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Abstract

This work identifies and addresses two important techni-

cal challenges in single-image super-resolution: (1) how to

upsample an image without magnifying noise and (2) how to

preserve large scale structure when upsampling. We sum-

marize the techniques we developed for our second place

entry in Track 1 (Bicubic Downsampling), seventh place en-

try in Track 2 (Realistic Adverse Conditions), and seventh

place entry in Track 3 (Realistic difficult) in the 2018 NTIRE

Super-Resolution Challenge. Furthermore, we present new

neural network architectures that specifically address the

two challenges listed above: denoising and preservation of

large-scale structure.

1. Introduction

Super-resolution (SR) is a classic problem in image pro-

cessing where the goal is to generate a high resolution im-

age from one or more low resolution images. Applica-

tions of super-resolution are wide-ranging. For instance,

SR is important for allowing modern high-definition dis-

plays to function properly when showing video recorded at

lower resolutions. SR also has many applications in med-

ical imaging, such as reducing noise in images stemming

from uncontrollable patient motions (11). This work fo-

cuses on single image super-resolution, which is useful for

photographic enhancement, license plate recognition, satel-

lite imaging, and other remote sensing applications such as

recognition of a military target (16).

Deep learning techniques can learn a mapping directly

from low resolution to high resolution images, where all

feature construction is automated. This makes some types

of complex preprocessing much easier than previous ap-

proaches, for example, we no longer need to explicitly

choose a dictionary of low-level features (e.g., edge detec-

tors) to convolve with the image. The fact that training

deep neural networks has become much easier within the
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past few years has led to more reliable automated training.

On the other hand, the fact that these deep learning meth-

ods use recursive mathematical formulas that are now much

more complicated than before makes it more difficult to de-

termine how to best troubleshoot them to achieve higher-

quality performance.

In this work we discuss several insights into the prob-

lem of single-image super-resolution – many of which have

led to higher quality performance beyond entries from last

year’s NTIRE single-image SR competition. These insights

concern the amplification of noise when upsampling and

the preservation of large scale structure in enhanced im-

ages. We introduce neural network architectures for both

the denoising problem (DeNoising for Super-Resolution –

DNSR) and the problem of preserving large-scales structure

(Automated Decomposition and Reconstruction for Super-

Resolution – ADRSR). Additionally we present a set of

tricks that provided boosts in SR performance.

For denoising while upsampling, we present the DNSR

(and more basic DNISR) architecture that concatenates two

networks, where the first network is for denoising and the

second is a baseline method for SR. This leverages do-

main knowledge that the noise should not have been in the

low-resolution image in the first place and thus we should

not amplify it. Training these concatenated networks led

to improvements in performance in Track 2 (realistic mild

adverse conditions) and Track 3 (realistic difficult) of the

NTIRE SR 2018 challenge.

Modern methods for SR have trouble preserving large

scale structure. Even if the high resolution images look re-

alistic in local patches, the global structure (such as stripes

that reach across the full image) can have serious visible

faults. We present an architecture for preserving structure at

multiple scales. In our network, ADRSR, the original image

is downsampled multiple times, convolutions are performed

on each of the downsampled images, and combined to form

the final high-resolution image. This directly provides the

network with more information about the larger scales (that

it thus does not need to learn).

The architectures for denoising and preserving large-

scale structure can be used with any network blocks used
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for SR; we used convolutional blocks from EDSR (9) within

our implementations, but these can be changed to any other

blocks. DNISR or DNSR combine any network for denois-

ing with any network for SR.

Most of the ideas discussed here were not implemented

in time for the NTIRE 2018 SR competition deadline. How-

ever, we present a set of tricks that were helpful in achiev-

ing higher level performance during the competition. For

instance, an idea used in our Track 1 (classic bicubic down-

sampling) entry was to randomly shuffle the red, green,

and blue layers of the image during training, which helps

as a form of self-ensembling. We also discuss different

upsampling techniques, and find that for x8 amplification,

we should learn the fully amplified image directly, because

learning a x4 followed by a x2 amplification tend to lead

to the spurious addition of details that do not exist in the

original high-resolution image.

All of these ideas were developed over the course of ap-

proximately 8 weeks by a team of 5 undergraduates with no

previous experience in image processing.

Our entries in the 2018 NTIRE superresolution compe-

tition (13) achieved seventh place in Track 2 (realistic mild

adverse conditions), seventh place in Track 3 (realistic dif-

ficult) and second place in Track 1 (classic bicubic down-

sampling).

Track 1 Track 2 Track 3

PSNR 25.433 23.374 21.658

SSIM 0.7067 0.6252 0.5400

Table 1: Competition Result

2. Previous Work

Many approaches to single-image super-resolution are

based on different methods of image upsampling. In par-

ticular, nearest-neighbors upsampling (in which each un-

known pixel in the upsampled image is assigned the value

of its nearest known neighbor) and bicubic upsampling (in

which each unknown pixel in the upsampled image is as-

signed a value interpolated from its nearest known neigh-

bors) are popular methods for basic upsampling (2; 3).

These methods, while simple and computationally efficient,

do not provide realistic high-resolution images. More ad-

vanced methods attempt to build a map between low resolu-

tion images and high resolution images through a variety of

different techniques. Some techniques include frequency-

domain methods such as alias removal (14), recursive least

squares (7), and multichannel sampling theorem methods

(15), as well as spatial-domain methods, such as iterated

back-projection (6), joint MAP restoration (4), and adaptive

filtering (10).

Neural networks have recently been successful for im-

age processing tasks, and through application of classi-

cal ResNet architectures, Ledig et al. created one success-

ful example of a convolutional neural network for super-

resolution, called SRResNet (8). Their work showed that

the use of residual blocks improved performance on super-

resolution tasks over more traditional convolutional neural

network architectures, and has become the basis for many

future architectures for super-resolution. Lim et al. then im-

proved on this with their EDSR method by removing batch

normalization, using an L1 rather than L2 loss function, and

adding depth to the network (9). While these models have

seen some success in the super-resolution task for ‘clean’

images (that is, images that have been bicubically down-

scaled with no further degradations), they do not show good

results for images with noise, blur, or other degradations.

A few recent interesting super-resolution techniques

have been suggested for degraded images. Zhang et al. (18)

suggested using CNN denoisers as a modular part of model-

based optimization methods to perform various computer

vision tasks including super resolution. Shocher et al. (12)

proposed an unsupervised approach that trains an image-

specific CNN at test time that learns to use the repetitive

structure of images to fill in details where there previously

were none.

Other neural-network based methods, such as genera-

tive adversarial networks (8), have shown success in super-

resolution as measured by human viewers. However, these

networks achieve visual effects suitable for human viewing

by ‘hallucinating’ features from the low resolution image

that are not necessarily in the original image, but would be

believable given the low resolution image. As such, they are

not as well suited for tasks that maximize similarity to the

original high resolution image, such as PSNR and SSIM.

The methods introduced into this work are different in

that they heavily leverage prior knowledge: DNSR lever-

ages the knowledge that denoising before upsampling is

helpful, while ADRSR uses a pyramid of downsampled im-

ages to borrow information at broader scales. The ideas

within ADRSR and DNSR can be combined with any neu-

ral network approaches to denoising and super-resolution in

order to include domain knowledge.

3. Challenges

When approaching all three super-resolution tracks (cor-

responding to non-noisy and noisy images), we encountered

multiple challenges.

First, there were challenges that were specific to the

competition itself. One such challenge was that of model

validation, because the PSNR values of our algorithm var-

ied wildly between images (see Figure 1). Depending on

which 100-image subset we used for validation, average

PSNR values ranged from 22 to 27. This made it difficult
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to compare our results to others’ and required us to fix a

validation set of 100 images throughout training.

Figure 1: Varying PSNR between our algorithm’s images

for Track 2

Particularly for noisy images, it is very difficult to avoid

amplifying the noise while upsampling. Several of the tech-

niques we introduce here were useful for this, particularly

the denoising and upsampling network DNSR for Tracks 2

and 3. Even without noise, artifacts tend to appear when

upsampling by a factor of eight.

Most traditional denoisers require some knowledge of

the noise itself, normally the standard deviation. To use

any of these denoisers, it was imperative to reverse engi-

neer the noise. We took approximately flat areas of various

images and considered the difference between the degraded

low resolution images and down-scaled versions of the high

resolution images. Because a blur kernel has no effect on

flat regions of an image, this difference should be a good

approximation of the noise (see Figure 2).

Most prior convolutional networks for super-resolution

tend to focus on increasing the resolution in local areas;

however, this approach does not take into account more

global patterns (such as zebra stripes). Some recent work

(5; 12) have aimed to solve this problem in other promis-

ing ways, and we present a new method for handling this

(ADRSR) in what follows.

Figure 2: Histogram of noise from two images

4. ADRSR: A type of architecture that pre-

serves global structure

Figure 8 shows the types of problems that can arise

from EDSR and similar SR algorithms. These algorithms

consider local image patches, and do not aim to reconcile

them with larger-scale patterns that crosscut into different

patches. Both increasing the depth of the network and in-

creasing the size of each kernel allows the network to in-

clude larger scale patterns. However, these approaches are

either hard to train, or do not converge at all. Thus, we

reasoned that these larger patterns could be detected even

by using a smaller kernel on a downsampled image with-

out significant loss of information; the flexibility afforded

by a large number of larger kernels may be unnecessary to

capture this information.

The architecture that we introduce for preserving global

structure is presented in Figure 3, called Automated De-

composition and Reconstruction for SR (ADRSR). The

original image is downsampled several times, with each

downsampled image being fed through a parallel super-

resolution network. This pyramid representation for the in-

put allows us to create filters that capture patterns from the

original image at various scales. We then iteratively com-

bine the information from the various upscaled images to

produce a final, more accurate image that respects global

structure. When running the network forward on a new im-

age, it would start from the coarsest scale, and iteratively

add more detail on the finer scales.

In Figure 3, the SR network labeled in the figure can be

replaced with any SR network.

5. DNSR: A type of architecture for denoising

with low information loss for SR

As the principal challenge for Tracks 2 and 3 is noise,

we considered three possible approaches for dealing with

the noise:

• (Baseline simple approach). The simplest approach is

to manually preprocess the images with a noise reduc-

tion algorithm, and then train a super resolution con-

volutional network on the denoised images.

• (SR without denoising). Allow the residual blocks in

a super-resolution network (such as EDSR) to simulta-

neously denoise the input images and extract features.

That is, we directly train EDSR on the noisy data.

• (DNISR, DNSR) After training the denoising network

and SR network separately, we concatenate them, and

then continue to train them together as a single net-

work. DNISR and DNSR differ in the way that they

concatenate the two networks during the final training

stage, see Figure 4.
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Figure 3: ADRSR Network with a x4 super resolution network

The first baseline approach allowed us to incorporate do-

main knowledge about the noise, but performed poorly due

to the information loss caused by the denoiser. The sec-

ond approach, on the other hand, did not tend to suffer from

information loss. However, it was not possible to incorpo-

rate any domain knowledge about the problem (for instance

that the image needs to be denoised) into the network. The

third and fourth approaches solved both problems. They

allowed us to incorporate domain knowledge into the net-

work, since we could explicitly train the denoising network.

DNSR trains the denoiser and super-resolution network to-

gether at the end to minimize information loss of the over-

all procedure. This approach is also advantageous when

given a small number of images with the same degrada-

tions applied. After reverse-engineering the noise, external

data can be used to train the denoising and super-resolution

networks, and then the entire concatenated network can be

trained on the dataset to allow the network to correct any

additional degradations.

Based on our final approach, we constructed two mod-

els, which perform the concatenation in two different ways.

The first was DNISR (DeNoising Into Super-Resolution),

which ran the image through a denoising network (we used

DNCNN (17)), producing a low-resolution noise-reduced

image, and then ran the result through the super-resolution

network (we used EDSR) to produce a high-resolution im-

age.

We found a useful trick to further minimize informa-

tion loss in DNISR: we fed the original image into the

super-resolution network alongside the noise-free image

with weights initialized to 0.

The second approach (DeNoising and Super-Resolution

– DNSR) used a more complicated concatenation proce-

dure. It removed the information bottleneck between the

two networks by combining the tail layer of the denoiser

(which mapped 256 channels to 3) and the head layer of

the SR network (which mapped 3 channels to 256) into a

single bridge convolutional layer that mapped directly from
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the number of feature maps in the denoiser to the number

of feature maps in the SR network. Unlike DNISR, there

is no denoised image produced before entering the super-

resolution network. See Figure 4 for the architecture. We

submitted the same model for Tracks 2 and 3 of the NTIRE

2018 competition.

Figure 4: Architectures for DNSR and DNISR.

Table 2 and Figures 5 and 6 show a PSNR comparison

for EDSR, DNISR, and DNSR. For a visual comparison of

the images produced by each algorithm, see Figure 12.

Algorithm BICUBIC EDSR DNISR DNSR

PNSR 23.47 24.49 24.52 24.90

SSIM 0.7333 0.7925 0.7940 0.7956

Table 2: Comparison of results from EDSR and our denois-

ing networks. The numbers reported were computed on the

DIV2K (1) validation data set.

6. General Tricks and Insights

We discovered several tricks that can be used any time,

with almost any network architecture. To see the results

these tricks had on upscaling images by a factor of 8, see

Figure 12.

• RGB Layer Shuffle: In addition to flipping and rotat-

ing the image patches during training and generation,

we randomly shuffled the red, green, and blue layers.

This improved our overall model by a small amount.

This trick is applicable to any convolutional structure.

Figure 11 shows the effect of test-time RGB Shuffling.

• Per-Image Mean Shift: Instead of calculating the av-

erage mean throughout all of the images and normal-

izing by that value, as in the original EDSR paper, we

Figure 5: PSNR difference between DNISR and EDSR

(sorted by difference in PSNR) on the 100 image validation

set from DIV2K (1).

Figure 6: PSNR difference between DNSR and EDSR

(sorted by difference in PSNR) on the 100 image validation

set from DIV2K (1)

instead normalized each individual image patch during

training by subtracting its mean.

• Different Upsampling Techniques: For Track 1, we

started by using sub-pixel shift to upscale the image.

In addition, to upsample by a factor of 8, we concate-

nated three ×2 upsamplers, as in the original EDSR

paper. Using this approach, we ran into artifacts in-

duced by the upscaling (see Figure 7). These arti-

facts were diminished by switching the upsampling

method to Transposed Convolution upsampling. How-

ever, even with the sub-pixel shift upscaler, the prob-

lem went away when we switched to directly learning

a ×8 upscaler instead of three concatenated ×2 up-

4325991



scalers.

In our final method, we found that direct ×8 upscaling

combined with the sub-pixel shift upscaler produced

images with higher PSNR values. However, the con-

catenated ×2 upscalers seemed less prone to creating

artifacts due to antialiasing (see Figure 8).

Figure 7: The upscaler using sub-pixel shift (top-right) has

clear chromatic artifacts, while the upscaler using trans-

posed convolutional upscaling (bottom-right) does not.

Figure 8: Diagonal lines created by some upscaling meth-

ods due to anti-aliasing

• Residual Scaling Factor: In EDSR, each residual layer

is multiplied by 0.1 at the end. Instead of hardcoding

this parameter, we allowed it to be a free variable that

could be trained.

Figure 9: Convergence rates for baseline EDSR, EDSR with

per image shift and dynamic scaling factor. The figure is

plotted with rolling mean of 50.

• Edge Loss: We attempted to add an edge-loss com-

ponent to the loss by applying a Sobel filter to both

the upscaled and ground-truth images, and comparing

those. However, this did not improve on our previous

model.

• Kernel Size: We tried various kernel sizes, however

2 × 2 produced worse results and we could not suc-

cessfully train the network with the 4 × 4 and 5 × 5

kernel sizes.

Figure 9 shows a comparison of convergence rates for

baseline EDSR, EDSR with per image intensity shift, and

EDSR with dynamic residual scaling factors. All training

started with randomly initialized weights. Using per-image

mean shift gives a higher initial PSNR and faster conver-

gence.

Table 3 and Figure 10 show a PSNR comparison for

VDSR, EDSR, and our improved EDSR model. For a vi-

sual comparison of the images produced by each algorithm,

see Figure 12.

Algorithm EDSR Improved EDSR VDSR BICUBIC

PNSR 25.49 25.60 24.70 23.69

SSIM 0.6930 0.6974 0.6580 0.6291

Table 3: Comparison of our improved EDSR algorithm to

several baselines. The improvements could have been made

to any SR algorithm besides EDSR. The numbers reported

were computed on the DIV2K validation data set.

Figure 11 shows the PSNR increment across the 100

images from the DIV2K validation set after applying only

RGB Shuffling to EDSR. In 97 out of the 100 cases, there

was a boost in PSNR.
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Figure 10: PSNR difference between our improved EDSR

and baseline EDSR (sorted by difference in PSNR) on the

100 image validation set from DIV2K (1).

Figure 11: PSNR increment from test time RGB Shuffling

(sorted by difference in PSNR)

7. Conclusion

We discussed two new network architectures for denois-

ing and preserving general structure in images during super-

resolution, as well as a toolbox of tricks. The vast majority

of the findings described here were not implemented in time

for the competition deadline. Our high-scoring entries are

mostly a result of the toolbox of tricks discussed above. We

have noticed substantial improvement from our competition

entries to the results reported in this paper.

Our code is available at: https://github.

com/websterbei/EDSR_tensorflow and https:

//github.com/nikhilvravi/DukeSR. An up-

dated version of this paper will be posted on arXiv.org.
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Figure 12: Comparison of different techniques for upscaling images by a factor of 8 (left) and upscaling noisy images by a

factor of 4 (right). The visual differences between the images are especially pronounced in the last images of each column,

where the folds in the leaves are much clearer.
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