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Abstract

The past year alone has seen unprecedented leaps in the

area of learning-based image translation, namely Cycle-

GAN, by Zhu et al. But experiments so far have been tai-

lored to merely two domains at a time, and scaling them to

more would require an quadratic number of models to be

trained. And with two-domain models taking days to train

on current hardware, the number of domains quickly be-

comes limited by the time and resources required to pro-

cess them. In this paper, we propose a multi-component

image translation model and training scheme which scales

linearly - both in resource consumption and time required

- with the number of domains. We demonstrate its ca-

pabilities on a dataset of paintings by 14 different artists

and on images of the four different seasons in the Alps.

Note that 14 data groups would need (14 choose 2) =
91 different CycleGAN models: a total of 182 genera-

tor/discriminator pairs; whereas our model requires only

14 generator/discriminator pairs.

1. Introduction

In such a short amount of time, we have come such a

long way in the field of image domain adaptation and style

transfer, with projects such as [12], [9], [5], [6], [10], [3],

and more paving the way. The first four are of particular in-

terest as they do not simply transfer style in terms of texture

and color, but in terms of semantics, and they maintain re-

alism in their results. But they must be trained on examples

from two specific domains, whereas the other two do not.

The first three are even more noteworthy for being able to

do this without any supervision between the two domains

chosen - no pairing of matching data. Now what if we want

to go beyond two domains?

Naively, we could train a model for each pair of domains

we desire. With n domains, this leads to
(

n
2

)

= Θ(n2) mod-

els to train. In this work, we approach this problem by di-

viding each model into two parts: one that handles the con-

version of one domain into a common representation and

one that converts common representations into that domain.

Having one of these pairs per domain allows us to mix-and-

match by obtaining a common representation for any image

and translating it to any other domain. All the while, the

number of models increases linearly with the number of do-

mains, as does the required training time.

1.1. Generative Adversarial Models

Creating a generative model of natural images is a chal-

lenging task. Such a model needs to be able to capture the

rich distributions from which natural images come from.

Generative Adversarial Networks (GANs) [4] have proven

to be excellent for this task and can produce images of high

visual fidelity. GANs, by default, consist of a pair of models

(typically neural networks): a generator G and a discrimina-

tor D. D is trained to estimate the probability that a sample

x comes from a true training data distribution p(x), while

simultaneously G is trained turn vector z sampled from its

own prior distribution p(z) into x′, in order to maximize the

value D outputs when fed x′. G’s outputs receiving higher

score by D implies the distribution G learns nears the true

distribution p(x).

This training procedure is referred to as adversarial train-

ing and corresponds to a Minimax game between G and D.

Training itself is executed in two alternating steps; first D

is trained to distinguish between one or more pairs of real

and generated samples, and then the generator is trained to

fool D with generated samples. Should the discriminator

be too powerful at identifying real photos to begin with, the

generator will quickly learn low-level ”tricks” to fool the

discriminator that do not lie along any natural image mani-

fold. For example, a noisy matrix of pixels can mathemati-

cally be a solution that makes D produce a high real-image

probability. To combat this, the training is often done with

a small handful of examples per turn, allowing G and D to

gradually improve alongside each other. The optimization

problem at hand can be formulated as:

min
G

max
D

Ex[logD(x)] + Ez[log(1−D(G(z))] (1)
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GANs have found applications in many computer vision

related domains, including image super-resolution [8] and

style transfer [3].

1.2. Related Works

Many tasks in computer vision and graphics can be

thought of as translation problems where an input image

a is to be translated from domain A to b in another domain

B. Isola et al. [6] introduced an image-to-image translation

framework that uses GANs in a conditional setting where

the generator transforms images conditioned on the exist-

ing image a. Instead of sampling from a vector distribution

p(z) to generate images, it simply modifies the given input.

Their method requires image data from two domains, but it

requires they be aligned in corresponding pairs.

Introduced by Zhu et al., CycleGAN [12] extends

this framework to unsupervised image-to-image translation,

meaning no alignment of image pairs are necessary. Cycle-

GAN consists of two pairs of neural networks, (G,DA) and

(F,DB), where the translators between domains A and B

are G : A → B and F : B → A. DA is trained to discrim-

inate between real images a and translated images F (a),
while DB is trained to discriminate between images b and

G(a). The system is trained using both an adversarial loss,

as expressed in (1), and a cycle consistency loss expressed

in (3). The Cycle consistency loss is a way to regularize

the highly unconstrained problem of translating an image

one-direction alone, by encouraging the mappings G and F

to be inverses of each other such that F (G(a)) ≈ a and

G(F (b)) ≈ b. However, here the traditional negative log-

likelihood loss in (1) is replaced by a mean-squared loss (2)

that has been shown to be more stable during training and

to produce higher quality results [11]. The full CycleGAN

objective is expressed:

LGAN (G,DB , A,B) =

Eb[(DB(b)− 1)2] + Ea[DB(G(a))2] (2)

Lcycle(G,F ) =

Ea[||F (G(a))− a||1] + Eb[||G(F (b))− b||1] (3)

L(G,F,DA, DB) = λLcycle(G,F )

+ LGAN (G,DB , A,B) + LGAN (F,DA, B,A) (4)

The reconstruction part of the cycle loss forces the networks

to preserve domain-agnostic detail and geometry in trans-

lated images if they are to be reverted as closely as possi-

ble to the original image. Zhu et al. were able to produce

very convincing image translations such as ones trained to

translate between horses and zebras, between paintings and

photographs, and between artistic styles.

Liu et al. [9] implemented a similar approach with UNIT,

adding further losses to the intermediate activation results

within the generator instead of purely on the final generated

outputs. Using the CycleGAN architecture, they designate

the activations from the central layer of the generators as the

shared latent vectors. Using a variational-autoencoder loss,

these vectors from both domains are pushed into a gaussian

distribution. This is done in addition to the discriminator

loss and cycle loss from CycleGAN, seemingly improving

the image translation task over CycleGAN in cases with sig-

nificantly varying geometry in the domains.

Lastly there is the concurrent work of StarGAN [1],

which aims to solve a similar problem as ours: scalabil-

ity of unsupervised image-translation methods. StarGAN

melds the generators and discriminators from CycleGAN

into one generator and discriminator used in common by all

domains. As such, the model can take as input any number

of domains, though this requires passing in a vector along

with each input to the generator specifying the output do-

main desired. Meanwhile the discriminator is trained to out-

put the detected domain of an image along with a real/fake

label, as opposed to simply the latter when each domain has

its own discriminator. The results suggest having a shared

model for domains similar enough to each other may be

beneficial to the learning process. Nevertheless, this method

was only applied to the task of face attribute modification,

where all the domains were slight shifts in qualities of the

same category of images: human faces.

2. The ComboGAN Model
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Figure 1. Example inference functionality of translation from one

domain to all others.
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Figure 2. Model design setup for N domains.

2.1. Decoupling the Generators

The scalability of setups such as CycleGAN’s is hin-

dered by the fact that both networks used are tied jointly to

two domains, one from some domain A to B and the other

from B to A. To add another domain C, we would then

need to add four new networks, A to C, C to A, B to C,

and C to B. To solve this issue of exploding model counts,

we introduce a new model, ComboGAN, which decouples

the domains and networks from each other. ComboGAN’s

generator networks are identical to the networks used in Cy-

cleGAN (see Appendix A for network specifications), yet

we divide each one in half, labeling the frontal halves as en-

coders and the latter halves as decoders. We can now assign

an encoder and decoder to each domain.

As the name ComboGAN suggests, we can combine the

encoders and decoders of our trained model like building

blocks, taking as input any domain and outputting any other.

For example during inference, to transform an image x from

an arbitrary domain X to y from domain Y , we simply per-

form y = GY X(x) = DecoderY (EncoderX(x)). The re-

sult of EncoderX(x) can even be cached when translating

to other domains as not to repeat computation.

With only one generator (an encoder-decoder pair) per

domain, the number of generators scales exactly linearly

with the number of domains, instead of 2
(

n
2

)

= n(n− 1) =
Θ(n2). The discriminators remain untouched in our exper-

iment; the number of discriminators already scales linearly

when each domain receives its own. Figure 2 displays our

full setup. This approach is similar to the one Google took

for multi-language machine translation [7].

2.2. Training

Fully utilizing the same losses as CycleGAN involves

focusing on two domains, as the generator’s cyclic training

and discriminator’s true/false-pair training are not directly

adaptable for more domains. ComboGAN’s training pro-

cedure involves focusing on 2 of our n domains at a time.

At the beginning of each iteration, we select two domains

X,Y ∈ {1..n} from our n domains, uniformly at random.

Then maintaining the same notation as CycleGAN in (4),

we set A := X and B := Y and proceed as CycleGAN

would for the remainder of the iteration. Figure 3 shows

one of the two forward passes in a training iteration. The

other half is simply the symmetric mirroring of the proce-

dure for the other domain, as if the two were swapped.

Randomly choosing between two domains per iteration

means we should eventually cover training between all pairs

of domains uniformly. Though of course the training time

(number of iterations) required must increase as well. If

training between two domains with CycleGAN requires

k2 iterations, then with n domains,
(

n
2

)

CycleGAN setups

would require k2
(

n
2

)

iterations to complete. In our situa-

tion, we instead keep the training linear in the number of

domains, since the number of parameters (weights) in our

model increases linearly with the number of domains, as

well. We desire each domain to be chosen for a training iter-

ation the same number of times as in CycleGAN. Note that

it will not be the same number of times that a given pair is

chosen, as achieving that would just require the same num-

ber of iterations as the naive method; rather we only care

about whether a domain is chosen to be trained alongside

any other domain or not. We observe that since a domain X

is chosen in each iteration with probability 2

n
, during train-

ing it is chosen in expectation n
2
·kn times. Requiring equal-

ity to the two-domain case k2, we obtain kn = k2

2
n, or k2

2

iterations per domain, which proves satisfactory in practice.

As for the discriminators, training is the same as Cycle-

GAN’s. After each training iteration for two given genera-

tors, the two corresponding discriminators receive a training

iteration, as well. For a single discriminator, a real image

from its domain and a fake image intended for the same do-

main (the output of that domain’s decoder) are fed to train

the network to better distinguish real and fake images. This

is done independently for both discriminators.

2.3. Relation with CycleGAN

It is easy to see our changes only distinguish our model

when more than two domains are present. For the case of

two domains, our entire procedure becomes exactly equiv-

alent to CycleGAN. Because of this, we consider Combo-

GAN a proper extension of the CycleGAN model that needs

898



X X

Y Y

X

Y

Real X

Fake Y

Reconstr-
ucted X

Generators Discriminators

GAN
Loss

Cycle
Loss

Figure 3. Generator training pass for direction X → Y , where X,Y ∈ {1, .., n} : X 6= Y are randomly chosen from our n domains at

the start of every iteration. This pass is always repeated symmetrically for direction Y → X as well.
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Figure 4. Validation results for pictures of the Alps in all four sea-

sons. Original images lie on the diagonal.

not change the underlying foundation.

In the case of more than two domains, for the end re-

sult to work as intended, it is implied the encoders must

be placing input images into a shared representation, in

which all inputs are equally fit for any domain transfor-

mation. Achieving this latent space suggests that the en-

coders learn to conceal qualities that make an image unique

or distinguishable among the domains, with decoders re-

filling them with the necessary detail that defines that do-

main’s characteristics. As detailed in [2], cycle-consistent

Spring

Sum
m

er

Autum
n

W
inter

Figure 5. Same Alps images but from standard CycleGAN results

instead. Original images lie on the diagonal.

image translation schemes are known to hide reconstruc-

tion details in often-imperceptible noise. This could theo-

retically be avoided by strictly enforcing the latent space as-

sumption with added losses acting upon intermediate values

(encoder outputs) instead of the decoder outputs. Combo-

GAN’s decoupled-generator structure allows for enhance-

ments such as this, but for sake of direct comparison with

CycleGAN, we omit tweaks to the objective formulation in

this current experiment.

It should be noted though, that in the case of only two do-
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Figure 6. Validation results for our 14 painters. Original images lie on the diagonal.

mains (and in CycleGAN), the concept of the images being

taken to a shared latent space need not hold at all. In this

situation, the output of an encoder is always given to the

same decoder, so it will learn to optimize for that specific

domain’s decoder. In the case of more than two domains,

the encoder output has to be suitable for all other decoders,

meaning encoders cannot specialize.
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3. Experiments and Results

Our code, data, and trained models are publicly available

at: https://github.com/AAnoosheh/ComboGAN

3.1. Datasets

The first of two datasets used in this experiment consists

of approximately 6,000 images of the Alps mountain range

scraped from Flickr. The photos are individually catego-

rized into four seasons based on the provided timestamp of

when it was taken. This way we can translate among Spring,

Summer, Autumn, and Winter.

The other dataset is a collection of approximately 10,000

paintings total from 14 different artists from Wikiart.org.

The artists used are listed alphabetically: Zdzislaw Beksin-

ski, Eugene Boudin, David Burliuk, Paul Cezanne, Marc

Chagall, Jean-Baptiste-Camille Corot, Eyvind Earle, Paul

Gauguin, Childe Hassam, Isaac Levitan, Claude Monet,

Pablo Picasso, Ukiyo-e (style, not person), and Vincent Van

Gogh.

3.2. Setup

It’s noteworthy that the training hyperparameters are un-

altered from the original CycleGAN; no modifcations were

needed for ComboGAN to train stably every time. All im-

ages in our trials were scaled to 256x256 size. Batches are

not used (only one image per input), random image flip-

ping is enabled, random crops are disabled, and dropout

is not used. Learning rate begins at 0.0002 for generators

and 0.0001 for discriminators, constant for the first half of

training and decreasing linearly to zero during the second

half. The specific architectures for our networks used are

detailed in Table A in the appendix. We run our experiments

for 100n epochs, having n domains, as we consider a nor-

mal CycleGAN training with two domains to require 200

epochs for adequate results. The fourteen painters dataset,

for example, ran 1400 epochs in 220 hours on our nVidia

Titan X GPU. Note that pairwise CycleGAN instead would

have taken about 2860 hours, or four months.

3.3. Discussion

Figure 4 shows validation image results for ComboGAN

trained on the Alps seasons photos for 400 iterations. Com-

boGAN did reasonably well converting among the four do-

mains. Looking closely one can notice many examples hide

information necessary for the reconstruction process (from

training) within them. Many are semantically-meaningful,

such as the cloud inversion in the summer images, while

some are easy ways to change color back and forth, such

as color inversion. Meanwhile in Figure 5 we show re-

sults from CycleGAN trained on all six combinations of

the four seasons to produce the same images, demonstrat-

ing that ComboGAN maintains comparable quality, while

only training four networks for 400 epochs instead of Cyle-

GAN’s twelve nets for a total of 1200 epochs.

Figure 6 shows randomly-chosen validation images for

our fourteen painters dataset. The figure contains transla-

tions of a single real image from each artist to every other

one. Looking at columns as a whole, one can see common

texture behavior and color palettes common to the pieces

per artist column. In addition, we have included further real

sample artworks from each artist in Figure 7 to help give a

better impression of what an artist’s style is supposed to be.

One piece in the translation results which stands out almost

immediately is the tenth item under Chagall’s column: this

image was styled as a completely black-and-white sketch.

The datasets gathered did happen to contain a few artworks

which were unfinished, preliminary sketches for paintings;

this led to the translation model coincidentally choosing to

translate Corot’s painting to a monochrome pencil/charcoal

sketch. Comparison with CycleGAN is not shown as it is

computationally infeasible.

We had planned to include comparisons with StarGAN,

though, at the time of writing, its code would not run suc-

cessfully on our machines.

4. Conclusion

We have shown a novel construction of the CycleGAN

model as ComboGAN, which solves the θ(n2) scaling issue

inherent in current image translation experiments. Com-

boGAN still maintains the visual richness of CycleGAN

without being constrained to two domains. In theory, ad-

ditional domains can be appended to an existing Combo-

GAN model by simply creating a new encoder/decoder pair

to train alongside a pretrained model.

Though the proposed framework is not restricted to

CycleGAN, its formulation can be easily extended to

UNIT [9], for example. The model allows for more modi-

fications, such as encoder-decoder layer sharing, or to add

latent-space losses to the representations outputted by the

encoders. These were omitted from this work to demon-

strate the sole effect of scaling the CycleGAN model and

showing it still compares to the original, without introduc-

ing scaling-irrelevant adjustments that might improve re-

sults on their own.
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A. Network Architectures

The network architecture used in the translation experi-

ments is detailed in Table A. We use the following abbrevia-

tions for brevity: N=Neurons, K=Kernel size, S=Stride size.

The transposed convolutional layer is denoted by DCONV.

The residual basic block is denoted as RESBLK.

Table 1. Layer specifications for Generator (Encoder + Decoder)

and Discriminator

Layer # Encoders

1 CONV-(N64,K7,S1), InstanceNorm, ReLU

2 CONV-(N128,K3,S2), InstanceNorm, ReLU

3 CONV-(N256,K3,S2), InstanceNorm, ReLU

4 RESBLK-(N256,K3,S1), InstanceNorm, ReLU

5 RESBLK-(N256,K3,S1), InstanceNorm, ReLU

6 RESBLK-(N256,K3,S1), InstanceNorm, ReLU

7 RESBLK-(N256,K3,S1), InstanceNorm, ReLU

Layer # Decoders

1 RESBLK-(N256,K3,S1), InstanceNorm, ReLU

2 RESBLK-(N256,K3,S1), InstanceNorm, ReLU

3 RESBLK-(N256,K3,S1), InstanceNorm, ReLU

4 RESBLK-(N256,K3,S1), InstanceNorm, ReLU

5 RESBLK-(N256,K3,S1), InstanceNorm, ReLU

6 DCONV-(N128,K4,S2), InstanceNorm, ReLU

7 DCONV-(N64,K4,S2), InstanceNorm, ReLU

8 CONV-(N3,K7,S1), Tanh

Layer # Discriminators

1 CONV-(N64,K4,S2), LeakyReLU

2 CONV-(N128,K4,S2), InstanceNorm, LeakyReLU

3 CONV-(N256,K4,S2), InstanceNorm, LeakyReLU

4 CONV-(N512,K4,S1), InstanceNorm, LeakyReLU

5 CONV-(N1,K4,S1)
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