
Image Super-resolution via Progressive Cascading Residual Network

Namhyuk Ahn Byungkon Kang Kyung-Ah Sohn

Department of Computer Engineering, Ajou University

{aa0dfg,byungkon,kasohn}@ajou.ac.kr

Abstract

The problem of enhancing the resolution of a single low-

resolution image has been popularly addressed by recent

deep learning techniques. However, many deep learning

approaches still fail to deal with extreme super-resolution

scenarios because of the instability of training. In this pa-

per, we address this issue by adapting a progressive learn-

ing scheme to the deep convolutional neural network. In

detail, the overall training proceeds in multiple stages so

that the model gradually increases the output image resolu-

tion. In our experiments, we show that this property yields

a large performance gain compared to the non-progressive

learning methods.

1. Introduction

Given a low-resolution image, the task of reconstructing

it to a high-resolution image is known as super-resolution

(SR). In this research, we focus on the single image super-

resolution (SISR) task, where the SR operation is performed

on a single given low-resolution image. Since the conver-

sion of a low-resolution image to a higher-resolution one is

a one-to-many mapping, it is very difficult to achieve high-

quality super-resolution from a single image. However,

SISR can provide a variety of useful opportunities such as

in the field of real-time video streaming or surveillance sys-

tem, and hence it is a very active research area.

With the advancement of deep learning technologies in

various computer vision tasks [10, 22, 20], many deep

learning-based models have been proposed to tackle the

SISR task [7, 13, 26, 19]. The sizes of such models vary

greatly, ranging from as few as three convolutional layers

(SRCNN: [7]) to more than hundred layers (MDSR: [19]),

and the overall performance has grown as well. However,

since most of the methods reconstruct an HR image by a

single upsampling step, such deep architectures can degrade

the performance in an extreme SR cases such as ×8 scale

task. Most other SR researches only focus on smaller scale

resolutions, such as ×2, 3, 4. There are not many studies

that deal with extreme scales of more than ×8, since it is

0879 from DIV2K

HR

(PSNR / SSIM)

Bicubic

(22.97 / 0.719)

CARN [2]

(24.07 / 0.761)

EDSR [19]

(24.06 / 0.766)

progressive CARN+

(24.30 / 0.771)

Figure 1: Super-resolution result of our proposed pro-

gressive CARN model compared to the existing algo-

rithms. (NTIRE2018 challenge [28] task1: ×8 scale)

too hard to infer the extra information needed to upscale

an image to such a high resolution. The issue of degrada-

tion in extreme SR tasks can be more critical if there are

not enough refinement layers after the upsampling process.

Recent methods [23, 19, 2] also can suffer from this prob-

lem since they upsample the input image at the end of the

network.

The difficulty of training for the extreme SR cases comes

from the issue of instability in training. This phenomenon

occurs when the upsampling is performed at the end of the

network, which is a common network design choice that

904

Training Progresses

Stage 3 (x8 → HR)

Conv

CARN_1

toRGB_3

CARN_2

CARN_3

Conv

CARN_1

toRGB_2

CARN_2

Stage 2 (x8 → x2)

Conv

CARN_1

toRGB_1

Stage 1 (x8 → x4)

Figure 2: Illustration of progressive training for the ×8 scale super-resolution task. The number that is denoted in each

layer name means the stage number in which the corresponding module is added. For instance, CARN 2 denotes the CARN

module that is added in stage two.

most of the recent methods adopt. This gives rise to the

sudden shock to the model when image comes to the re-

finement block so that it causes the instability of training.

Furthermore, the overall quality of SR image can be de-

graded since not enough refining process is applied after

the upsampling. Especially, the quality issue is more strik-

ing when performing the extreme SR cases.

To alleviate the difficulty of training a deep convolutional

network, one can train a model by a layer-wise training ap-

proach. For example, VGGNet [24] first trains a smaller

convolutional network and gradually increases the depth of

the network to avoid instability of the training. Another

approach is adding the auxiliary classifier at the middle

of the network to help the information flow of the earlier

layer [25]. However, training a very deep network is still an

unsolved and a challenging problem.

In this paper, we propose a progressive cascading resid-

ual network which applies the progressive learning [12] ap-

proach to the cascading residual network [2]. Our primary

scheme is a training method for extreme SR cases, where

we generate a relatively low-resolution output at first, and

then progressively increase the output resolution by adding

an extra network to our model. This scheme alleviates the

instability of training since it can reduce the sudden size

change of the model by gradually upsampling the image at

the middle of the network. Moreover, the quality degrada-

tion issue is reduced by the same mechanism that the insta-

bility issue is solved. The instability issue caused by train-

ing deep convolutional network can also be solved by our

proposed model. This is because the progressive learning

works as a fine-tuning of the pre-trained network.

In summary, we propose a progressive cascading resid-

ual network (progressive CARN) method for the extreme

super-resolution. It applies the progressive learning to the

cascading residual network to make the overall training pro-

cedure more stable. By doing so, this model mitigates the

instability of training caused by the training of very deep

convolutional neural network on extremely low-resolution

inputs. Furthermore, our work also helps to avoid the qual-

ity degradation problem by performing the upsampling pro-

cess periodically.

2. Related Work

2.1. Deep Learning Based Image SuperResolution

After the success of AlexNet [16] in image recognition

task [5], various deep learning approaches have been ap-

plied to many computer vision tasks including SR [7, 13,

26]. The first deep learning-based method, SRCNN [7] out-

performed traditional SR algorithms. However, SRCNN

has settled for shallow layers because of the difficulty in

training. To better harness the depth of deep learning mod-

els, Kim et al. [13] proposed VDSR, which uses residual

learning to map LR images x to their residual images r.

Then, VDSR produces the SR images y by adding the resid-

ual back into the original, i.e., y = x+ r.

The aforementioned methods have a large number of op-

erations compared to its depth, as input images are upsam-

pled (usually bicubic interpolation) before being fed into

the network. Taking a different approach from those, FS-

RCNN [8] and ESPCN [23] upsample images at the end

of the networks. This approach leads to the reduction in

the number of operations compared to the former ones.

However, as pointed out by Lim et al. [19], models using

905

this approach cannot be applied to multi-scale training as

shown in VDSR [13]. To resolve this, MDSR [19] and

CARN [2] contain scale-specific upsampling modules in a

single framework, allowing it to handle multi-scale images

to appropriate scale-specific pathways.

2.2. Progressive Training

To further improve the quality of generated high-

resolution image, many methods [6, 31, 12] apply a pro-

gressive generation scheme to a generative model, which

is usually a generative adversarial network [9]. The Lap-

GAN [6] uses a laplacian pyramid [4] so that the model

generates the sub-band residual instead of a natural image.

During the reconstruction phase, the model reconstructs the

natural image by combining the generated residual image

and upsampled input LR image. StackGAN [31] gener-

ates photo-realistic high-resolution images conditioned on

text descriptions via sketch-refinement. This method uses

a two-stage training procedure which sketches the coarse

structure of the objects in the first stage and generates the

high-resolution image from the intermediary image in the

second stage. To generate very high-resolution images such

as 1024 × 1024 resolution, Karras et al. [12] proposed a

progressive training methodology for generative adversar-

ial networks. The way progressive training works is that it

starts from a low-resolution input and then gradually adds

new layers to the model. This makes training the model

much easier than the direct learning approach.

Yet, only a few deep learning based SR algorithms ap-

ply the progressive approach. Among them, the most suc-

cessful one is LapSRN [17, 18]. Similarly to the LapGAN,

LapSRN uses Laplacian pyramids when restoring images.

To this end, from the LR input image, the model progres-

sively increases the image resolution and generates a series

of sub-band residual images. The output residual images

and the upsampled LR input are combined to produce the

final SR image in the reconstruction phase. To further de-

crease a model size, they share the weights of the compo-

nent between the multi-level pyramids [18].

3. Our Methods

In this section, we describe the methodology of the pro-

posed progressive CARN that uses progressive learning

based on CARN. Any deep learning-based SISR model can

be a backbone network of the progressive approach, but

we select CARN because it achieves a good balance be-

tween efficiency and performance. In Section 3.1, we first

overview the CARN model, before presenting our progres-

sive CARN model in Section 3.2.

3.1. Cascading Residual Network

Cascading residual network [2] is designed based on a

residual network, with a cascading mechanism. CARN

model consists of B cascading blocks and 1×1 convolution

layers as shown in Figure 3 (a). The cascading blocks con-

tain U residual units and 1× 1 convolution layers as shown

in Figure 3 (b). Note that the default setting of B and U

used in the original model is B = 3 and U = 3.

Here, we express the CARN module mathematically and

extend the formulation to the progressive CARN in Sec-

tion 3.2. Let f be a convolution function and τ be an ac-

tivation function. Then, we can define the i-th residual unit

Ri, which has two convolutions followed by a residual ad-

dition as below.

Ri
(

I;W i
R

)

= τ
(

f
(

τ
(

f
(

I;W i,1
R

))

;W i,2
R

)

+ I
)

(1)

Here, I denotes the input of the residual unit, W i
R is the

parameter set of the entire residual unit, and W
i,j
R is the

parameter of the j-th convolution layer in the i-th unit.

By Equation 1, the local cascading block with input fea-

ture map I can be derived. We denote Bi,j as the output of

the j-th residual unit in the i-th cascading block, and W i
c

as the set of parameters of the i-th local cascading block.

Then, the i-th local cascading block Bi
local that has U resid-

ual units with parameters W i
B is denoted as

Bi
local

(

I;W i
B

)

≡ Bi,U , (2)

where Bi,U is defined recursively from the Bi,u’s as:

Bi,0 = I

Bi,u = f
([

I, Bi,0, . . . , Bi,u−1, Ru
(

Bi,u−1;Wu
R

)]

;

W i,u
c

)

for u = 1, . . . , U .

By combining Equation 2 and global cascading mech-

anism, we can formulate i-th CARN module M i with pa-

rameter set W i
M as Equation 3. This module has B number

of cascading block, and final ×2 upsampling block ⌊.⌋ ↑2.

M i
(

I;W i
M

)

≡ ⌊HB⌋ ↑2 (3)

where,

H0 = I

Hb = f
([

H0, . . . , Hb−1, Bu
local

(

Hb−1;W b
B)]

)

for b = 1, . . . , B.

The main difference between CARN and ResNet is the

presence of local and global cascading modules as shown in

Equation 2 and 3. Figure 3 (a) visually illustrates how the

global cascading occurs. The outputs of intermediary layers

are cascaded into the higher layers, and finally converge on

a single 1 × 1 convolution layer. Note that the intermedi-

ary layers are implemented as cascading blocks, which host

local cascading connections themselves. Such local cascad-

ing operations are shown in Figure 3 (b). Local cascading is

906

almost identical to the global one except that the unit blocks

are plain residual units.

Cascading on both the local and global levels has two ad-

vantages: 1) The model incorporates features across layers,

which allows to learn multi-level representations. 2) Multi-

level cascading connection behaves as multi-level shortcut

connections that quickly propagate information from lower

to higher layers. As a result, these properties make the

model more powerful compared to the residual networks.

Upsample

Cascading  
Block

1x1 Conv

1x1 Conv

1x1 Conv

Cascading  
Block

Cascading  
Block

Input

Output

(a)

1x1 Conv

Residual Unit

1x1 Conv

Residual Unit

Input

Output

1x1 Conv

Residual Unit

(b)

Figure 3: Simplified structure of cascading residual net-

work with B = 3 and U = 3. The cascading residual

network (left) contains cascading blocks and global cascad-

ing connections. The cascading block (right) consists of

plain residual units and local cascading connections. In this

figure, the blue arrows indicate (global or local) cascading

connections.

3.2. Progressive Cascading Residual Network

We propose to build our model based on the CARN [2]

architecture and progressive learning scheme [12] to effec-

tively reconstruct extremely low-resolution images. The

key concept of the methodology is similar to that of Kar-

ras et al. [12], but we adapt this scheme for our SR task as

shown in Figure 2. In detail, we set the number of stages

as three in the ×8 scale SR task. That is, in each stage, the

model performs×8→ ×4,×8→ ×2, and×8→HR tasks

sequentially.

The training starts from stage one, which produces the

×4 scale image from the first CARN module and the cor-

responding reconstruction block named toRGB 1, as shown

in Figure 2. The toRGB block is a convolution layer that

refines the details of the upsampled image. After the end of

the first stage, we add extra CARN modules to the model

and replace the previous reconstruction block with the one

that produces the image in double resolution. This training

procedure iterates until it reaches the last stage. The out-

put of the final stage is an SR image of the same size as the

HR image. The overall training process is shown in Algo-

rithm 1. Note that we use a set-like representation S for the

neural network we build and Γ for the set of learning rates.

Algorithm 1: Overall training process

Input: Batch of LR and HR images (ILR, IHR),
of stages N , initial learning rate γ

Output: Trained model S(ILR;WS)
Γ← {γ}
S ← {f(Wc)} // initial convolution layer in Fig. 2

for i← 1 to N do

S ← S ∪ {M i
(

W i
M

)

} // as in Eq. 3

Γ← Γ ∪ {γ}
Attach toRGB i layer to S // as in Fig. 2

ISR ← S(ILR;WS)
Update WS with (ISR, IHR) by corresponding Γ
if i < N then

Detach toRGB i layer from S

end

// decay the learning rates of previous modules

Γ← 0.1× Γ

end

To further stabilize progressive training, we reduce the

learning rate of pre-trained modules ten times. This is a

simpler approach than smooth network transition [12], but

it also makes the training process stable. The idea behind it

is the same as fine-tuning a pre-trained network. However,

we found that freezing the pre-trained modules would de-

grade the overall quality since the information that had to

be propagated to earlier blocks could not flow properly.

Applying progressive training to any SR network allevi-

ates the instability of training problem. This issue comes

up when SR tasks are performed using deep architectures,

where the final upsampling is usually done abruptly towards

the end of the network. This can cause the network’s capac-

ity unable to catch up with the sudden increase of the im-

age being processed. In this case, the overall performance

might become unstable. Our progressive training scheme

alleviates this problem by introducing gradual increases in

the image. We will discuss the results and model analysis

of our approach in Section 4.3 and 4.4.

4. Experimental Results

4.1. Datasets

There exist diverse single image SR datasets, but the

most widely used ones are the 291 image set by Yang

907

et al. [30] and the Berkeley Segmentation Dataset [21].

However, because these two do not have sufficient images

for training a deep neural network, we use the DIV2K

dataset [1, 27, 28]. The DIV2K dataset is a newly-proposed

high-quality image dataset, which consists of 800 train-

ing images, 100 validation images, and 100 test images.

Because of the richness of this dataset, recent SR mod-

els [19, 2] use DIV2K as well. In this paper, our goal is to

produce the SR image from the LR image of the ×8 scale

DIV2K dataset [28]. And to construct intermediary scale

images for progressive training, we use DIV2K {×2,×4}
dataset [1]. We use the standard benchmark datasets such

as Set5 [3], Set14 [30], B100 [21], Urbann100 [11], and

DIV2K validation set for testing and benchmarking.

4.2. Implementation and Training Details

We set B = 4 and U = 8 for all the CARN modules, and

removed the final convolution layer after the upsampling

block since the model produces RGB images at once at the

end of the networks (e.g. at the toRGB module in Figure 2).

For the inputs, we use RGB LR images whose patches are

of size 48× 48 for training. We sample the LR patches ran-

domly and augment them with a random horizontal flip and

four 90 degree rotations. We use three-stage progressive

training for×8 scale SR task by setting the batch size 32, 8,

and 2 for 1.5 × 105, 2.0 × 105, and 3 × 105 steps, respec-

tively. We train our models with the ADAM optimizer [15]

with 10−4 as the default learning rate. As described in Sec-

tion 3.2, we decrease the learning rate of the pre-trained

modules by ten times for the training stability.

To boost the performance of our model, we additionally

apply geometric self-ensemble [19]. To do this, we flip and

rotate LR image to make eight augmented images. Then,

we generate SR images from the augmented ones and av-

erage these after recovering to its own original geometry

by inverse transformation function. Despite not requiring

any extra models, the performance gain is comparable to the

inter-model ensemble method. From now on, we add the +
symbol to the name of a model to denote the self-ensemble

version on the benchmark results.

4.3. Performance Analysis

To investigate the performance behavior of the proposed

method, we analyze our model via ablation study. Ta-

ble 1 presents the ablation study on the effect of progressive

learning and self-ensemble methods. Here, CARN-B3U3

is the default setting of the original model and CARN-

B24U4 is the enlarged version of CARN to match the num-

ber of network parameters (9.46 million) to our proposed

one. This model has 24 cascading blocks and each block

has four residual units. Overall, the total number of param-

eters is the same as that of the progressive CARN, which

consists of three B8U4 CARN body modules. In addition,

we also show the result of the EDSR [19] to see how pro-

gressive training can effectively handle the instability that

happens when training a very deep network.

Model # Params. Time DIV2K valid

CARN-B3U3 [2] 1.25M 0.14s 25.28

EDSR [19] 45.45M 1.11s 25.47

CARN-B24U4 [2] 9.46M 0.35s 25.36

progressive CARN 9.46M 1.73s 25.53

progressive CARN+ 9.46M 13.80s 25.64

Table 1: Ablation study of the proposed progressive

CARN. We evaluate the number of parameters, running

time, and the performance on DIV2K validation dataset

×8 scale. The CARN is the baseline model proposed by

Ahn et al. [2], and CARN-B24U4 is the enlarged version to

match parameters to our progressive CARN. The progres-

sive CARN+ is the model with geometric self-ensemble.

The CARN-B24U4 outperforms CARN-B3U3 since it

has almost eight times more parameters than the latter. Our

proposed progressive CARN outperforms CARN-B24U4

with a large margin with a similar number of parameters and

our model achieves better performance than EDSR as well.

The performance gap between previous models and ours

can be attributed to the progressive training scheme. For

example, CARN-B24U4 and our progressive CARN have

nearly identical model sizes, yet the latter outperforms the

former. So we can see that having similar model size does

not guarantee similar performance.

We claim that the progressive training scheme resulted

in an effect that resembles layer-wise training of a deep net-

work. In our case, each intermediary CARN layer receives

training signals in the form of LR images. By learning to

enlarge the given image to an intermediary-sized images,

our model is able to overcome the performance gap. In ad-

dition to the high performance, our model enjoys smaller

model size compared to the EDSR model. As shown in Ta-

ble 1, our model uses only 20% of the parameters used by

EDSR, while the performance is better.

The model with self-ensemble also shows a performance

gain compared to the one without it. The running time is

slower than the without-ensemble version since it cannot be

run in parallel to avoid out-of-memory issue. However, it

can be used in many situations since it does not require any

extra models when performing ensemble. Also, the running

time can be significantly reduced when we run the models

in parallel.

908

4.4. Comparison with stateoftheart Methods

We compare the proposed model with previous state-of-

the-art SR methods [7, 13, 17, 18, 19, 2] on two commonly

used image quality metrics: PSNR and the structural sim-

ilarity index (SSIM) [29]. Table 2 shows the quantitative

comparisons of the performances for ×8 scale SR over the

Set5, Set14, B100, and Urban100 datasets. Here, our pro-

posed progressive CARN outperforms all methods with a

large margin over all the datasets. Most of the previous

algorithms [7, 13, 19, 2] tend to suffer from the instabil-

ity problem during training. As mentioned above, this is

because the LR images do not have sufficient information

to recover, so that upsampling the LR image abruptly can

fail to reconstruct the SR image. In addition, our method

also shows better performance compared to the progres-

sive upsampling approaches [17, 18]. This advantage can

be achieved by progressive training which mitigates the in-

stability of training. Furthermore, the progressive CARN+,

which is the geometric self-ensemble version, achieves even

better performance. These observation can also be found in

the visual qualitative comparison. As shown in Figure 5,

our model works better than the others and accurately re-

constructs not only stripes and line patterns, but also com-

plex objects such as alphabet type, as depicted in ppt3 image

from the Set14 dataset.

We also visually illustrate the qualitative comparisons

among the CARN models and our proposed ones. Some-

what surprisingly, we often observe the degradation issues

of the CARN-B24U4, especially for the complex patterns or

objects. The images 0821 and 0831 from the DIV2K show

the degradation problems that CARN-B24U4 experiences.

However, our proposed method shows a better quality than

the the others since it can be trained more stably with a pro-

gressive learning scheme.

5. Conclusion

In this work, we proposed a progressive cascading resid-

ual network that can perform SISR accurately even in an

extreme low-resolution scenario. The main idea behind our

work is to apply progressive learning scheme to cascad-

ing residual networks. By using the progressive scheme,

the training process becomes much easier and more stable,

since the model first learns the coarse structure and grad-

ually learns how to restore details in the later stages. Our

experiment shows that employing this idea leads to better

performance on various benchmark datasets compared to

the non-progressive approaches.

We wish to further improve this work by making it more

efficient. One may meet this need by combining the recur-

sive network [14, 18] with our method so that the parame-

ters of the modules in all stages become tied.

Acknowledgement

This research was supported by Basic Science Research

Program through the National Research Foundation of Ko-

rea (NRF) funded by the Ministry of Education [NRF-

2016R1D1A1B03933875].

References

[1] E. Agustsson and R. Timofte. NTIRE 2017 challenge on

single image super-resolution: Dataset and study. In Pro-

ceedings of CVPR Workshops, 2017.

[2] N. Ahn, B. Kang, and K.-A. Sohn. Fast, accurate, and,

lightweight super-resolution with cascading residual net-

work. arXiv preprint arXiv:1803.08664, 2018.

[3] M. Bevilacqua, A. Roumy, C. Guillemot, and M. Alberi-

Morel. Low-complexity single-image super-resolution based

on nonnegative neighbor embedding. In Proceedings of

BMVC, 2012.

[4] P. J. Burt and E. H. Adelson. The laplacian pyramid as a

compact image code. In Readings in Computer Vision, pages

671–679. Elsevier, 1987.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-

Fei. ImageNet: A large-scale hierarchical image database.

In Proceedings of CVPR, 2009.

[6] E. L. Denton, S. Chintala, R. Fergus, et al. Deep genera-

tive image models using a laplacian pyramid of adversarial

networks. In Proceedings of NIPS, 2015.

[7] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep

convolutional network for image super-resolution. In Pro-

ceedings of ECCV, 2014.

[8] C. Dong, C. C. Loy, and X. Tang. Accelerating the super-

resolution convolutional neural network. In Proceedings of

ECCV, 2016.

[9] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Proceedings of NIPS, 2014.

[10] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of CVPR, 2016.

[11] J.-B. Huang, A. Singh, and N. Ahuja. Single image super-

resolution from transformed self-exemplars. In Proceedings

of CVPR, 2015.

[12] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive

growing of gans for improved quality, stability, and variation.

Proceedings of ICLR, 2018.

[13] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-

resolution using very deep convolutional networks. In Pro-

ceedings of CVPR, 2016.

[14] J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive con-

volutional network for image super-resolution. In Proceed-

ings of CVPR, 2016.

[15] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. In Proceedings of ICLR, 2015.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Proceedings of NIPS, 2012.

909

Dataset Bicubic SRCNN [7] VDSR [13] LapSRN [17] MS-LapSRN [18] CARN [2] EDSR [19]
progressive

CARN

progressive

CARN+

Set5 24.40 / 0.658 25.33 / 0.690 25.93 / 0.724 26.15 / 0.738 26.34 / 0.753 26.72 / 0.766 27.09 / 0.781 27.17 / 0.782 27.28 / 0.786

Set14 23.10 / 0.566 23.76 / 0.591 24.26 / 0.614 24.35 / 0.620 24.57 / 0.629 24.83 / 0.635 24.96 / 0.643 25.04 / 0.644 25.16 / 0.647

B100 23.67 / 0.548 24.13 / 0.566 24.49 / 0.583 24.54 / 0.586 24.65 / 0.592 24.72 / 0.591 24.81 / 0.599 24.87 / 0.600 24.92 / 0.601

Urban100 20.74 / 0.516 21.29 / 0.544 21.70 / 0.571 21.81 / 0.581 22.06 / 0.598 22.25 / 0.604 22.55 / 0.624 22.62 / 0.626 22.78 / 0.631

Table 2: Quantitative results of deep learning based SR algorithms. We evaluate PSNR / SSIM for scaling factor of×8 on

the public benchmark datasets. The two rightmost columns are our methods, and progressive CARN+ denotes the geometric

self-ensemble version of progressive CARN. The red text indicates the best performance and blue indicates the second best.

0821 from DIV2K

HR

(PSNR / SSIM)

EDSR [19]

(25.99 / 0.831)

CARN [2]

(26.37 / 0.821)

progressive CARN+

(27.18 / 0.846)

0831 from DIV2K

HR

(PSNR / SSIM)

EDSR [19]

(26.24 / 0.754)

CARN [2]

(25.85 / 0.738)

progressive CARN+

(26.57 / 0.763)

0857 from DIV2K

HR

(PSNR / SSIM)

EDSR [19]

(33.62 / 0.780)

CARN [2]

(33.51 / 0.779)

progressive CARN+

(33.81 / 0.781)

0896 from DIV2K

HR

(PSNR / SSIM)

EDSR [19]

(34.45 / 0.915)

CARN [2]

(33.72 / 0.912)

progressive CARN+

(34.86 / 0.917)

Figure 4: Qualitative comparison on NTIRE2018 super-resolution challenge [28]. (task1: super-resolution on ×8 scale)

910

ppt3 from Set14 [3]

HR

(PSNR / SSIM)

CARN-B3U3 [2]

(21.14 / 0.821)

Bicubic

(18.88 / 0.682)

CARN-B24U4 [2]

(20.94 / 0.825)

LapSRN [17]

(20.39 / 0.783)

EDSR [19]

(21.35 / 0.837)

MSLapSRN [18]

(20.80 / 0.810)

progressive CARN+

(21.82 / 0.848)

253027 from B100 [21]

HR

(PSNR / SSIM)

CARN-B3U3 [2]

(19.94 / 0.526)

Bicubic

(19.50 / 0.492)

CARN-B24U4 [2]

(19.93 / 0.531)

LapSRN [17]

(19.95 / 0.523)

EDSR [19]

(19.84 / 0.529)

MSLapSRN [18]

(19.91 / 0.522)

progressive CARN+

(20.06 / 0.537)

image023 from Urban100 [11]

HR

(PSNR / SSIM)

CARN-B3U3 [2]

(23.84 / 0.715)

Bicubic

(22.16 / 0.612)

CARN-B24U4 [2]

(23.78 / 0.717)

LapSRN [17]

(22.89 / 0.687)

EDSR [19]

(24.10 / 0.726)

MSLapSRN [18]

(23.22 / 0.700)

progressive CARN+

(24.30 / 0.734)

Figure 5: Visual qualitative comparison for ×8 SR on the Set14, B100, and Urban100 datasets.

911

[17] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep

laplacian pyramid networks for fast and accurate super-

resolution. In Proceedings of CVPR, 2017.

[18] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. Fast and

accurate image super-resolution with deep Laplacian pyra-

mid networks. arXiv preprint arXiv:1710.01992, 2017.

[19] B. Lim, S. Son, H. Kim, S. Nah, and K. M. Lee. Enhanced

deep residual networks for single image super-resolution. In

Proceedings of CVPR Workshops, 2017.

[20] G. Lin, A. Milan, C. Shen, and I. Reid. Refinenet: Multi-path

refinement networks for high-resolution semantic segmenta-

tion. In Proceedings of CVPR, 2017.

[21] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database

of human segmented natural images and its application to

evaluating segmentation algorithms and measuring ecologi-

cal statistics. In Proceedings of ICCV, 2001.

[22] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In Proceedings of NIPS, 2015.

[23] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken,

R. Bishop, D. Rueckert, and Z. Wang. Real-time single im-

age and video super-resolution using an efficient sub-pixel

convolutional neural network. In Proceedings of CVPR,

2016.

[24] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[25] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, et al.

Going deeper with convolutions. In Proceedings of CVPR,

2015.

[26] Y. Tai, J. Yang, and X. Liu. Image super-resolution via deep

recursive residual network. In Proceedings of CVPR, 2017.

[27] R. Timofte, E. Agustsson, L. Van Gool, M.-H. Yang,

L. Zhang, et al. NTIRE 2017 challenge on single image

super-resolution: Methods and results. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR)

Workshops, July 2017.

[28] R. Timofte, S. Gu, J. Wu, L. Van Gool, L. Zhang, M.-H.

Yang, et al. NTIRE 2018 challenge on single image super-

resolution: Methods and results. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) Work-

shops, June 2018.

[29] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli.

Image quality assessment: from error visibility to struc-

tural similarity. IEEE Transactions on Image Processing,

13(4):600–612, 2004.

[30] J. Yang, J. Wright, T. S. Huang, and Y. Ma. Image super-

resolution via sparse representation. IEEE Transactions on

Image Processing, 19(11):2861–2873, 2010.

[31] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and

D. Metaxas. Stackgan: Text to photo-realistic image syn-

thesis with stacked generative adversarial networks. In Pro-

ceedings of ICCV, 2017.

912

