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Abstract

Deploying deep models on embedded devices has been a

challenging problem since the great success of deep learn-

ing based networks. Fixed-point networks, which represent

their data with low bits fixed-point and thus give remark-

able savings on memory usage, are generally preferred.

Even though current fixed-point networks employ relative

low bits (e.g. 8-bits), the memory saving is far from enough

for the embedded devices. On the other hand, quantiza-

tion deep networks, for example XNOR-Net and HWGQ-

Net, quantize the data into 1 or 2 bits resulting in more

significant memory savings but still contain lots of floating-

point data. In this paper, we propose a fixed-point network

for embedded vision tasks through converting the floating-

point data in a quantization network into fixed-point. Fur-

thermore, to overcome the data loss caused by the conver-

sion, we propose to compose floating-point data operations

across multiple layers (e.g. convolution, batch normaliza-

tion and quantization layers) and convert them into fixed-

point. We name the fixed-point network obtained through

such integrated conversion as Integrated Fixed-point Quan-

tization Networks (IFQ-Net). We demonstrate that our IFQ-

Net gives 2.16× and 18× more savings on model size and

runtime feature map memory respectively with similar accu-

racy on ImageNet. Furthermore, based on YOLOv2, we de-

sign IFQ-Tinier-YOLO face detector which is a fixed-point

network with 256× reduction in model size (246k Bytes)

than Tiny-YOLO. We illustrate the promising performance

of our face detector in terms of detection rate on Face De-

tection Data Set and Bencmark (FDDB) and qualitative re-

sults of detecting small faces of Wider Face dataset.

1. Introduction

During the past decade, deep learning models have

achieved great success on various machine learning tasks

such as image classification, object detection, semantic seg-

mentation, etc. However, applying them on embedded de-

vices remains as a challenging problem due to the enormous

resource requirement in terms of memory and computation

power. On the other hand, fixed-point data inference yields

promising reductions on such requirement for embedded

devices [6]. Thus, fixed-point networks are primarily pre-

ferred when deploying deep models for the embedded de-

vices.

In general, designing a fixed-point CNN network can be

fulfilled by two types of approaches: 1)pre-train a floating-

point deep network and then convert it into a fixed-point net-

work; 2) train a deep CNN model whose data (e.g. weights,

feature maps, etc.) is natively fixed-point. In [9], a method

is introduced to find the optimal bit-width for each layer

to convert its floating-point weights and feature maps into

their fixed-point counterparts. Given the hardware accel-

eration for 8-bit integer based computations, [12] provides

optimal thresholds which minimize the data loss during the

32-bits float to 8-bits integer conversion. These works have

shown that it is feasible to significantly save memory us-

age through relatively low bit (e.g. 8-bits) representation

yet achieve similar performance. However, such memory

saving is far from enough especially for embedded devices.

The second approach is to train a network all of whose data

is natively fixed-point. Nevertheless, as discussed in [8],

its training process may suffer from severe unstable weight

updating because of the inaccurate gradients. Strategies

such as stochastic rounding somehow result in improve-

ment [3, 4, 10] but a trade-off between low bit data rep-

resentation and precise gradients still has to be made.

Alternatively, BinaryNet [2] employs binarized weights

for forward pass but full precision weights and gradients

for stable convergence. Meanwhile, its feature maps are

also binarized to {−1, +1} so that its data can be repre-

sented as 1-bit fixed-point for less memory usage during

inference time. However, a notable performance drop of
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Figure 1. The flowchart of converting a floating-point quantization

network into IFQ-Net.

30% (Top-1 accuracy) is observed on ImageNet classifica-

tion. Subsequently, XNOR-Net [13] employs extra scal-

ing factors on both weights and feature maps so that their

“binary” elements are generalized to {−α, +α} and {−β,

+β} respectively. These extra factors enrich the data infor-

mation thus gains 16% accuracy back on ImageNet. Fur-

thermore, HWGQ-Net [1] uses a more flexible k-bits quan-

tization on feature maps whose elements can be generalized

to {0, β, 2β, 3β} in the situation of 2-bits uniform quanti-

zation. Such k-bits feature maps (k ≥ 2) give a further 8%

improvement making HWGQ-Net to be the state-of-the-art

quantization network on ImageNet classification.

Given a HWGQ-Net, each filter of its quantized convolu-

tion layer can be expressed as a multiplication of a floating-

point α and a binary fixed-point matrix whose elements are

limited to {−1,+1}. Similar representations can also be

applied to its feature maps (see Equation 1). Therefore, to

obtain its fixed-point counterpart, it would be only neces-

sary to convert the floating-point α and β while other parts

of the layer are natively fixed-point. Besides, Batch Nor-

malization (BN) layer, which is usually employed on top of

each convolution layer, also contains floating-point param-

eters and thus requires fixed-point conversion (see Equa-

tion 2). One way to do this is to separately convert each of

the floating-point data but it usually results in data loss that

would be accumulated over the network and cause a notable

performance drop.

In this paper, we propose a novel fixed-point network,

IFQ-Net which is obtained through converting a floating-

point quantization network into its fixed-point counterparts.

As illustrated in Figure 1, we first divide the quantization

network into several substructures, where each substructure

is defined as a group of consecutive layers that starts with

a convolution layer and ends with a quantization layer. An

example of the substructures of AlexNet is listed in Table 1.

Then we convert the floating-point data in each substruc-

ture into fixed-point data. Especially for the “quantized sub-

structure”, which starts with a quantized convolution layer

and ends with a quantization layer, we propose to compose

its floating-point data into the thresholds of the quantization

layer and then convert the composition result into fixed-

point. As will be presented in section 3.2, our integrated

conversion method does not cause any performance drop.

At the end, we separately convert each floating-point data in

the remaining non-quantized substructures (if any) to fixed-

point resulting in a fixed-point network, IFQ-Net.

In this paper, the major contributions we made are:

• proposing IFQ-Net network, obtained through convert-

ing a floating-point quantization network into fixed-

point. Due to the relatively low bits of the quantization

network, IFQ-Net gives much more savings on model

size and runtime feature map memory.

• proposing an integrated conversion method to convert

the floating-point data in the quantized substructures

without performance drop. Since its BN operation

(if available) is already integrated into the thresholds

of the corresponding quantization layer, our IFQ-Net

does not require actual BN implementation on target

hardware.

• designing IFQ-Tinier-YOLO face detector, a fixed-

point model with 256× tinier model size (246k Bytes)

than Tiny-YOLO.

• demonstrating the feasibility of quantizing all convolu-

tion layers in IFQ-Tinier-YOLO model, which differs

from the original HWGQ-Net whose first and last lay-

ers are full precision.

2. Quantized convolutional neural network

A CNN network usually consists of a series of layers

where the convolution layer monopolizes the inference time

of the whole network. However, the weights and features

maps were found redundant for most tasks. Consequently,

enormous efforts have been done on quantizing the weights

and/or the input feature maps into low-bit data for less mem-

ory usage and fast computation.

2.1. Quantization network inference

Embedded devices are usually employed for network

inference only because of their limited computation re-

sources. Hence, in this paper, we mainly focus on the in-

ference process of a network. In the following, we take a
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typical quantized substructure from HWGQ-Net as an ex-

ample to illustrate the computation details of its inference.

For the l-th convolution layer of HWGQ-Net, we use

W ∈ R
c×h′

×w′

and Xl ∈ R
c×h×w to represent one of the

filters and its input feature maps respectively, where c, h′,

w′, h, w are the number of channels, the height and width

of its filter, and the height and width of the input feature

maps respectively. In the case of a 2-bit quantized con-

volution layer from HWGQ-Net, its filter is binarized into

W ∈ {−α,+α}c×h′
×w′

and Xl ∈ {0, β, 2β, 3β}c×h×w.

Then the computation of a convolution layer can be repre-

sented as

Yconv = W ⊗ Xl + b = αβ · Wb ⊗ Xl
q + b (1)

where ⊗ represents the convolution operation; Wb

and Xl
q are integer part of the quantized filter and fea-

ture maps so that Wb ∈ {−1,+1}c×h′
×w′

and Xl
q ∈

{0, 1, 2, 3}c×h×w, b is its learned bias.Yconv is its output

feature map.

Typically, a BN layer is applied on top of a convolution

layer. It is computed in an element-wise manner as follows,

YBN
i,j =

Yconv
i,j − θ

σ
(2)

where 0 ≤ i < w, 0 ≤ j < h, θ and σ are the learned mean

and variance of the feature map.

At the end, a quantization layer maps its input feature

map YBN into discrete numbers. Taking a 2-bits uniform

quantization for instance, its computation can be expressed

as

Xl+1
i,j = β′ ∗















0 YBN
i,j ≤ thr1

1 thr1 < YBN
i,j ≤ thr2

2 thr2 < YBN
i,j ≤ thr3

3 YBN
i,j > thr3

(3)

where thr1, thr2 and thr3 are the thresholds used for quan-

tizing its input YBN , and β′ is the scale factor for its output

feature map. The resulting Xl+1 is then employed as the

input of the (l + 1)-th convolution layer (if available).

When max pooling layer appears in the substructure, as

discussed in [13], it is better to place it between convolution

and BN layers for richer data information. In other words,

Y
pooling
i,j = max

(m,n)∈Ai,j

{Yconv
m,n } (4)

where Ai,j denotes the local zone employed for pooling op-

eration at location (i, j) of Yconv . Then the input of the BN

layer in Equation 2 is accordingly changed to be Y
pooling
i,j .

2.2. Separated fixedpoint conversion

As illustrated in subsection 2.1, the dominating part of

the convolution computation W ⊗ Xl can be implemented

Figure 2. Fixed-point conversion for a substructure: a) separated

conversion which separately transforms each floating-point data

into fixed-point data through the floor function ⌊·⌋ ; b) integrated

conversion which employs a composition operation f to compose

all the floating-point calculations to quantization layer and then

apply the fixed-point conversion for the composed results.

with native fixed-point data only. However, the network still

contains lots of floating-point data these being the scaling

factor α and β in the convolution layer, θ and σ in the BN

layer and also thri in the quantization layer. Consequently,

it is necessary to convert them into fixed-point when design-

ing fixed-point networks for embedded devices.

A traditional way for the aforementioned conversion is

to process them separately. As shown in Figure 2a, each

floating-point data of the substructure is converted into its

fixed-point counterpart. Since directly applying a simple

conversion causes significant data loss especially when α is

small (e.g. 0.001), we use a relatively large Qm to scale-up

the floating-point data1. For example, α can be transformed

by ⌊αQm⌋ where ⌊·⌋ denotes the flooring operation. At

the end, Qm has to be divided back to achieve “equivalent”

outputs. Then, fixed-point conversion of a quantized convo-

lution layer can be expressed as

Yconv =
⌊αQm⌋⌊βQm⌋ · Wb ⊗ Xq + ⌊bQ2

m⌋

Q2
m

(5)

To obtain a substructure with fixed-point data only, the

same conversion ⌊·⌋ is also applied to θ, σ, thri separately.

3. IFQ-Net methodology

To obtain a fixed-point network for embedded devices,

we propose to first train a quantization network and then

1For fast calculation, Qm is usually set to 2
m so that the multiplication

can be implemented by simple m-bit left shift
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Figure 3. Substructure division for a quantized network:

a)substructure without max pooling layer; b)substructure with max

pooling layer.

convert its floating-point data, which has been quantized

into extremely low bits (e.g. 1 or 2 bits), into fixed-point

data. As demonstrated in Figure 1, our methodology con-

sists of two steps: first we divide a trained floating-point

quantization network into substructures and then we convert

each substructure into its fixed-point counterpart. We em-

ploy HWGQ-Net algorithm to train a floating-point quanti-

zation network.

3.1. Substructure division

As mentioned in Section 1, a substructure is defined

as a group of consecutive layers that starts with a convo-

lution layer and ends with a quantization layer. Given a

quantization network, we search for the quantized substruc-

tures in the network as demonstrated in Figure 3. Typi-

cally, the architecture of a quantized substructure is either

{convolution, BN, quantization} or {convolution, pooling,

BN, quantization}. The substructures that contain more

than one convolution or quantization layer are not consid-

ered as quantized substructures. The layers between quan-

tized substructures are defined as non-quantized substruc-

tures, which will be treated differently during fixed-point

conversion. Generally, BN and/or max pooling layers are

placed between convolution layers and quantization layers.

Taking AlexNet-HWGQ network as an example, we

divide it into 7 substructures (see Table 1). Because

the HWGQ network keeps its first and last convolution

layer full precision, so the corresponding substructures

(substructure1 and substructure7) are non-quantized

and thus will be converted differently. Please note that we

group all the layers on top of the FC7 layer as one single

substructure.

3.2. Integrated fixedpoint conversion

A trained quantization network can be divided into sub-

structures that contain lots of floating-point data. To obtain

a fixed-point network, it is necessary to convert each of its

floating-point substructures into fixed-point. However, con-

verting the floating-point data in a separated manner usually

leads to performance drop. Consequently, in the following,

we introduce an integrated way to convert a floating-point

substructure. Taking 2-bits uniformly quantized substruc-

ture from HWGQ-Net as an example, its computations that

mentioned in Equation 1, 2 and 3 can be composed as fol-

lows

Yquant =



















0
αβ·Wb⊗Xq+b−θ

σ
≤ thr1

β′ thr1 <
αβ·Wb⊗Xq+b−θ

σ
≤ thr2

2β′ thr2 <
αβ·Wb⊗Xq+b−θ

σ
≤ thr3

3β′ αβ·Wb⊗Xq+b−θ

σ
> thr3

(6)

Since α > 0, β > 0 and also σ > 0, Equation 6 can be

transformed to

Yquant = β′∗



















0 Wb ⊗ Xq ≤ thr1∗σ+θ−b
αβ

1 thr1∗σ+θ−b
αβ

< Wb ⊗ Xq ≤ σ∗thr2+θ−b
αβ

2 σ∗thr2+θ−b
αβ

< Wb ⊗ Xq ≤ σ∗thr3+θ−b
αβ

3 Wb ⊗ Xq > σ∗thr3+θ−b
αβ

(7)

As illustrated in Equation 7, all the floating-point data of

a quantized substructure is composed into the newly formed

thresholds (e.g. thr1∗σ+θ−b
αβ

). Such composition process is

performed with floating-point data and thus does not impact

the output result.

The next step is to convert the new thresholds into fixed-

point data. Wb and Xq are both integers thus the resulted

Wb ⊗ Xq are also integers. In Equation 7, when threshold-

ing the integers Wb ⊗ Xq with newly formed floating-point

thresholds, theoretically, their fractional parts do not affect

the result. Consequently, we can simply discard the frac-

tional part by applying the floor function ⌊·⌋ on the new

thresholds. Compared to the separated fixed-point conver-

sion method, our method does not require to scale-up the

floating-point data with Qm yet gives identical quantization

results. Besides, the remaining floating-point data β′ can be

processed in the next substructure just like how we deal with

the β of Equation 1. Consequently, all the computations of

a quantized substructure, as represented in Equation 7, can

be casted on fixed-point data after ⌊·⌋ is applied on each of

the new thresholds.

The fixed-point implementation of on-device BN com-

putation is challenging for embedded devices. As an alter-

native solution which differs from the method that merges it

into a convolution layer, the proposed integrated fixed-point

conversion method transforms the BN computation into the
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new quantization thresholds. Consequently, our IFQ-Net

also does not require actual BN implementation on embed-

ded hardware.

In the above, we have taken k = 2 as an exam-

ple of converting a k-bits quantization network. How-

ever, when a larger k is employed, it would be necessary

to store (2k − 1) thresholds. In the uniform quantiza-

tion scenario, the network’s thresholds can be expressed as

thri = i ∗ base + offset. Thus, one may only need to

store base and offset because all the thresholds can be re-

stored from them. Similarly, denoting base′ = σ∗base
αβ

and

offset′ = θ−b+σ∗offset
αβ

, our newly formed thresholds can

also be represented as thr′i = i∗base′+offset′. Thus, our

new thresholds thr′ can also be represented in an efficient

way. Then computations in a k-bits uniformly quantized

substructure can be expressed as Equation 8 which can be

further converted into fixed-point in an integrated manner.

Yquant = β′ ∗



























0 Wb ⊗ Xq ≤ thr′1
1 thr′1 < Wb ⊗ Xq ≤ thr′2
2 thr′2 < Wb ⊗ Xq ≤ thr′3
...

...

(2k − 1) Wb ⊗ Xq > thr′(2k−1)

(8)

In summary, we presented IFQ-Net obtained by divid-

ing a quantization network (e.g. HWGQ-Net) into floating-

point substructures and then converting each of them into

fixed point. For the quantized substructures, we propose

an integrated fixed-point conversion method which gives

no performance drop. At the end, for the remaining non-

quantized substructure (if any), we employ the separated

method to convert them into fixed-point.

It is worth to point out that our IFQ-Net differs from the

floating-point data composition method presented in [17] in

many aspects: 1)the paper claims that it combines multi-

ple layers but does not explicitly explain how; 2)the paper

applies the floating-point data composition for enabling bi-

nary convolution computation leaving other parameters as

floating-point while our method is proposed for fixed-point

conversion and 3)the paper concentrates on implementing a

quantized network on FPGA but the performance (e.g. de-

tection rate, mAP etc.) is not reported.

4. Experimental results

In this section, we demonstrate how we convert each

substructure of AlexNet into fixed-point to obtain an IFQ-

AlexNet. We first test the performance of the integrated

conversion method for the quantized substructures. Then,

for the non-quantized substructures, we demonstrate how

we experimentally set the scale factor Qm for the separated

fixed-point conversion. We compare the performance of our

IFQ-AlexNet with “Lin et al. [9]” which is the state-of-the-

art AlexNet-based fixed-point network on ImageNet. Fur-

thermore, we also illustrate the performance of IFQ-Tinier-

YOLO face detector which is an extremely compact fixed-

point network on both FDDB and Wider Face datasets.

4.1. IFQAlexNet network

To obtain fixed-point networks, we first train floating-

point quantization networks AlexNet-HWGQ whose

weights and feature maps are quantized into 1-bit and

k-bits (k ∈ {2, 3, 4}) respectively. The AlexNet-HWGQ is

trained with 320k iterations on ImageNet while the batch

size is set to 256. The initial learning rate is set to 0.1

and decreased by a factor of 0.1 every 35k iterations. We

inherit other training settings from [1] and achieve similar

performance.

Table 1. Substructures of AlexNet-HWGQ network.

substructure1 substructure2 ... substructure7

Conv1 Conv
q
2

...

FC
q
7

Pool1 Pool2 BN7

BN1 BN2 ReLU7

Quant1 Quant2 FC8

As the first step for obtaining the IFQ-AlexNet, we di-

vide a floating-point AlexNet-HWGQ network into 7 sub-

structures ( Table 1). In the table, the superscript q in Conv
q
2

and FC
q
7 means that their weights are binarized (1-bit) and

input feature maps are quantized into k bits by their bottom

Quanti layers. We group the layers {FC
q
7, BN7, ReLU7,

FC8} as a single non-quantized substructure.

In the following, we will show how to convert each sub-

structure into fixed-point to obtain an IFQ-AlexNet. In sub-

section 4.1.1, we show the performance of the proposed

integrated conversion method for the quantized substruc-

ture while the non-quantized substructures are kept floating-

point. We then illustrate the way to set a proper scaling fac-

tor Qm for converting each of the remaining non-quantized

substructures (see subsection 4.1.2). At the end, in sub-

section 4.1.3, we compare our IFQ-AlexNet with “Lin et

al. [9]” which is the state-of-the-art AlexNet-based fixed-

point network.

4.1.1 Integrated conversion for the quantized sub-

structures

In this subsection, we focus on converting the quantized

substructures (substructure2,...,substructure6). The Im-

ageNet Top-1 classification accuracy is employed to eval-

uate the accuracy of the converted networks (see Table 2).

In the table, “separated” refers to the networks obtained by

converting the quantized substructures of the correspond-

ing AlexNet-HWGQ (k equals to 2 or 3 or 4) in a sep-

arated manner (see section 2.2). In contrast, “integrated”
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represents the networks obtained by converting their quan-

tized substructures in the proposed integrated way (see sec-

tion 3.2). Please note that, to compare the performance

of different conversion methods on quantized substructures,

we keep the non-quantized substructures (substructure1
and substructure7) floating-point.

Table 2. Performance of different methods on converting the quan-

tized substructures of AlexNet-HWGQ networks on ImageNet

top-1 classification accuracy.

k = 2 k = 3 k = 4

AlexNet-HWGQ 0.5214 0.5301 0.5471

separated(m = 12) 0.5206 0.5296 0.5470

separated(m = 10) 0.5168 0.5292 0.5443

separated(m = 9) 0.5073 0.5230 0.5385

separated(m = 8) 0.4585 0.4678 0.5105

integrated(m = 0) 0.5214 0.5301 0.5471

As shown in Table 2, the floating-point AlexNet-

HWGQ networks achieves competitive classification accu-

racy. However, “separated” method shows notable perfor-

mance degradation. The reason is that it separately converts

each floating-point data x of a quantized substructures by

⌊x ∗ Qm⌋ which leads to data loss. To reduce such loss, a

large m has to be applied (m = 12) which in turn causes

more memory usage. In contrast, for each quantized sub-

structure, our “integrated” method gives identical outputs

as its floating-point counterpart in AlexNet-HWGQ while

the scaling factor Qm is not required at all (m = 0). Even

though we employ the uniform quantization as example, our

“integrated” method is also effective for the networks quan-

tized by other strategies as long as their floating-point oper-

ations can be composed as in Equation 7.

4.1.2 Separated conversion for the non-quantized sub-

structures

In the subsection 4.1.1, we have demonstrated that the pro-

posed integrated method gives lossless fixed-point conver-

sion for quantized substructures. To obtain IFQ-AlexNet

all of whose data operations are fixed-point data based, we

then convert each of the remaining non-quantized substruc-

tures in a “separated” manner. For saving more memory

while causing less conversion loss for such substructures,

an optimal Qm is required for each of non-quantized sub-

structure: substructure1 and substructure7. Since the

substructure7 directly outputs the inferred results for the

task, the preciseness of its computation is more critical.

Consequently, we first find the optimal m for its fixed-point

conversion while substructure1 is kept floating-point.

As demonstrated in Figure 4a), for the networks with

different k, a larger m for Qm generally gives better per-

formance. It is because a larger m value gives less data

a):subtructure7 b):substructure1
Figure 4. Top-1 accuracy on ImageNet of networks with various

m for subtructure7 and substructure1 fixed-point conversion.

loss during each fixed-point conversion ⌊x ∗ 2m⌋. Never-

theless, when m ≥ 14, no further performance improve-

ment can be observed for all the three networks indicating

m = 14 would be sufficient for fixed-point conversion for

the floating-point data in substructure7.

By fixing m = 14 for converting substructure7 into

fixed-point, we then optimize the m for substructure1.

As shown in Figure 4b), m = 9 can be considered as the

sufficient scaling factor for the fixed-point conversion of

substructure1.

In summary, to obtain IFQ-AlexNet, we employ the loss-

less “integrated” conversion method for the quantized sub-

structures and m = 9 and m = 14 for the scaling factor

Qm for converting the substructure1 and substructure7
of AlexNet-HWGQ networks respectively.

4.1.3 Performance comparison

In the following, we compare our IFQ-AlexNet with “Lin et

al. [9]” which is the state-of-the-art AlexNet-based fixed-

point network. Lin et al. [9] employ a γ (γ ≥ 9) as the

number of bits for representing each data of the first layer

and then introduce an optimal setting on the number of bits

for other layers with respect to γ (see Table 3). It is worth to

point out that “Lin et al. [9]” is converted from an AlexNet-

like network which posses ∼2× savings on the number of

parameters compared to our IFQ-AlexNet (21.5 million vs.

58.3 million2).

Table 3 compares the number of bits that are employed

to represent every fixed-point data of each layer of “Lin et

al. [9]” and our IFQ-AlexNet. As shown in the table,

for conv2∼conv5 layers, IFQ-AlexNet employs 1-bit for

representing their weights which is remarkably lower than

“Lin et al. [9]” . Most importantly, for FC6 and FC7 lay-

ers which are parameter intensive and thus dominate the

model size, we consistently employ 1-bit weights. Thus,

our IFQ-Net gives 6× savings (1-bit vs. 6-bits). On the

other hand, regarding to the feature maps, our IFQ-AlexNet

networks also generally use lower bits than their competi-

tors (the same bits may happen on conv2 and conv4 layers

2To be consistent with the reference paper [9], the parameters in FC8

are not included.
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only if k = 4 and γ = 9).

Table 3. Comparison on the number of bits employed for each

layer of AlexNet-based fixed-point networks.

Lin et al. [9] (γ ≥ 9) IFQ-AlexNet

Weights Feature maps Weights Feature maps

conv1 γ γ 9 8

conv2 γ-5 γ-5 1 k

conv3 γ-4 γ-4 1 k

conv4 γ-5 γ-5 1 k

conv5 γ-4 γ-4 1 k

FC6 6 6 1 k

FC7 6 6 1 k

For “Lin et al. [9]” networks, different γ give different

preciseness of its fixed-point data. We directly borrow the

experimental results from the paper setting γ to 9 and 10.

Table 4 illustrates the memory usage of the weights and

feature maps of the fixed-point networks in terms of mil-

lions of bits (Mbits). As shown in the table, regarding to

the model size of the compared fixed-point networks, our

IFQ-AlexNet networks (k = 2 or 4) give 2.16× savings(58.8

Mbits vs. 127.3 Mbits) over “Lin et al. [9] (γ = 9)”.

Table 4. Model size (Mbits), inference memory for feature maps

(Mbits) and performance comparison of fixed-point networks.

Lin et al. [9] IFQ-AlexNet

γ = 9 γ = 10 k = 2 k = 4

Model size 127.3 128.5 58.8 58.8

Inference memory

(feature maps)

10.8 12.0 0.6 1.1

Top-5 accuracy 0.74 0.78 0.76 0.78

To evaluate the memory usage of feature maps during in-

ference time, we measure the maximum memory that con-

sumed by one single layer, which is Conv1 in the case of

AlexNet. Such evaluation makes more sense than evaluat-

ing the summation of all layers because the feature maps

from other un-connected layers is not required thus can be

discarded during inference time. Comparing with “Lin et

al. [9]”, our IFQ-AlexNet networks output 4× smaller fea-

ture maps for Conv1 layer (55×55 vs. 112×112). Further-

more, our IFQ-AlexNet employs less bits to represent each

element of the feature maps of Conv1 layer(k = 2 or 3 or 4
vs. γ = 9 or 10). Consequently, when comparing IFQ-

AlexNet (k = 2) with “Lin et al. [9]”, our method gives

18× savings on inference memory for feature maps.

Furthermore, we follow the reference paper [9] and use

Top-5 accuracy to evaluate the performance of the AlexNet-

based fixed-point networks. Comparing with “Lin et al. [9]

(γ = 9)”, IFQ-AlexNet (k = 2) gives 2% improvement ac-

curacy with significant savings on model size and feature

maps memory as well. Moreover, comparing the “Lin et

al. [9] (γ = 10)” and IFQ-AlexNet (k = 4 ) networks

which have higher precision, our method also achieves

2.18× and 10.9× savings on model size and feature maps

respectively without performance drop.

4.2. IFQTinierYOLO face detector

Face detection has various applications in real life and

thus emerges many algorithms such as Faster R-CNN [16],

SSD [11], Mask R-CNN [5] and YOLOv2 [15]. In this sec-

tion, we aim to apply our IFQ-Net to face detection task.

For the embedded devices, the simple architecture of a de-

ployed network would give great benefit on the hardware

design. Consequently, we make use of YOLOv2 detection

algorithm as the framework for our face detector.

We initially employ the Tiny-YOLO [15] network due to

its compact size. Furthermore, we design a more compact

network Tinier-YOLO based on Tiny-YOLO by: 1) only

using half the number of filters in each convolution layer;

2) replacing the 3 × 3 filter into 1 × 1 for the third to last

convolution layer; 3)binarizing the weights of all convolu-

tion layers by HWGQ. The above three strategies give 4×,

2× and 32× savings respectively and overall 256× savings

on model size resulting in a 246k Bytes face detector.

Table 5. Comparison on the model size (MB) of the trained face

detectors and their detection rate on FDDB dataset [7].

Tiny-

YOLO

IFQ-Tiny-

YOLO (k=2)

Tinier-

YOLO

IFQ-Tinier-

YOLO (k=2)

model

size (MB)

63.00 1.97 7.89 0.25

detection

rate

0.92 0.89 0.90 0.84

Figure 5. Performance of the face detectors on FDDB dataset [7].

We use the training set of Wider Face [18] and Dark-

net deep learning framework [14] to train the baseline Tiny-

YOLO and our Tinier-YOLO networks. Furthermore, to

obtain their quantized fixed-point counterparts IFQ-Tiny-

YOLO and IFQ-Tinier-YOLO, we first train the quantiza-
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Figure 6. Qualitative performance of the proposed IFQ-Tiner-YOLO (k = 2) face detector on Wider Face dataset [18].

tion network with our HWGQ implementation on Dark-

net (k = 2) and then convert each of their substructure into

fixed-point. Each network is trained for 100k iterations with

batch size 128. The learning rate is initially set to 0.01 and

down scaled by 0.1 at 30kth, 60kth and 90kth iteration. Be-

sides, we also inherit the multi-scale training strategy from

YOLOv2.

We compare the trained face detectors on FDDB

dataset [7] which contains 5,171 faces in 2,845 testing im-

ages. To evaluate the performance of the face detector, we

employ detection rate when false positive rate is 0.1 (1 false

positive in 10 test images). It corresponds to the true posi-

tive rates (y-axis) when the false positive (x-axis) equals to

⌊0.1 × 2, 845⌋ = 284 in Figure 5. Such evaluation is more

meaningful in real applications when low false positive rate

is desired. As illustrated in Table 5, comparing with Tiny-

YOLO, IFQ-Tiny-YOLO achieves 32× savings on model

size with 3% drop on detection rate (0.89 vs. 0.92). Further-

more, the proposed IFQ-Tinier-YOLO face detector gives a

further 8× savings over IFQ-Tiny-YOLO with 5% perfor-

mance drop. We think its performance is promising in the

sense of its extremely compact model size and quite satis-

factory detection rate. More importantly, the proposed IFQ-

Tinier-YOLO face detector is a fixed-point network which

can be easily implemented on embedded devices. The ROC

curves of the compared face detectors are illustrated in Fig-

ure 5.

Moreover, the proposed IFQ-Tinier-YOLO is also effec-

tive on detecting small faces. We test it on Wider Face val-

idation images and show its qualitative results. As shown

in Figure 6, our IFQ-Tinier-YOLO also gives nice detec-

tion on small faces in various challenging scenarios such as

make-up, out of focus, low-illumination, paintings etc.

5. Conclusions

In this paper, we presented a novel fixed-point network,

IFQ-Net, for embedded vision. It divides a quantization

network into substructures and then converts each substruc-

ture into fixed-point in either separated or the proposed in-

tegrated manner. Especially for the quantized substructures,

which commonly appear in quantization networks, the inte-

grated conversion method removes on-device batch normal-

ization computation, requires no scaling-up effect (m = 0)

yet most importantly does not cause performance drop. We

compared our IFQ-Net with the state-of-the-art fixed-point

network indicating that our method gives much more sav-

ings on model size and feature map memory with similar

(or higher in some case) accuracy on ImageNet.

Furthermore, we also designed a fixed-point face detec-

tor IFQ-Tinier-YOLO. Comparing with the Tiny-YOLO de-

tector, our model shows its great benefits on embedded de-

vices in the sense of extremely compact model size (246k

Bytes), purely fixed-point data operations and quite satis-

factory detection rate.
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