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Abstract

Haze removal or dehazing is a challenging ill-posed

problem that has drawn a significant attention in the last

few years. Despite this growing interest, the scientific com-

munity is still lacking a reference dataset to evaluate objec-

tively and quantitatively the performance of proposed de-

hazing methods. The few datasets that are currently con-

sidered, both for assessment and training of learning-based

dehazing techniques, exclusively rely on synthetic hazy im-

ages. To address this limitation, we introduce the first out-

door scenes database (named O-HAZE) composed of pairs

of real hazy and corresponding haze-free images. In prac-

tice, hazy images have been captured in presence of real

haze, generated by professional haze machines, and O-

HAZE contains 45 different outdoor scenes depicting the

same visual content recorded in haze-free and hazy condi-

tions, under the same illumination parameters. To illus-

trate its usefulness, O-HAZE is used to compare a repre-

sentative set of state-of-the-art dehazing techniques, using

traditional image quality metrics such as PSNR, SSIM and

CIEDE2000. This reveals the limitations of current tech-

niques, and questions some of their underlying assump-

tions.

1. Introduction

The captured outdoor images are often degraded by haze,

an atmospheric phenomena produced by small floating par-

ticles which absorb and scatter the light from its propaga-

tion direction. Haze influences the visibility of such scene

as it generates loss of contrast of the distant objects, se-

lective attenuation of the light spectrum, and additional

noise. Restoring such images is important in several out-

door applications such as visual surveillance and automatic

driving assistance. Earlier approaches rely on atmospheric

cues [13, 31], on multiple images captured with polariza-

tion filters [32, 37], or on depth knowledge prior [23, 18].

In contrast, single image dehazing, meaning dehazing with-

out side information related to the scene geometry or to the

atmospheric conditions, is a problem that has only been in-

vestigated in the past ten years. Single image dehazing is

mathematically ill-posed, because the degradation caused

by haze is different for every pixel, and depends on the dis-

tance between the scene point and the camera. This depen-

dency is generally expressed by the simplified but realistic

light propagation model of Koschmieder [24], combining

transmission and airlight to describe how haze impacts the

observed image. According to this model, due to the atmo-

spheric particles that absorb and scatter light, only a fraction

of the reflected light reaches the observer. The light inten-

sity I(x) reaching a pixel coordinate x after passing a hazy

medium is expressed as:

I(x) = J (x) T (x) +A∞ [1− T (x)] (1)

where the haze-free reflectance is denoted by J (x), while

T (x) denotes the transmission (in a uniform medium, it de-

creases exponentially with the depth) and A∞ corresponds

to the atmospheric light (a color constant).

Single image dehazing directly builds on this optical

model. Recently many strategies [15, 39, 20, 41, 25, 6, 5,

1, 16, 2, 14, 40] addressed this problem , by considering

different kinds of priors to estimate the transmission.

Despite this prolific work, both the validation and the

comparison of dehazing methods remain largely unsatisfac-

tory, due to the absence of pairs of corresponding hazy and

haze-free ground-truth images. The absence of the refer-

ence (haze-free) images in real-life scenarios justifies why

most of the existing evaluation methods are based on non-

reference image quality assessment (NR-IQA) strategies,

leading to a lack of consensus about dehazing methods qual-

ity.

Today, all assessment datasets[42, 4, 46] rely on syn-

thesized hazy images using a simplified optical model, and

known depth. The use of synthetic data is due to the practi-

cal issues associated to the recording of reference and hazy

images under identical illumination condition.

As an alternative, in this paper, we introduce O-HAZE1,

a dataset containing pairs of real hazy and corresponding

1http://www.vision.ee.ethz.ch/ntire18/o-haze/
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Corresponding ground truth (haze free) images

Hazy images

Figure 1. O-HAZE dataset provides 45 pairs of hazy and corresponding haze-free, i.e. groundtruth, outdoor images.

haze-free images for 45 various outdoor scenes. Haze has

been generated with a professional haze machine that imi-

tates with high fidelity real hazy conditions. Another contri-

bution of this paper is a comprehensive evaluation of several

state-of-the-art single image dehazing methods. Interest-

ingly, our work reveals that many of the existing dehazing

techniques are not able to accurately reconstruct the original

image from its hazy version. This observation is founded

on SSIM [43] and CIEDE2000 [38] objective image qual-

ity metrics, computed using the known reference and the

dehazed results produced by different dehazing techniques.

This observation, combined with the release of our dataset,

should certainly motivate the design of improved dehazing

methods.

The remainder of the paper is structured as follows. Sec-

tion 2 surveys the previous work related to dehazing tech-

niques and datasets. Section 3 describes the steps followed

to record the O-HAZE dataset. Section 4 then briefly intro-

duces the dehazing techniques that are quantitatively com-

pared based on O-HAZE in Section 5.

2. Related Work

2.1. Image dehazing techniques

Image dehazing has drawn much attention in the last

decade.

To circumvent the ill-posed nature of the dehazing prob-

lem, early solutions [32] have built on multiple images ob-

tained in different atmospheric conditions. Alternatively,

Cozman and Krotkov [13] and Nayar and Narasimhan [31]

recover the visibility of hazy scenes by employing side

atmospheric cues that facilitate image depth estimation.

Other approaches rely on the registration of geometric mod-

els to get access to image depth [23]. Hardware-based solu-

tions have also been considered, such as the ones based on

polarization filters [11, 37, 36], which capture multiple im-

ages of the same scene with different degrees of polarization

(DOP) and compare them to estimate the haze properties.

More recently, single image dehazing [15, 39, 20, 41, 25,

6, 5, 1, 16, 2, 14, 40] involves extensive research attention

since it does not require special setup or side information,

and is thus suitable even for challenging situations such as

dynamic scenes. The pioneer work of Fattal [15] accounts

for surface shading in addition to the transmission function,

and searches for a solution in which the resulting shading

and transmission functions are locally statistically uncorre-

lated. Tan’s approach [39] considers the brightest value in

the image to estimate the atmospheric airlight, and directly

searches to maximize the contrast of the output based on the

assumptions that a haze-free image presents higher contrast

compared with its hazy version. Contrast maximization has

also been employed in [41], but with a lower computational

complexity. In [6], a per-pixel identification of hazy regions

is presented, using hue channel analysis and a semi-inverse

of the image. The dark channel priors, introduced in [20],

has been proven to be a really effective solution to esti-

mate the transmission, and has motivated many recent ap-

proaches. Meng et al. [28] extends the work on dark chan-

nel, by regularizing the transmission around boundaries to

mitigate its lack of resolution. Zhu et al. [47] extend [28]

by considering a color attenuation prior, assuming that the

depth can be estimated from pixel saturation and intensity.

Extending the idea of [41], Gibson et al. [17] employs me-

dian filter to avoid halo artifacts in the dehazed image. The

color-lines model [16] employs a Markov Random Field

(MRF) to generate complete and regularized transmission

maps. Similarly, the haze influence over the color channels

distribution has also been exploited in [7], by observing that
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the colors of a haze-free image are well approximated by a

limited set of tight clusters in the RGB space. In presence

of haze, those clusters are spread along lines in the RGB

space, as a function of the distance map, which allows to

recover the haze free image. For night-time dehazing and

non-uniform lighting conditions, spatially varying airlight

has been considered and estimated in [7, 3, 26]. Fusion-

based single image dehazing approaches [1, 12] have also

achieved visually pleasant results without explicit transmis-

sion estimation and, more recently, several machine learn-

ing based methods have been introduced [40, 8, 34]. De-

hazeNet [8] takes a hazy image as input, and outputs its

medium transmission map that is subsequently used to re-

cover a haze-free image via atmospheric scattering model.

For its training, DehazeNet resorts to data that are synthe-

sized based on the physical haze formation model. Ren et

al. [34] proposed a coarse-to-fine network consisting of a

cascade of CNN layers, also trained with synthesized hazy

images.

2.2. Dehazing assessment

Despite the impressive effort in designing dehazing al-

gorithms, a major issue preventing further developments is

related to the impossibility to reliably asses the dehazing

performance of a given algorithm, due to the absence of ref-

erence haze-free images (ground-truth). A key problem in

collecting pairs of hazy and haze-free ground-truth images

lies in the need to capture both images with identical scene

illumination.

Due to this limitation, most dehazing quality metrics

are restricted to non-reference image quality metrics (NR-

IQA) [29, 30, 35]. For example, in [19], the assessment sim-

ply relies on the gradient of the visible edges. A more gen-

eral framework has been introduced in [10], using subjec-

tive assessment of enhanced and original images captured in

bad visibility conditions. Besides, the Fog Aware Density

Evaluator (FADE) introduced in [12] predicts the visibility

of a hazy/foggy scene from a single image without corre-

sponding ground-truth. Unfortunately, due to the absence

of the reference (haze-free) images in real-life scenarios,

none of these approaches has been generally accepted by

the dehazing community.

Another assessment strategy builds on synthesized hazy

images, using the optical model and known depth to synthe-

size the haze effect. FRIDA is the first synthetic dataset that

was introduced in the work of Tarel et al. [42]. Designed

for Advanced Driver Assistance Systems (ADAS), it con-

tains 66 computer graphics generated roads scenes. In [4],

a dataset of 1400+ images of real complex scenes has been

derived from the Middleburry2 and the NYU-Depth V23

datasets. It contains high quality real scenes, and the depth

2http://vision.middlebury.edu/stereo/data/scenes2014/
3http://cs.nyu.edu/˜silberman/datasets/nyu_depth_v2.html

map associated to each image has been used to yield syn-

thesized hazy images based on Koschmieder’s light propa-

gation model [24]. This dataset has been recently extended

in [46], by adding several synthesized outdoor hazy images.

In [27] it is introduced a small dataset consisting of 4 indoor

set of images with hazy and RGB and NIR ground-truth. In-

terestingly, the work in J.E. Khoury et al. [22] introduces the

CHIC (Color Hazy Image for Comparison) database, pro-

viding hazy and haze-free images in real scenes captured

under controlled illumination. The dataset however only

considers two indoor scenes, thereby failing to cover a large

variation of textures and scene depth. To complete this pre-

liminary achievement, our paper introduce a novel dataset

that can be employed as a more representative benchmark

to assess dehazing algorithms in outdoor scenes, based on

ground truth images. The O-HAZE dataset includes 45 vari-

ous outdoor scenes, captured under controlled illumination.

It thereby provides relevant data to support dehazing assess-

ment, and is used in the NTIRE dehazing challenge4.

3. O:HAZE: Recording the outdoor hazy

scenes

The O-HAZE database has been derived from 45 vari-

ous outdoor scenes in presence or absence of haze. Our

dataset allows to investigate the contribution of the haze

over the scene visibility by analyzing the scene objects ra-

diance starting from the camera proximity to a maximum

distance of 30m.

Since we aimed for outdoor conditions similar to the

ones encountered in hazy days, the recording period has

been spread over more than 8 weeks during the autumn sea-

son. We have recorded the scenes during cloudy days, in

the morning or in the sunset, and only when the wind speed

was below 3 km/h (to limit fast spreading of the haze in the

scene). The absence of wind was the parameter that was the

harder to meet, and explain why the recording of 45 scenes

took more than 8 weeks. In terms of hardware, we used a

setup composed of a tripod and a Sony A5000 camera that

was remotely controlled (Sony RM-VPR1). We acquired

JPG and ARW (RAW) 5456 × 3632 images, with 24 bit

depth.

Each scene acquisition has started with a manual ad-

justment of the camera settings. The same parameters are

adopted to capture the haze-free and hazy scene. Those

parameters include the shutter-speed (exposure-time), the

aperture (F-stop), the ISO and white-balance. The similar-

ity between hazy and haze-free acquisition settings is con-

firmed by the fact that the closer regions (that in general are

less distorted by haze) have similar appearance (in terms of

color and visibility) in the pair of hazy and haze-free images

associated to a given scene.

4www.vision.ee.ethz.ch/ntire18/
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To set the camera parameters (aperture-exposure-ISO),

we took advantage of the built-in light-meter of the cam-

era, but also used an external exponometer (Sekonic). For

the custom white-balance, we used the middle gray card

(18% gray) of the color checker. This commonly used pro-

cess in photography is quite straight-forward and requires

to change the camera white-balance mode in manual mode

and place the reference grey-card in the front of it. For this

step, we have placed the gray-card in the center of the scene

in the range of four meters.

After carefully checking that all the conditions above

mentioned and after the setting procedure we have placed

in each scene a color checker (Macbeth color checker) to

allow for post-processing of the recorded images. We use

a classical Macbeth color checker with the size 11 by 8.25

inches with 24 squares of painted samples (4×6 grid).

The haze was introduced in the scenes using two pro-

fessional haze machines (LSM1500 PRO 1500 W), which

generate vapor particles with diameter size (typically 1 - 10

microns) similar to the particles of the atmospheric haze.

The haze machines use cast or platen type aluminum heat

exchangers to induce liquid evaporation. We have chosen

special (haze) liquid with higher density in order to simulate

the effect occurring with water haze over larger distances

than the investigated 20-30 meters. The generation of haze

took approximately 3-5 minutes. After haze generation, we

used a fan to spread the haze as uniformly as possible in the

scene.

4. Evaluated Dehazing Techniques

In this section, we briefly survey the state-of-the-art

single image dehazing techniques that are compared based

on the O-HAZE dataset.

The first approach is the seminal work of He et al. [20].

This method introduces the dark channel prior (DCP), a

statistic observation employed by many recent dehazing

techniques to yield a first estimate of the transmission map.

DCP has been influenced by the dark object [9] and uses

the key-observation that most of the local regions (with the

exception of the sky or hazy regions) contain pixels that

present low intensity in at least one of the color channels.

In order to reduce artifacts, the transmission estimate is

further refined based on alpha matting strategy [20] or

guided filter [21]. In our study, the results have been

generated using the dark channel prior refined with the

guided filter approach.

Meng et al. [28] further exploits the advantages of

the dark channel prior [20]. The method applies a boundary

constraint to the transmission estimate yielded by DCP. The

boundary constraint is combined with a weighted L1norm

regularization. Overall, it mitigates the lack of resolution

in teh DCP transmission map. This algorithm shows some

improvement compared with the He et al. [20] technique

reducing the level of the halo artifacts around sharp edges.

It also better handles the appearance of the bright sky

region.

Fattal [16] introduces a method relying on the obser-

vation that the distributions of pixels in small natural image

patches exhibit one-dimensional structures, named color-

lines, in the RGB color space [33]. A first transmission

estimation is computed from the detected color-lines offset

to the origin, while a refined transmission is generated by a

Markov random field model in charge of filtering the noise

and removing other artifacts caused by scattering.

Cai et al. [8] propose to adopt an end-to-end CNN

deep model, trained to map hazy to haze-free patches. The

algorithm is divided into four sequential steps: features

extraction, multi-scale mapping, local extrema and finally

non-linear regression. The training is based on synthesized

hazy images.

Ancuti et al. [3] introduce a novel straightforward

method for local airlight estimation, and take advantage

of the multi-scale fusion strategy to fusion the multiple

versions obtained from distinct definitions of the locality

notion. Although the solution has been developed to solve

the complex night-time dehazing challenge, including

in presence of severe scattering or multiple sources of

light, the approach is also suited to day-time hazy scene

enhancement.

Berman et al. [7] further exploits the color consis-

tency observation of [33], which considers that the color

distribution in a haze-free images is well approximated

by a discrete set of clusters in the RGB colorspace. They

observe that, in general, the pixels in a given cluster are

non-local and are spread over the entire image plane. The

pixels in a cluster are thus affected differently by the haze.

As a consequence, each cluster becomes a line in the hazy

image, and the position of a pixel within the line reflects its

transmission level. In other words, these haze-lines convey

information about the transmission in different regions

of the image, and are used to estimate the transmission map.

Ren et al. [34] develop a multi-scale CNN to esti-

mate the transmission map directly from hazy images.

The transmission map is first computed by a coarse-scale

network, and is then refined by a fine-scale network. The

training has been performed using synthetically generated

hazy images, obtained from haze-free images and using

their associated depth maps to apply a simplified light

propagation model.
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Hazy images He et al. Meng et al. Fattal Cai et al. Berman et al. Ren et al.Ancuti et al. Ground truth

Set 1

Set 6

Set 10

Set 19

Set 20

Set 21

Set 27

Set 30

Set 33

Set 41

Set 42

Figure 2. Comparative results. The first row shows the hazy images and the last row shows the ground truth. The other rows from left to

right show the results of He et al. [20], Meng et al. [28], Fattal [16], Cai et al. [8], Ancuti et al. [3], Berman et al. [7] and Ren et al. [34].
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He et al. [20] Meng et al. [28] Fattal [16] Cai et al. [8] Ancuti et al. [3] Berman et al. [7] Ren et al. [34]

SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000 SSIM CIEDE2000

Set 1 0.82 22.37 0.77 21.06 0.73 24.29 0.58 24.42 0.75 20.09 0.76 20.97 0.81 18.17

Set 6 0.74 19.00 0.78 11.44 0.73 21.89 0.59 16.16 0.68 15.53 0.77 12.68 0.72 13.20

Set 10 0.78 15.22 0.76 16.63 0.75 17.49 0.71 16.17 0.73 19.21 0.72 17.77 0.80 13.70

Set 19 0.81 16.31 0.84 13.37 0.79 21.48 0.72 16.92 0.78 15.55 0.82 14.49 0.83 12.94

Set 20 0.61 23.81 0.72 20.91 0.62 20.73 0.50 23.71 0.78 12.67 0.72 19.40 0.63 20.98

Set 21 0.69 27.50 0.78 21.13 0.63 28.25 0.71 19.49 0.78 10.72 0.72 20.54 0.73 20.26

Set 27 0.61 21.38 0.68 18.76 0.67 22.37 0.64 17.16 0.77 10.94 0.70 18.41 0.71 14.16

Set 30 0.75 18.85 0.74 18.59 0.72 18.46 0.77 12.70 0.83 11.25 0.81 14.55 0.82 12.66

Set 33 0.76 18.54 0.74 15.84 0.76 17.86 0.81 14.61 0.61 20.86 0.66 19.39 0.88 10.87

Set 41 0.77 19.54 0.72 21.45 0.66 23.71 0.84 12.78 0.84 13.02 0.82 14.36 0.88 12.34

Set 42 0.79 19.70 0.82 11.03 0.73 13.21 0.58 15.58 0.74 15.37 0.82 11.00 0.72 12.87
Table 1. Quantitative evaluation. We randomly picked up 11 sets from our O-HAZE dataset, and did compute the SSIM and CIEDE2000

indices between the ground truth images and the dehazed images produced by the evaluated techniques. The hazy images, ground truth

and the results are shown in Fig.2.

He et al. [20] Meng et al. [28] Fattal [16] Cai et al. [8] Ancuti et al. [3] Berman et al. [7] Ren et al. [34]

SSIM 0.735 0.753 0.707 0.666 0.747 0.750 0.765

PSNR 16.586 17.443 15.639 16.207 16.855 16.610 19.068

CIEDE2000 20.745 16.968 19.854 17.348 16.431 17.088 14.670
Table 2. Quantitative evaluation of all the 45 set of images of the O-HAZE dataset. This table presents the average values of the SSIM,

PSNR and CIEDE2000 indexes, over the entire dataset.

5. Evaluation and Discussion

We have used our proposed dataset to perform a com-

prehensive evaluation of the state-of-the-art single image

dehazing techniques presented in Section 4. Fig. 2 depicts

11 scenes, randomly extracted from the O-HAZE dataset.

Each hazy image is shown in the first column, and the cor-

responding ground truth (haze-free) in the last column. The

other columns, from left to right, present the results yielded

by the techniques of He et al. [20], Meng et al. [28], Fat-

tal [16], Cai et al. [8], Ancuti et al. [3], Berman et al. [7]

and Ren et al. [34]. Additionally, Fig. 3 presents the com-

parative detail insets of scenes 10, 19 and 41, respectively.

Qualitatively, we can observe that the results of He et

al. [20] recover quite well the image structure, but introduce

unpleasing color shifting in the hazy regions mostly due to

the poor airlight estimation. As expected, these distortions

are more significant in the lighter/whiter regions, where the

dark channel prior in general fails. The method proposed by

Meng et al. [28] also rely on the dark channel prior. It im-

proves the results obtained by He et al. [20] thanks to a more

accurate transmission estimation. The color lines exploited

in Fattal [16] also introduce some unpleasing color artifacts.

The method of Berman et al [7] is less prone to such arti-

facts, and lead to images with sharp edges, mostly due to

their strategy to locally estimate the airlight and the trans-

mission. Due to the multi-scale fusion and local airlight

estimation, the method of Ancuti et al. [3] handles color

differently than other methods, leading to higher contrast

and more intense colors, but with a slight shift towards yel-

low/red.

Regarding the learning-based approaches, we observe

that the method of Ren et al [34] generates visually more

compelling results than the deep learning approach of Cai

et al [8].

As a general conclusion, it appears that there is not a

clear winner between the learning-based techniques [8, 34]

and the algorithms that rely on explicit priors [20, 28, 16,

3, 7]. All the tested methods introduce structural distor-

tions such as halo artifacts close to the edges, especially

in regions that are far away from the camera. Moreover,

color distortion occasionnally creates some unnatural ap-

pearances of the dehazed images. Hence, the algorithms

of both classes introduce important structure artifacts and

color shifting. More interestingly, despite none algorithm

is able to recover the ground-truth image, we observe that

some of the existing algorithms are complementary in the

sense that they offer distinct and specific benefits, either in

terms of color contrast or image sharpness, while suffering

from different artifacts (see for example Ancuti et al. [3]

and Berman et al. [7]). This certainly leaves room for im-

provement through appropriate combination of methods.

The O-HAZE dataset has the main advantage to allow

for an objective quantitative evaluation of the dehazing

techniques. Table 1 compares the output of different de-

hazing techniques with the ground-truth (haze free) images

based on PSNR, SSIM [44] and CIEDE2000 [38, 45],

for the images shown in Fig. 2. The structure similarity
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Hazy images He et al. Meng et al. Fattal Cai et al. Berman et al. Ren et al.Ancuti et al. Ground truth

Set 10

Set 19

Set 41

Figure 3. Comparative detail insets. The first, third and fifth rows show the hazy images (first column), their corresponding ground truth

(last column), and the results of several dehazing techniques [20, 28, 16, 8, 3, 7, 34], for the scenes 10, 19, and 41, respectively. The

corresponding detail insets are shown below in the even rows.

index (SSIM) compares local patterns of pixel intensities

that have been normalized for luminance and contrast.

The SSIM ranges in [-1,1], with maximum value 1 for

two identical images. In addition, to evaluate the level of

color restoration, we compute the CIEDE2000 [38, 45].

CIEDE2000 measures accurately the color difference be-

tween two images and generates values in the range [0,100],

with smaller values indicating better color preservation. In

addition to Table 1, Table 4 presents the average SSIM,

PSNR and CIEDE values over the entire 45 scenes of the

O-HAZE dataset. From these tables, we can conclude that

in terms of structure and color restoration the methods of

Meng et al. [28], Berman et al. [7], Ancuti et al. [3] and Ren

et al. [34] perform the best in average when considering

the SSIM, PSNR and CIEDE indices. A second group of

methods including He et al. [20], Fattal [16] and Cai et

al [8], are less competitive both in terms of structure and

color restoration.

Overall, none of the techniques performs better than

others for all images. The low values of SSIM, PSNR

and CIEDE2000 recorded for the analyzed ttechniques

demonstrate once again the complexity of the single-image

based dehazing problem.
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