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Abstract

While novel light processing algorithms have been con-

tinuously introduced, it is still challenging to perform light

field processing on a mobile device with limited computa-

tion resource due to the high dimensionality of light field

data. Recently, the performance of mobile graphics pro-

cessing unit (GPU) increases rapidly and GPGPU on mo-

bile GPU utilizes massive parallel computation to solve

various computer vision problems with high computational

complexity. To show the potential capability of light field

processing on mobile GPU, we parallelize and optimize the

state-of-the-art light field depth estimation which is essen-

tial to many light field applications. We employ both al-

gorithm and kernel-based optimization to enable light field

processing on mobile GPU. Light field processing involves

independent pixel processing with intensive floating-point

operations that can be vectorized to match single instruc-

tion multiple data (SIMD) style of GPU architecture. We

design efficient memory access, caching, and prefetching to

exploit light field properties. The experimental result shows

that the light field depth estimation on mobile GPU obtains

comparable performance as on the desktop CPU. The pro-

posed optimization method gains up to 25 times speedup

compared to the naı̈ve baseline method.

1. Introduction

Recently, research on light field has become one of the

most active research areas in computer vision commu-

nity, owing to its capability of storing richer information

compared to conventional 2D images. Research on light

field also thrives on the availability of portable 4D light

field capturing devices, such as Lytro [1] and Raytrix [3]

alongside synthetic light field dataset [30]. An exhaus-

tive survey by Wu et al. [34] shows the overview of re-

cent advance on light field research. Various researches

also show exciting application of light field, such as digi-

tal refocusing [21], matting [12], detection and classifica-

tion [20, 29], deblurring [23], editing [16, 33], and depth

estimation [13, 19, 26, 28, 31, 32, 35, 37]. Among those

applications, depth estimation is the most active research

topic, as depth is essential for light field editing, display,

and other vision-based applications.

On the other hand, light field processing requires abun-

dant computing resources. Therefore, most development

has been done in the desktop environment. However, light

field processing in a mobile environment with limited re-

source poses challenging issues. The major issues are mem-

ory and computation complexity in handling light field high

dimensionality. Yuttakonkit [36] explores the performance

of light field application on development board with embed-

ded GPU, but it is still limited to simple local correspon-

dence computation. Agus et al. [4] and Jones et al. [17]

use GPU for light field display and rendering. It indicates

that recent development of middle-level light field process-

ing and its application are not yet fully explored on most

resource-constrained device, such as mobile phone. Note

that, in this paper, we refer GPU on mobile phone as mobile

GPU, while GPU on field programmable gate array (FPGA)

and development board as embedded GPU.

Recently, the performance of mobile GPU has increased

dramatically both in computation capability and memory

bandwidth. However, mobile GPU still has its drawbacks

compared to existing embedded GPU. The freedom of

hardware-based optimizations is limited when dealing with

off-the-shelf mobile GPU. Therefore, in this paper, the pro-

posed optimization approach is built upon algorithms and

kernel approach (software-based optimization). We believe

mobile phone offers extended portability and availability by

enabling light field to reach a broader spectrum of users.

Che et al. [7] and Park et al. [22] give better understand-

ing and guideline on maximizing desktop GPU capability

on various problem including image processing.

In this paper, we explore challenges, findings, and solu-

tions of employing light field depth estimation on off-the-

shelf mobile GPU. We employ the recent state-of-the-art

data cost for light field depth estimation, i.e. constrained

angular entropy (CAE) introduced by Williem et al. [32].

We exploit the angular patch to enforce spatial locality and
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memory caching for fast pixel access. CAE makes use of

RGB channels and histogram to compute the correspon-

dence cost, which can be vectorized to maximize the SIMD

traits of GPU. To improve the efficiency of memory access,

we use coalesced memory access exhibited by angular patch

and histogram. We observe that the histogram computation

has slow memory access without enough floating-point op-

eration, yielding bottleneck of using CAE. Therefore, to re-

duce the memory access latency, binned histogram [27] is

employed to compute the correspondence cost. We com-

bine both works and introduce the binned CAE which is a

novel data cost for fast light field depth estimation on mo-

bile GPU. Finally, our experimental results demonstrate the

capability of fast and robust light field depth estimation on

an off-the-shelf mobile phone.

2. Related Works

Light Field Depth Estimation A number of depth esti-

mation methods have been proposed using various proper-

ties of light field, such as angular patch [28], epipolar plane

image (EPI) [30], defocus cue [25], and learning based

method [13]. Works that integrate both correspondence and

refocus cue exhibits more robust results. Wang et al. [28]

proposed an occlusion-aware depth estimation algorithm,

enforcing angular photo-consistency through finding a line

that separate occlusion and non-occluded region. Tao et

al. [25] combined both correspondence and defocus cues to

utilize EPI and Laplacian operator to compute correspon-

dence and defocus responses, respectively. Then, it was

extended [26] by adding shading constraint to improve the

original correspondence and defocus data cost. Williem et

al. [32] proposed an angular patch based data cost called

constrained angular entropy (CAE) and constrained adap-

tive defocus (CAD), which is an extension of their initial

work [31]. These data costs employ a constrained histogram

and color similarity constraint to find correspondence and

defocus responses, respectively. The integration of both

data costs demonstrates a dense depth estimation which is

robust to occlusion and noise.

Stereo Image Depth Estimation Stereo matching is sim-

ilar to light field depth estimation, with the same goal

of finding the disparity between different views. Choi et

al. [9] proposed an efficient GPU based graph cut algo-

rithm for stereo matching. Hofmann et al. [14] and Eiben-

steiner [11] proposed an architecture based stereo system

on FPGA, semi-global matching (SGM), and event-based

stereo matching, respectively. Park et al. [22] proposed the

metrics to evaluate the effectiveness of parallel implementa-

tion on various image processing algorithm including stereo

matching. Barron et al. [5] proposed a fast stereo match-

ing in bilateral space for rendering a synthetically defocused

image on mobile platform.

Figure 1: 4D light field representation L(x, y, u, v). Red

boxes are corresponding pixels across sub-aperture images.

Acceleration of Light Field Processing Agus et al. [4]

proposed a volume ray casting system for multi-user light

field display using single programmable GPU. Inspired by

Hou et al. [15], Jones et al. [17] proposed a rendering tech-

nique for interactive 360◦ light field display using GPU ver-

tex shaders. Lanman et al. [18] proposed a GPU-accelerated

near light field display that employs real-time renderer for

ray tracing and backward compatible fragment shader. Yut-

takonkit [36] proposed a coarse grain re-configurable ac-

celerator (CGRA) to handle short-burst memory transfer

when accessing pixel value between each sub-aperture im-

age. Another work by Chang et al. [6] employed a modified

depth estimation method of Chen et al. [8] for light field

captured by a pinhole-mask-array camera. Note that most

GPU usages on light field were mostly for rendering pur-

pose or a simple light field depth estimation. To the best of

our knowledge, there has been no work of light field depth

estimation on mobile GPU.

3. Background

3.1. Constrained Angular Entropy (CAE) Cost

CAE is an occlusion-aware data cost for light field

depth estimation. In this paper, we use the 4D light

field parametrization L(x, y, u, v), as shown in Figure 1.

L(x, y, u, v) is sheared to Lα(x, y, u, v) for each depth can-

didate α described as follows.

Lα(x, y, u, v) = L(x+∇x(u, α), y+∇y(v, α), u, v) (1)

where (x, y) are the spatial coordinate and (u, v) are the

angular coordinate.

∇x(u, α) = (u− uc)(α− αc)k (2)
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Algorithm 1 GPU Framework

1: procedure DEPTH ESTIMATION(L(x, y, u, v)) ⊲ Input

4D light field

2: Image2D and buffer initialization

3: Data transfer ⊲ Host → Device

4: for α := depth search range do

5: Lα(x, y, u, v) ⊲ Light field shearing

6: H̃(p, α) ⊲ CAE data cost

7: end for

8: argmin(H) ⊲ Winner takes all

9: Data retreival ⊲ Device → Host

10: return depth ⊲ Output disparity map

11: end procedure

∇y(v, α) = (v − vc)(α− αc)k (3)

where (uc, vc) denotes the coordinate of the center pinhole

image. ∇x and ∇y are the shift value in horizontal and

vertical direction according to α with disparity label k. αc

represents depth label α with zero disparity. Then, angular

patch at pixel p(x, y) can be extracted from Lα(x, y, u, v)
as follows.

Ap
α = Lα(x, y, u, v) (4)

To calculate the correspondence cost, Williem et al. [32]

assume Lambertian reflectance without ignoring occlusion.

The assumption also holds even in the presence of occlu-

sion in angular patch, as long as the majority of pixels are

still photo-consistent. The cost is computed using adaptive

entropy which measures the randomness or the degree of

intensity dominance inside angular patch.

The adaptive entropy cost is computed for each color

channel using histogram. For each intensity i in the his-

togram, weight w(i) is computed based on the intensity dif-

ference between pixel in the center and the rest of pixels

in the angular patch Aα. The adaptive or constrained his-

togram is built as follows.

w(i) = exp (−
|i−Aα(uc, vc)|

2

2σ2
) (5)

g(i) = w(i)h(i) (6)

where h(i) is the probability of the intensity i in Ap
α. Then

the adaptive entropy of each channel is computed by

H̃(p, a) = −
∑

i

g(i)

|g|
log (g(i)) (7)

where
g(i)
|g| represents the normalized value of the con-

strained histogram. The cost for each channel is then in-

tegrated through average pooling as follows.

C(p, α) =
H̃R(p, a) + H̃G(p, a) + H̃B(p, a)

3
(8)

Figure 2: Angular patch extracted from Lα(x, y, u, v). Blue

box denote the center of angular patch p(uc, vc), red box

denote pixels from sub-aperture image p(u, v). Only 3×3

angular patch is visualized.

Finally, the depth map is obtained by finding the minimum

cost across α for each pixel.

Note that Williem et al. [32] combine both CAE and

CAD. However, we deem CAE is robust enough and we

omit CAD to reduce the complexity of the whole frame-

work. For more information regarding CAE and CAD we

encourage the reader to refer to [32]. In this paper, we focus

on a light field depth estimation framework that is suitable

for mobile platform by modifying CAE data cost.

3.2. OpenCL

OpenCL [24] is an open standard parallel programming lan-

guage for heterogeneous processors for CPU, GPU, and

digital signal processor (DSP) on cross-platforms including

desktop, mobile, and embedded devices. In OpenCL, code

or function that executes on a device with multiple threads

is called a kernel. Work-item is a unit of work that exe-

cutes an instruction from kernel. A bundle of work-items is

called work-group that synchronizes multiple work-item ex-

ecutions while communicating with each other using shared

memory. Each work-item executes the kernel on a single

thread and the whole threads processes a group of pixels in

a data parallel manner. The size of the entire problem is re-

ferred as global size while work-group size is called local

size.

To utilize mobile GPU (device), host (CPU) copies the

whole data into GPU global memory and maps the partition

of data onto each work-group. Host then stacks kernel exe-

cution into the GPU work queue which performs computa-

tion on the partitioned data. To perform instructed computa-

tion, each thread needs to access data in the global memory.

Since access to global memory is slow, it is important to re-

duce the amount of global memory access by keeping the

frequently accessed data onto the shared or local memory.

After GPU finishes all of its work queues, the data can be

retrieved back from GPU to host memory.
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Figure 3: Visualization of our framework. Dashed blue region is computed multiple times based on depth search range.

4. Light Field Processing on Mobile GPU

4.1. Overview

The proposed light field depth estimation on GPU is divided

into three kernels: light field shearing, per-pixel CAE com-

putation, and disparity computation using winner-takes-

all (WTA), as listed in Algorithm 1. Since the required

memory space is larger than the amount of device memory,

multiple times of kernel calls and the Lα(x, y, u, v) is pro-

cessed iteratively. First, light field is sheared for each α and

angular patch at α is obtained, as shown in Figure 2. Next,

correspondence cost is calculated using CAE by building a

constrained histogram for the pixels in the angular patch.

Finally, WTA is applied to find the disparity with minimum

cost across the depth candidates.

The initial GPU implementation of CAE is considered as

the baseline implementation for the speedup evaluation of

the proposed optimization method. We also use the avail-

able Matlab implementation on the desktop environment as

another baseline for both qualitative and quantitative evalu-

ation.

Figure 3 visualizes the general scheme of our framework.

Each thread estimates depth for each pixel in center image

pinhole p(uc, vc). Each thread accesses (u× v) pixels from

remapped light field and computes the cost of that pixel.

Therefore, it needs a considerable amount of global mem-

ory access. However, the histogram and entropy computa-

tion involve a significant amount of floating-point computa-

tion to hide the latency of global memory access.

In our approach, we enforce SIMD-style at thread level

for efficient instruction and memory transaction discussed

in Section 4.2. Furthermore, we reduce the latency of global

memory access through efficient memory access explained

in following Section 4.3, Section 4.4, and Section 4.5.

Section 4.6 discusses the bottleneck due to the amount of

branching operation and high latency memory access. Fi-

nally, the data mapping and algorithm complexity are dis-

cussed in Section 4.7.

Figure 4: Cumulative execution time after each optimiza-

tion. Y axis shows average execution time in seconds across

5 synthetic light field images from Wanner et al. [30].

4.2. Vectorization

Throughout the framework pixel-wise computation, such as

light field shearing and CAE cost computation, is performed

for each R, G, and B channels. In light field shearing, pixels

are interpolated to the remapped light field for each color

channel. CAE computes the cost in three channels inde-

pendently and then the costs are integrated. The type of

computations performed above for each color channel are

identical and can be performed in SIMD-style.

In order to avoid redundant computation and memory ac-

cess for each color channels, SIMD-style approach is em-

ployed at thread level to exploit data parallelism which is

well supported in modern GPU architecture [7] [22]. Using

OpenCL vector data type, same instruction is performed si-

multaneously for multiple data, yielding significant perfor-

mance gain at instruction and memory level. In addition,

memory access in vectorized approach exhibits less latency

because it reduces the frequency of memory access. Note

that this approach is equivalent to a small-scale memory co-

alescing.

Sheared pixels remapped in (1) are sampled using bilin-

ear interpolation. The computation of weighted sum is per-

formed using the vector type (float-3) discarding the alpha

channel. Histogram computation in (5)∼(8) is also com-
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(a)

(b)

Figure 5: Comparison of pixel access within angular patch.

(a) Shows common pixel accesses in angular patch. (b)

Shows a column based parallelized pixel access. High local

geometry exists between adjacent pixels in the same row or

column.

puted using the vector type. The vectorization reduces the

amount of instruction and memory transaction by a factor

of three. Vectorization speeds up the framework by 1.74X

compared to the baseline implementation. Cumulative im-

provement of computation time is shown in Figure 4.

4.3. OpenCL Memory Object and Texture Cache

One of the problems mentioned in [36] is the short-burst

memory access when accessing pixels from each sub-

aperture image. Access pattern in image processing is often

sequential or structured. However, this does not apply to

light field. As shown in Figure 1, long index jump is needed

to access corresponding pixel from each sub-aperture im-

age. Therefore, it limits the peak memory bandwidth due

to incoherent memory access. However, to access pixels in

angular patch, it only requires a simple iteration in horizon-

tal and vertical direction, as shown in Figure 5. This trait is

highly suited for OpenCL memory object called Image2D.

Image2D is regularly used to perform window-based fil-

tering operation (i.e. Sobel and Gaussian) where pixels of

interest are within the window or patch vicinity. Image2D

thrives on this kind of operation due to the existence of tex-

ture cache. Texture cache is optimized for 2D spatial local-

ity. Threads of the same warp that read texture addresses

close together achieve the best performance [2]. Note that

access pattern within angular patch can either be row-major

or column-major order. Image2D improves the performance

by 1.04X. While the speedup is not too significant, it plays

an important role for the subsequent optimizations.

4.4. Memory Prefetch

Pixels in angular patch can be accessed through a simple it-

erative loop shown in Figure 5(a). Furthermore, histogram

Table 1: Average processing time (in seconds).

LF Input Desktop CAE Baseline GPU GPU CAE Binned CAE

Wanner 219.884 1578.644 273.668 62.686

Lytro Illum 64.581 515.153 98.5355 21.111

Table 2: MSE across 5 synthetic light field images.

Data Cost Buddha Buddha2 MonaRoom Papilon StillLife

CAE 9×9 0.0049 0.0112 0.0073 0.0162 0.0159

CAE 5×5 0.0111 0.0247 0.0143 0.0338 0.0856

GPU CAE 0.0105 0.0255 0.0138 0.0365 0.0572

Binned CAE 0.0335 0.0361 0.0289 0.0819 0.0997

operation in (6) and (7) is highly iterative. We utilize mem-

ory prefetch for global and constant address spaces. Mem-

ory prefetch is beneficial only to a well-detected memory

access pattern (i.e. memory access in explicit loop). The

prefetched data is stored in L2 cache which provides faster

access than the global memory or private memory access.

OpenCL enforces auto prefetching as long as the compiler

can detect the well-patterned memory access. Therefore, it

is crucial to explicitly design the patterned memory access,

especially on histogram operation in (7). The example is

shown as follow.

⊲ Option 1

g2[i ] = g[ i ] / |g|.
Entropy cost += (g2[i ]) ∗ log(g[ i ])

⊲ Option 2

Entropy cost += (g[ i ] / |g|) ∗ log(g[ i ])

Option 1 shows the conventional programming approach

that enhances code readability. However, the thread needs

to load two different addresses. Option 2 enforces effi-

cient memory access and memory prefetch with trade-off

of readable code. The duplicate memory access instruction

reduces the amount of transaction in memory side. The for-

mer histogram is loaded and stored in cache. Thus, the later

histogram access is merely a load from cache. Memory

prefetching improves the performance by 2.51X which is

a significant speedup leading to the identification of bottle-

neck in our framework. The bottleneck in histogram com-

putation is discussed in Section 4.6.

4.5. Global Memory Coalescing

Global memory coalescing conserves bandwidth and re-

duces effective latency. Instead of accessing pixels in stride

from angular patch, we load a whole column in angular

patch and process it simultaneously. Note that read instruc-

tion from global memory is aligned and contiguous. In ad-

dition, Image2D encourages memory access for pixels close

together to gain more performance. Latency of effective

global memory access is reduced through processing the

whole column of angular patch simultaneously, as shown
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(a) (b) (c)

Figure 6: Disparity map comparison. (a) Matlab 5×5. (b) GPU CAE. (c) Binned CAE. Binned CAE still holds the occlusion

aware characteristic of CAE while slightly suffers in smooth region.

in Figure 5(b). The global memory coalescing improves the

computation time by 1.28X.

4.6. Binned CAE

Inefficient memory access with high latency is performed

for every histogram loop. For each memory access, only

simple floating-point operation is performed. This is the

bottleneck of CAE algorithm. In addition, if -branching in-

terrupts the control flow of work-group [7]. This degrades

the efficiency of parallel computing by causing threads of

the same warp to diverge [22]. However, the usage of if-

else is necessary to clear out NaN value and to avoid full

histogram loop. It is rare for a single pixel to contain most

of the intensity value inside histogram. Therefore, if-else is

important to prune unnecessary operation.

The idea to deal with unnecessary 256 histogram loop is

to bin the histogram, inspired by works of Vaish et al. [27].

Instead of applying uniform weight as in [27], we apply

weight computed from (5) to the binned histogram. We bin

the histogram to 64 intensity value, and modify the com-

putation of |g|. Instead of standard iterative sum, we use

dot product to compute |g|. The dot product is performed

between histogram in vector of float4 and matrix of ones.

Note that OpenCL dot product operation is limited to only

four elements.

Binned CAE limitation is when dealing with smooth re-

gion. Pixels with similar intensity might be rounded into

the wrong bin, as shown in Figure 6. However, binned CAE

still preserve the structure of the scene. Pixels at edge re-

gion have distinct intensity difference due to the presence of

occluder. Therefore, binned histogram still can estimate the

cost of those pixels accurately. It shows that the occlusion-

aware characteristic still holds in binned CAE. Increasing σ

helps alleviate the false estimated depth, while smoothing

the depth slightly. We reduce the amount of binned his-

togram loop by a factor of four and gain 3.85X speedup.

4.7. Data Mapping on the GPU

We create W × H threads, where each thread computes

the cost for each pixel. W and H denote spatial width and

height of light field image. Each thread accesses u×v pixels

in L(x, y, u, v). We execute O(D) call to the kernel except

for WTA, where D denotes the depth search range. Within

each call, the kernel handles O(WH) pixels. WTA kernel

needs one time O(WH) call after cost is computed. Total

computational complexity is O(WH(D + 1)). Mali G-71

has maximum 8192 threads (Tmax), coming from 32 cores

with 16×16 maximum work-group size. Thus, the actual

computational complexity is O(WH(D+1)
Tmax

).

The input light field image is copied to the global mem-

ory giving read/write access to thread. The remapped light

field is stored in texture memory. Angular patch in sheared

light field image is stored in texture cache. The cost vol-

ume is stored in global memory, while histogram is stored

in the register. Unfortunately, pixels in the angular patch do

not have any spatial relationship. Therefore, shared mem-

ory has no significant impact on this work. The estimated

depth is stored in global memory and retrieved back at the
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Table 3: Bad pixel percentage (%) across 5 synthetic light field images.

Data Cost Buddha Buddha2 MonaRoom Papilon StillLife Buddha Buddha2 MonaRoom Papilon StillLife

BP δ = 2 BP δ = 4

CAE 9×9 4.6789 18.8822 16.0044 29.7201 3.9456 1.4957 8.0792 7.3861 11.9091 1.4208

CAE 5×5 12.9467 41.0256 32.4049 45.2433 12.6884 4.1909 20.4042 15.7398 24.2615 5.1293

GPU CAE 14.0523 39.7536 34.6369 46.2251 9.4842 4.3235 19.7045 16.8294 24.7382 3.3551

Binned CAE 32.7813 46.8736 55.6365 59.1146 14.0878 15.4853 26.0591 33.4552 37.9852 6.2902

end of work queues.

5. Experimental Result

We conduct the experiments on Samsung Galaxy Note 8,

which equips Exynos 8895 Octa chipset and Mali-G71

GPU. Mali-G71 has 32 shader cores and 2.1MB L2 cache

with 2.1GB global memory, 524KB memory cache, and

up to 200 GFLOPS for single-precision vec4 floating-point

computation performance. Memory copy operation from

host to device is up to 4.0GB/s bandwidth and 2.8 GB/s

from device to host, respectively. For desktop environment,

we use an Intel i7-7700 @3.6 GHz with 16 GB RAM PC.

We utilize same parameter as used in [32], with depth

search range = 75, and σ = 10.

For quantitative evaluation, we utilize a dataset gener-

ated by Wanner et al. [30]. Among the dataset, we select

five synthetic light field images which have the same spatial

size, with resolution of 5×5×768×768. We also use a real

light field image (5×5×432×432) captured using Lytro Il-

lum camera to shows the flexibility of our implementation.

The angular dimension is cropped due to insufficient An-

droid application memory when loading light field image.

Only 5×5 sub-aperture images around the center are main-

tained. Another approach to crop the light field image is to

sample the sub-aperture image sparsely. Note that light field

image size is around 100 MB and 40 MB for original and

cropped synthetic light field, respectively. We use toolbox

provided by Dansereau et al. [10] to extract the light field

images. For all three kernels, we use a total of 256 work-

items (threads) for a single work-group which is the maxi-

mum capacity for Mali-G71. The number of work-item is

decided through a series of empirical test. The global size

is the spatial dimension of input light field image.

Since CPU implementation on mobile for comparison

is not feasible, we compare our implementation on mobile

GPU with original CAE running in our desktop environ-

ment. Our GPU implementation shows comparable perfor-

mance to desktop GPU in terms of computation time with

similar quantitative error. Note that binned CAE surpasses

desktop computation speed. Table 1 shows the average pro-

cessing time comparison across different implementations

and inputs. Note that we exclude input (image load) and

output (display) process in the computation time. The com-

putation time difference between each input image is due

to histogram calculation and branching. Image with more

intensity variation needs more iteration to compute the his-

togram. Performance comparison between Android and

desktop environment available in Table 2 and Table 3. CAE

9×9 and CAE 5×5 are Williem et al. [32] original Matlab

implementation on desktop environment, where 5×5 and

9×9 represents light field angular dimension. The Matlab

implementation is available on their project page. The drop

in BP% and MSE from CAE 9×9 to CAE 5×5 is due to the

loss of information in angular dimension.

The difference between proposed mobile implementa-

tion and Matlab result is due to difference in floating-point

precision on mobile and PC. The rounding convention of

OpenCL function also affects the result. Our depth results

for both synthetic and real light field images are available in

Figure 7. The light field image contrast is enhanced only

for visual purpose. Note that real light field images are

more difficult to deal with since noise and occlusion fre-

quently occur within the scene. In overall, the experimental

results show that the proposed method could robustly esti-

mate depth map in both synthetic and challenging real light

field images.

6. Conclusion

In this paper, we explored the challenges in processing light

field on off-the-shelf mobile GPU and proposed a series of

algorithms and kernel-based optimizations. Our methods

focused on efficient memory access in angular patch and

histogram computation. SIMD-style approach using vector

was performed throughout the framework. Coalesced mem-

ory access in angular patch was proposed. Novel data cost

was proposed to allow fast light field depth estimation on

mobile GPU. Finally, experiment results showed that CAE

achieved a total of 5.76X and 5.22X speedup, while binned

CAE achieved 25.18X and 24.40X speedup both for syn-

thetic and real light field image, respectively.
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(a) (b) (c) (d) (e)

Figure 7: Depth map results from synthetic and real light field data. (a) Depth ground truth (row 1∼3) and real light field

image (row 3∼6). (b) CAE 9×9. (c) CAE 5×5. (d) GPU CAE. (e) Binned CAE.
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