor is still reasonably

sharp. The cars were detected by our event-based detector

but not by the RRC, reinforcing our motivation for object

detection on dynamic vision sensor data. An additional

motion blur scene can be found at the 1:30 mark in the video

of the third test scene (see supplementary material).

Nighttime detections One key feature of dynamic vision

sensors is the high dynamic range which can cope with a

wide spectrum of illumination conditions. Figure 4 shows

a night scene (2:01:59 mark of the night scene video in

the supplementary material) where illumination is poor on

the left hand side of the lane. The edges in the DVS

image are visible enough that the cars are detected by the

DVS-only detector, but the cars in the APS image are dark

enough to blend into the surrounding and was not detected

by the RRC, showing that poor illumination conditions still

pose a challenge for conventional frame-based cameras.

Considering that the DVS-only detector is trained only on

day and evening scenes, the fact that it was able to detect

cars at night shows that the detector learnt representations

of cars which are robust to illumination conditions.

Limitations In Figure 5, we see an example where our

approach fails. This scene is on a highway at night (see

video in the supplementary material), where the light source

is dominated by the headlights of the cars. As the CNN

is trained on DVS images of cars in the day and evening

scenes, it learns the features that are visible during those

times (e.g. edges of the car) and it does not learn the features

of the headlights. To learn such features, we require labeled

data which might be hard to obtain from the pseudo-labeling

method because conventional CNNs do not work well on

images with poor illumination conditions. This strongly

suggests that the näıve approach of binning DVS data and

creating images is not sufficient to represent the data.

4. Discussion

Our implementation is largely unoptimized, and the

average precision can be increased via many ways. For

example, we can fine-tune the threshold to keep pseudo-

labels for training, the network and learning hyper-

parameters of the DVS-only detector and explore other

representations of the DVS data (e.g. possibly binning the

data by a fixed number of events). We can also combine

detection with tracking methods [11, 15, 18, 29].

In Figure 3, we saw how our CNN missed detections

of cars that are far away, because the pixels that spike are

sparsely distributed and possibly drowned out by noise. One

solution is to use a higher resolution camera to capture the

features of the car with more pixels. Another solution is to

move away from a frame-based approach when analyzing

dynamic vision sensor data, and towards an entirely event-

based approach, i.e. algorithms which accept sparse DVS

data and take temporal information into account.

The performance of the detector, in terms of speed

and average precision, is bounded by the tiny YOLO

architecture. Recent research in spiking neural networks

(SNNs) for image classification have shown accuracies of

over 90% while operating at the millisecond time scale [19,

26, 28]. This suggests that the fully event-based approach

we seek could be in the form of using the event-based ROI

approach in [15] for region proposals combined with SNNs

for recognition, or even an SNN for object detection. These

approaches can also be trained with pseudo-labels.

Our detector requires a Titan X GPU which, in terms

of power consumption, may be feasible for autonomous

cars but not for drones. The power consumption of SNNs

implemented on neuromorphic computing hardware is on
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Figure 3. (Best viewed in color and zoomed in) Randomly selected images from day and evening scenes (test set). Images come in pairs:

The left image of each pair is the DVS image with bounding boxes (in red) produced by DVS-only detection, while the right image of each

pair is the APS image with DVS-only bounding boxes (in red) copied over and the RRC detections (in yellow) for comparison. First row,

first pair: DVS fails to detect a stationary car. Second row, first pair: DVS-only detector detects a car despite motion blur, but the RRC fails

to do so. Notice that in the DVS image, the edges of the car are still reasonably distinct. Second row, second pair: An example where a car

in the far-field does not trigger a response in the DVS. Last row, second pair: Despite dim lighting and motion blur, the edges of the car are

still visible on the DVS image and hence is detected by the DVS-only detector but not the RRC.
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Figure 4. Left: Night scene on the DVS sensor, with bounding boxes produced by the DVS-only detector. Middle: APS image, with

bounding boxes copied from DVS-only detection for comparison. Right: Middle image digitally enhanced for the reader’s convenience.

The edges of the cars are visible in the DVS image but barely visible in the APS image, so the RRC did not produce any detections.

Figure 5. Left: DVS image. Right: APS image. This is a highway scene where we are only able to see the headlights of the car and nothing

else. Both the DVS-only detector and the RRC fail to produce detections in such a scenario.

the order of milliWatts [5, 21], suggesting that this is

another area for future research.

5. Conclusions and Future Work

In all, we have presented two main contributions. First,

we showed for the first time high speed (100 FPS) object

detection in a real environment under camera ego-motion,

purely from dynamic vision sensor data. Previous work

on event-based detection/recognition have only focused on

recognizing simple objects such as numbers, or detecting

objects in the absence of ego-motion, and the most

realistic work is on detecting a robot in a controlled

environment [15]. Our technique showed reasonable

success with detections in day and night scenes, however it

failed to detect cars when the headlights are bright enough

to distort the features, cars which have no relative motion

or cars that are too far away. Second, we showed that

our trained CNN can detect cars despite motion blur and

poor lighting without explicit training on such scenes, and

can complement the detections from the RRC, proving that

our CNN learnt robust representations of cars from pseudo-

labels.

Future work includes implementing SNNs for object

detection, especially on neuromorphic computing

hardware. We see value in event-based image segmentation

because it could boost detection performance and overcome

the headlights problem in Figure 5 (e.g. if we detect an

object on the road, then the object is more likely to be a car

even though we only see headlights).

We hope that this work will encourage researchers to

use pseudo-labels for supervised learning techniques on

DVS data and advance the frontiers of this field, and to

publish more data sets containing synchronized DVS and

APS modalities.
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