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Abstract

JPEG is one of the widely used lossy compression meth-

ods. JPEG-compressed images usually suffer from com-

pression artifacts including blocking and blurring, espe-

cially at low bit-rates. Soft decoding is an effective solu-

tion to improve the quality of compressed images without

changing codec or introducing extra coding bits. Inspired

by the excellent performance of the deep convolutional neu-

ral networks (CNNs) on both low-level and high-level com-

puter vision problems, we develop a dual pixel-wavelet do-

main deep CNNs-based soft decoding network for JPEG-

compressed images, namely DPW-SDNet. The pixel do-

main deep network takes the four downsampled versions of

the compressed image to form a 4-channel input and out-

puts a pixel domain prediction, while the wavelet domain

deep network uses the 1-level discrete wavelet transforma-

tion (DWT) coefficients to form a 4-channel input to produce

a DWT domain prediction. The pixel domain and wavelet

domain estimates are combined to generate the final soft

decoded result. Experimental results demonstrate the supe-

riority of the proposed DPW-SDNet over several state-of-

the-art compression artifacts reduction algorithms.

1. Introduction

The number of devices with high-resolution camera in-

creases significantly over the last few years, with the in-

troduction of smart phones and IoT (Internet of Things)

devices. Limited by the transmission bandwidth and stor-

age capacity, these images and videos are compressed. As

shown in Fig. 1, compressed images usually suffer from

compression artifacts due to the information loss in the

lossy compression process, especially at low bit-rates. In

addition to poor perceptual quality, compression artifact-

(a) (b)

Figure 1. Illustrations of compression artifacts and soft decoding.

(a) JPEG-compressed image in the case of QF = 10 (PSNR = 25.79

dB, SSIM = 0.7621, PSNR-B = 23.48 dB); (b) Soft decoded result

of (a) using the developed DPW-SDNet (PSNR = 28.22 dB, SSIM

= 0.8376, PSNR-B = 27.84 dB).

s also reduce the accuracy of other processing steps such

as object detection and classification. Therefore, it is nec-

essary to improve the quality of compressed images. This

paper focuses on the soft decoding of JPEG images due to

the fact that the JPEG is one of the commonly used com-

pression standards for still images.

In recent years, many works investigate the restoration of

JPEG images, aiming to remove compression artifacts and

enhance the perceptual quality and objective assessment s-

cores. In literature, the restoration procedure is usually re-

ferred to as soft decoding [21, 22], deblocking [20, 33], or

compression artifacts reduction [5, 10]. In this paper, we

use these terms interchangeably. Inspired by the excellent

performance of the deep convolutional neural networks (C-

NNs) on various computer vision problems, we propose a
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dual pixel-wavelet domain deep CNNs-based soft decod-

ing network for JPEG-compressed images, namely DPW-

SDNet. From Fig. 1 that illustrates a restored image by

the proposed DPW-SDNet, we can observe that most of the

compression artifacts are removed and some missing tex-

tures are recovered. Overall, the main contribution of this

work is a dual-branch deep CNN that can reduce compres-

sion artifacts in both the pixel domain and wavelet domain.

More specifically, our contributions are two folds:

• We develop an effective and efficient soft decoding

method for JPEG-compressed images using dual pixel-

wavelet domain deep CNNs. The combination of the

pixel domain and wavelet domain predictions leads to

better soft decoding performance.

• We reshape the compressed image and its 1-level dis-

crete wavelet transformation (DWT) coefficients into

two tensors with smaller size, which are used as the

inputs to the pixel and wavelet sub-networks, respec-

tively. By performing soft decoding on two smaller

tensors, the DPW-SDNet achieves state-of-the-art per-

formance while maintaining efficiency.

The rest of this paper is organized as follows. We de-

scribe the related work in the next section. The proposed

soft decoding algorithm is presented in Section 3. Experi-

ments are shown in Section 4. Finally, Section 5 concludes

this paper.

2. Related Work

Let X and Y be the original uncompressed image and

the corresponding JPEG-compressed version, respectively.

Given the compressed image Y, the goal of soft decod-

ing is to produce an estimate that is as close as possible

to the original image X. Existing methods for soft decod-

ing of JPEG-compressed images can be roughly split in-

to three categories: enhancement-based, restoration-based,

and learning-based methods.

The enhancement-based methods usually remove com-

pression artifacts via performing pixel domain or transform

domain filtering. For instance, Foi et al. [7] proposed a

shape-adaptive discrete cosine transformation (DCT)-based

image filtering, yielding excellent performance on deblock-

ing and deringing of compressed images. Zhai et al. [31]

proposed to reduce blocking artifacts via postfiltering in

shifted windows of image blocks. In [30], the authors devel-

oped an efficient artifacts reduction algorithm through joint

DCT domain and spatial domain processing. Yoo et al. [29]

proposed an inter-block correlation-based blocking artifact-

s reduction framework, in which the artifacts in flat regions

and edge regions were removed using different strategies.

Compression artifacts reduction is formulated as an ill-

posed inverse problem for the restoration-based soft decod-

ing methods, where the prior knowledge about high-quality

images, compression algorithms, and compression parame-

ters is used to assist the restoration process [2, 4, 13, 20, 21,

22, 23, 24, 25, 32, 33, 36, 37, 38]. For instance, in [25], the

original image and compression distortion were modeled as

a high-order Markov random field and spatially correlat-

ed Gaussian noise, respectively. Non-local self-similarity

property was widely used in deblocking algorithms. In gen-

eral, the low-rank [20, 24, 33, 36] and group sparse repre-

sentation [32, 38] were applied to model this property. In

[2, 21, 22, 23, 32, 38], sparsity was utilized as an image pri-

or to regularize the restored image. The graph model was

used in the deblocking methods proposed in [13] and [21].

In some works [21, 22, 33, 36, 38], the quantization con-

straint on DCT coefficients was applied to restrain the resul-

tant image. In particular, Dar et al. [4] designed a sequential

denoising-based soft decoding algorithm, where the exist-

ing state-of-the-art denoising method was used to construc-

t a regularization. On the whole, most of the restoration-

based soft decoding methods are time-consuming to some

extent due to the complex optimization process.

Recently, excellent results were obtained by deep

learning-based approaches [1, 3, 5, 8, 9, 10, 19, 27, 34].

Dong et al. [5] developed a shallow CNN for compression

artifacts reduction on the basis of the network for super-

resolution [6]. The authors of [5] found that it is hard to

train a network beyond four layers in low-level vision tasks.

To address this issue, Kim et al. [17] introduced the resid-

ual learning technique and designed a very deep network

of twenty layers for single image super-resolution. In [34],

Zhang et al. presented a very deep network via incorpo-

rating the residual learning and batch normalization for a

series of general image denoising problems, including de-

noising, super-resolution, and deblocking. Li et al. [19]

combined the skip connection and residual learning to ease

the network training process. Cavigelli et al. [1] devel-

oped a deep compression artifacts reduction network with a

multi-scale loss function. In [3], Chen and Pock proposed

a trainable nonlinear reaction diffusion model for efficient

image restoration. Inspired by the success of the dual DCT-

pixel domain sparse coding [22], the authors of [9] and [27]

designed dual-domain networks for the deblocking of JPEG

images. More recently, some works aim to improve the

perceptual quality of compressed images [8, 10]. Overal-

l, deep learning-based approaches show obvious superiority

over conventional soft decoding methods in terms of both

the restoration performance and running time 1.

Inspired by the success of the wavelet domain network-

s for super-resolution [11, 14], we present a dual pixel-

wavelet domain deep CNN for the soft decoding of JPEG-

compressed images in this paper. The proposed DPW-

1 In general, the deep learning-based image restoration approaches are

time-consuming in model training phase but efficient in testing phase. In

this paper, the running time refers to the time cost in testing phase only.
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Figure 2. Flowchart of the proposed DPW-SDNet. The DPW-SDNet reduces compression artifacts in dual pixel-wavelet domain. The

depths of the P-SDNet and W-SDNet are set to 20. The number next to each convolutional layer represents the number of kernels, and all

of the convolutional layers in DPW-SDNet have the same kernel size of 3× 3.

(a) (b) (c)

(d) (e) (f)

Figure 3. Illustration of the reversible downsampling process used

in the pixel domain soft decoding branch. (a) The input image

(size: m× n, here m = n = 16); (b)-(e) Different downsampled

versions of (a) (size: m

2
×

n

2
); (f) The tensor composed of (b)-

(e) (size: m

2
×

n

2
× 4). Note that this downsampling process is

reversible.

SDNet is different from previous deep learning-based soft

decoding algorithms in the following aspects: 1) The

DPW-SDNet consists of two parallel branches that perform

restoration in the pixel domain and wavelet domain, respec-

tively. 2) The DPW-SDNet takes two tensors as the net-

work inputs rather than the original compressed image and

DWT coefficients. Experiments show that the DPW-SDNet

achieves competitive restoration performance and execution

speed on JPEG-compressed images. Moreover, the exten-

sions of the proposed DPW-SDNet to other compression s-

tandards are straightforward.

3. Proposed DPW-SDNet

As outlined in Fig. 2, the proposed DPW-SDNet com-

poses of two parallel branches: the pixel domain soft decod-

ing branch and the wavelet domain soft decoding branch.

The network in the pixel domain branch (namely P-SDNet)

removes compression artifacts in pixel domain directly,

while the network in the wavelet domain branch (namely

W-SDNet) performs restoration in wavelet domain. The

pixel domain and wavelet domain estimates are combined

to generate the final soft decoded result. Note that we do

not directly use the original compressed image and its DWT

sub-bands as the inputs of the two sub-networks. In the fol-

lowing sections, more details about the DPW-SDNet are p-

resented. For convenience, we assume that the input Y is a

gray-scaled image of size m× n where m,n are both even.

3.1. The Pixel Domain Branch

In the pixel domain branch (shown in the bottom half of

Fig. 2), first the compressed image Y is downsampled to

generate four downsampled sub-images of size m
2
× n

2
. S-

ince we have to recover an image that has the same size with

the input, a reversible downsampling strategy is used in this

process as [35]. Fig. 3 illustrates the reversible downsam-

pling process. Given Y, the pixels located at (2i+1, 2j+1),
(2i + 1, 2j + 2), (2i + 2, 2j + 1), and (2i + 2, 2j + 2)
(i = 0, 1, 2, · · · , m

2
− 1, j = 0, 1, 2, · · · , n

2
− 1) are respec-

tively sampled to form four different sub-images, which are

concatenated to constitute a tensor of size m
2
× n

2
×4. Then,

the tensor is fed into the pixel domain deep CNN. At least

two benefits can be achieved by using a smaller tensor as

the input of a deep CNN. First, a smaller input means low-

er computational complexity. In addition, working on the

downsampled images can enlarge the receptive field, which

is beneficial to restoration process.

For convenience, we name the pixel domain deep CNN

P-SDNet. The input and output of the P-SDNet are tensors.

The D-layer P-SDNet consists of two kinds of blocks. The

first (D − 1) blocks are “CONV+BN+ReLU”, and the last

block only includes a convolutional layer. Note that the ab-

breviation “CONV” represents a convolutional layer, “BN”

denotes the batch normalization [15], and “ReLU” repre-

sents the rectified linear unit [18]. The kernel number of

each convolutional layer is set to 64 except the last layer
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that outputs a 4-channel residual image. The kernel size of

each convolutional layers is set to 3 × 3. In each layer, the

zero padding strategy is adopted to keep all feature maps

having the same size. Since the input and output of the P-

SDNet are very similar, we adopt the residual learning [12]

for stable and fast training. Hence, the training loss function

of the P-SDNet is defined as

LP (ΘP ) =
1

2N

N
∑

i=1

∥

∥(fp(y
pt
i ; ΘP ) + y

pt
i )− x

pt
i

∥

∥

2

(1)

where the ΘP represents all parameters in P-SDNet,

fp(y
pt
i ; ΘP ) is the predicted residual component, and

{(ypt
i ,x

pt
i )}Ni=1

denotes N compressed-clean tensor pairs

in the pixel domain.

Finally, the four feature maps in the output of P-SDNet

are assembled according to the inverse process of the down-

sampling procedure to form the pixel domain estimate.

3.2. The Wavelet Domain Branch

The framework of the wavelet domain branch is similar

to the pixel domain branch. Given a compressed image Y,

we first conduct the 1-level 2-dimensional discrete wavelet

transformation (2D-DWT) and obtain its four wavelet sub-

bands coefficients. The size of each sub-band is m
2
× n

2
.

Similarly, the four wavelet sub-bands are concatenated to

constitute a tensor of size m
2
× n

2
× 4, which is used as the

input of the wavelet domain deep CNN, namely W-SDNet.

By concatenating four wavelet sub-bands, the information

in different sub-bands can be fused while keeping the con-

sistency among them. Moreover, the computational cost can

be reduced.

The architecture of the W-SDNet is set to be the same as

the P-SDNet, including the network depth, number of ker-

nels, and kernel size. Therefore, we do not introduce the W-

SDNet in details to avoid redundancy. The main difference

between the two sub-networks is that the W-SDNet predict-

s wavelet coefficients residual while the P-SDNet predicts

pixel intensity residual. Correspondingly, the training loss

function of the W-SDNet is defined as

LW (ΘW ) =
1

2N

N
∑

i=1

∥

∥(fw(y
wt
i ; ΘW ) + ywt

i )− xwt
i

∥

∥

2

(2)

where the ΘW represents all parameters in W-SDNet,

fw(y
wt
i ; ΘW ) is the predicted residual component, and

{(ywt
i ,xwt

i )}Ni=1
denotes N compressed-clean tensor pairs

in the wavelet domain.

The four feature maps in the output of W-SDNet are the

wavelet sub-bands of the soft decoded image. Therefore,

the 2-dimensional inverse discrete wavelet transformation

(2D-IDWT) is performed on these coefficients to produce

the wavelet domain estimate.

3.3. The Combination of the Dual­Branch

As mentioned above, the pixel domain and wavelet do-

main branches both produce a soft decoded version of the

input image. Since the two predictions are generated in

different spaces, they have their respective characteristic-

s. Hence, combining them should improve the restoration

performance further. There are many ways to fuse the two

intermediate results. For example, we can design a network

with a 2-channel input and a 1-channel output to combine

them. Considering the computational complexity, the two

estimates derived from the dual-domain are simply equally

weighted to generate the final output in this work.

4. Experiments

In this section, we first introduce some implementation

details, followed by experimental results.

4.1. Implementation Details

Training Data: The publicly available imageset BSD-

S500 2 is used to train the DPW-SDNet. We adopt the da-

ta augmentation (rotation and downsampling) to generate

more training images. For the P-SDNet, we extract training

sample pairs from original images and the corresponding

compressed images. Correspondingly, the 2D-DWT coef-

ficients of the original images and compressed images are

used to generate training sample pairs for the W-SDNet. We

generate N = 523, 968 training sample pairs for each sub-

network, and the size of each sample is set to 31× 31× 4.

Training Parameters: We use the Caffe package [16]

to implement the proposed network, and the depths of P-

SDNet and W-SDNet are set to 20 (D = 20). The stochastic

gradient descent algorithm is adopted to optimize our net-

works. The batch size, weight decay, momentum are set to

64, 0.0001, and 0.9, respectively. The initial learning rate is

set to 0.1, and it decreases by a factor of 10 every 10 epochs.

The maximum number of iterations is set to 300, 000 for

both the pixel domain and wavelet domain sub-networks.

4.2. Soft Decoding Performance Evaluation

The DPW-SDNet is compared with five state-of-the-art

soft decoding algorithms for JPEG-compressed images, in-

cluding two restoration-based approaches (i.e., CONCOL-

OR [33] and D2SD [22]) and three deep learning-based

algorithms (i.e., ARCNN [5], TNRD [3], and DnCNN-

3 [34]). Referring to [34], two benchmark imagesets

Classic5 and LIVE1 are used as test datasets. For the color

images in the LIVE1 dataset, only the luminance compo-

nents are processed. The MATLAB JPEG encoder is used

to generate JPEG-compressed images at different quality

2Available: https://www2.eecs.berkeley.edu/Research/Projects/CS/

vision/grouping/resources.html
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Table 1. Average PSNR (dB)/SSIM/PSNR-B (dB) scores of different soft decoding algorithms on Classic5 and LIVE1. The best and the

second-best scores are highlighted in red and blue, respectively.

QF 10 20 30 40

Classic5

JPEG 27.82/0.7595/25.21 30.12/0.8344/27.50 31.48/0.8666/28.94 32.43/0.8849/29.92

CONCOLOR [33] 29.24/0.7963/29.14 31.38/0.8541/31.18 32.70/0.8809/32.50 33.60/0.8961/33.36

D2SD [22] 29.21/0.7960/28.87 31.47/0.8551/31.15 32.79/0.8813/32.40 33.66/0.8962/33.20

ARCNN [5] 29.05/0.7929/28.78 31.16/0.8517/30.60 32.52/0.8806/32.00 33.33/0.8953/32.81

TNRD [3] 29.28/0.7992/29.04 31.47/0.8576/31.05 32.78/0.8837/32.24 -

DnCNN-3 [34] 29.40/0.8026/29.13 31.63/0.8610/31.19 32.90/0.8860/32.36 33.77/0.9003/33.20

DPW-SDNet 29.74/0.8124/29.37 31.95/0.8663/31.42 33.22/0.8903/32.51 34.07/0.9039/33.24

LIVE1

JPEG 27.77/0.7730/25.34 30.08/0.8512/27.57 31.41/0.8852/28.93 32.36/0.9041/29.96

CONCOLOR [33] 28.87/0.8018/28.76 31.08/0.8681/30.90 32.42/0.8985/32.16 33.39/0.9157/33.07

D2SD [22] 28.83/0.8023/28.54 31.08/0.8690/30.80 32.41/0.8987/32.10 33.37/0.9156/33.06

ARCNN [5] 29.04/0.8076/28.77 31.31/0.8733/30.79 32.73/0.9043/32.22 33.63/0.9198/33.14

TNRD [3] 29.14/0.8111/28.88 31.46/0.8769/31.04 32.84/0.9059/32.28 -

DnCNN-3 [34] 29.19/0.8123/28.91 31.59/0.8802/31.08 32.99/0.9090/32.35 33.96/0.9247/33.29

DPW-SDNet 29.53/0.8210/29.13 31.90/0.8854/31.27 33.31/0.9130/32.52 34.30/0.9282/33.44

(a) Original image (b) JPEG (c) CONCOLOR [33] (d) D2SD [22]

(e) ARCNN [5] (f) TNRD [3] (g) DnCNN-3 [34] (h) Proposed DPW-SDNet

Figure 4. Visual quality comparison of different soft decoding methods on Barbara in the case of QF = 10. (a) Original image (PSNR

(dB), SSIM, PSNR-B (dB)); (b) JPEG (25.79, 0.7621, 23.48); (c) CONCOLOR [33] (27.73, 0.8216, 27.63); (d) D2SD [22] (27.93, 0.8214,

27.64); (e) ARCNN [5] (26.92, 0.7967, 26.75); (f) TNRD [3] (27.24, 0.8099, 27.13); (g) DnCNN-3 [34] (27.58, 0.8161, 27.29); (h)

Proposed DPW-SDNet (28.22, 0.8376, 27.84).

828



(a) Original image (b) JPEG (c) CONCOLOR [33] (d) D2SD [22]

(e) ARCNN [5] (f) TNRD [3] (g) DnCNN-3 [34] (h) Proposed DPW-SDNet

Figure 5. Visual quality comparison of different soft decoding methods on Bike in the case of QF = 10. (a) Original image (PSNR (dB),

SSIM, PSNR-B (dB)); (b) JPEG (25.77, 0.7417, 23.02); (c) CONCOLOR [33] (27.00, 0.7801, 27.00); (d) D2SD [22] (27.11, 0.7859,

26.97); (e) ARCNN [5] (27.41, 0.7924, 27.11); (f) TNRD [3] (27.54, 0.7971, 27.22); (g) DnCNN-3 [34] (27.59, 0.7999, 27.28); (h)

Proposed DPW-SDNet (28.04, 0.8133, 27.58).

factors (QFs). We compare the performance of these al-

gorithms in the cases of QF = 10, 20, 30, and 40. For the

DPW-SDNet, a dedicated model is trained for each QF. For

the five competitors, we use the original codes and models

provided by the authors.

Table 1 reports the objective assessment scores achieved

by all tested algorithms, including the PSNR, SSIM [26],

and PSNR-B [28] 3. Note that the PSNR-B is a specifically

developed assessment metric for blocky and deblocked im-

ages. It can be observed from Table 1 that the DPW-SDNet

consistently outperforms the five competitors with consid-

erable improvements. The only exception is the PSNR-

B value on Classic5 in the case of QF = 40, where the

CONCOLOR [33] is superior to the DPW-SDNet. Overal-

l, the DnCNN-3 [34] and TNRD [3] generate the second-

best and the third-best results, respectively. The CON-

COLOR [33], D2SD [22], and ARCNN [5] achieve com-

parable performance overall. On average, the proposed

DPW-SDNet achieves about (0.30 ∼ 0.34) dB PSNR gain-

s, (0.0030 ∼ 0.0098) SSIM gains, and (0.04 ∼ 0.24) d-

B PSNR-B gains over the second-best approach DnCNN-

3 [34]. The gains over the two restoration-based soft decod-

3 For the TNRD [3], the results at QF = 40 are not presented as the

corresponding model is not available.

ing algorithms and ARCNN [5] are more significant. The

improvements over state-of-the-art deblocking approaches

demonstrate the effectiveness of the proposed DPW-SDNet.

One important aim of soft decoding algorithms is to re-

cover images with high visual quality as JPEG-compressed

images at high compression ratios usually suffer from se-

vere artifacts. Therefore, some soft decoded images pro-

duced by different methods at QF = 10 are shown in Fig. 4,

Fig. 5, and Fig. 6 in order to compare visual quality. It can

be observed that most of the compression artifacts in JPEG

images are removed by performing soft decoding on them.

However, some soft decoded images are over-smoothed to

some extent, or still suffer from visible artifacts. By con-

trast, the DPW-SDNet shows superiority in reducing arti-

facts and restoring details. The restored images using DPW-

SDNet are more perceptually appealing, which can be seen

from the highlighted regions. The results in this section ver-

ify that the DPW-SDNet not only achieves higher objective

evaluation scores, but also produces better visual quality.

4.3. Discussion on Dual­Domain Soft Decoding

In DPW-SDNet, two parallel branches are used to restore

the compressed image in the pixel domain and wavelet do-

main, respectively. It is meaningful to study the ability of
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(a) Original image (b) JPEG (c) CONCOLOR [33] (d) D2SD [22]

(e) ARCNN [5] (f) TNRD [3] (g) DnCNN-3 [34] (h) Proposed DPW-SDNet

Figure 6. Visual quality comparison of different soft decoding methods on Lighthouse3 in the case of QF = 10. (a) Original image (PSNR

(dB), SSIM, PSNR-B (dB)); (b) JPEG (28.29, 0.7636, 25.98); (c) CONCOLOR [33] (29.77, 0.7976, 29.36); (d) D2SD [22] (29.77, 0.7977,

29.24); (e) ARCNN [5] (29.63,0.7973, 29.19); (f) TNRD [3] (29.75, 0.8013, 29.27); (g) DnCNN-3 [34] (29.81, 0.8007, 29.38); (h)

Proposed DPW-SDNet (30.30, 0.8104, 29.76).

Table 2. Average PSNR (dB)/SSIM/PSNR-B (dB) scores of different variants of the DPW-SDNet on Classic5 and LIVE1. The best scores

are highlighted in red.

QF 10 20 30 40

Classic5

P-SDNet 29.69/0.8116/29.33 31.89/0.8657/31.39 33.18/0.8899/32.49 34.04/0.9036/33.22

W-SDNet 29.70/0.8117/29.33 31.91/0.8660/31.37 33.18/0.8900/32.48 34.03/0.9036/33.21

DPW-SDNet 29.74/0.8124/29.37 31.95/0.8663/31.42 33.22/0.8903/32.51 34.07/0.9039/33.24

LIVE1

P-SDNet 29.49/0.8203/29.10 31.86/0.8849/31.25 33.27/0.9126/32.49 34.26/0.9278/33.41

W-SDNet 29.51/0.8205/29.11 31.87/0.8850/31.25 33.28/0.9127/32.50 34.26/0.9279/33.42

DPW-SDNet 29.53/0.8210/29.13 31.90/0.8854/31.27 33.31/0.9130/32.52 34.30/0.9282/33.44

the two branches and discuss the effectiveness of the dual-

domain combination. Table 2 presents the objective assess-

ment scores of the DPW-SDNet and its two variants, i.e.,

the P-SDNet and W-SDNet. Here the P-SDNet represents

that only the pixel domain branch is used to restore the com-

pressed image, while the W-SDNet represents that only the

wavelet domain branch is used.

It can be observed from Table 2 that both the P-SDNet

and W-SDNet generate excellent restoration performance,

which proves the ability of the presented network. More-

over, the gains of the DPW-SDNet over the P-SDNet and

W-SDNet verify the effectiveness of the dual-domain soft

decoding. Furthermore, it is believed that the fusion of the

two branches could be more effective with a more complex

combination method.

4.4. Discussion on Blind Soft Decoding

In above experiments, we use a dedicated model for each

compression QF. To test the capacity of the DPW-SDNet

further, we train a universal model for compressed images

at different QFs. We refer to the universal model as the

blind DPW-SDNet (B-DPW-SDNet), which is trained using

the samples compressed at different QFs 4. In Section 4.2,

DPW-SDNet and DnCNN-3 [34] perform the best and the

second-best on the whole, respectively. Therefore, we com-

pare the B-DPW-SDNet with them in Table 3.

As expected, the B-DPW-SDNet is slightly inferior to

DPW-SDNet. However, in most cases, it still outperforms

4 Note that the same training dataset and the same number of training

samples are used to train the universal model and the dedicated model.
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Table 3. Comparisons of PSNR (dB)/SSIM/PSNR-B (dB) scores of the DnCNN-3 [34], DPW-SDNet, and B-DPW-SDNet on Classic5 and

LIVE1. The best and the second-best scores are highlighted in red and blue, respectively.

QF 10 20 30 40

Classic5

DnCNN-3 [34] 29.40/0.8026/29.13 31.63/0.8610/31.19 32.90/0.8860/32.36 33.77/0.9003/33.20

DPW-SDNet 29.74/0.8124/29.37 31.95/0.8663/31.42 33.22/0.8903/32.51 34.07/0.9039/33.24

B-DPW-SDNet 29.69/0.8104/29.34 31.92/0.8660/31.39 33.18/0.8900/32.44 34.01/0.9035/33.19

LIVE1

DnCNN-3 [34] 29.19/0.8123/28.91 31.59/0.8802/31.08 32.99/0.9090/32.35 33.96/0.9247/33.29

DPW-SDNet 29.53/0.8210/29.13 31.90/0.8854/31.27 33.31/0.9130/32.52 34.30/0.9282/33.44

B-DPW-SDNet 29.48/0.8193/29.10 31.87/0.8849/31.26 33.27/0.9127/32.46 34.24/0.9278/33.38

Figure 7. The PSNR (dB) values of DPW-SDNet on Classic5 and

LIVE1 with different training iterations (QF = 40).

Figure 8. The running time (s) of different soft decoding algo-

rithms on three representative image sizes in Classic5 and LIVE1.

DnCNN-3 [34] with obvious gains. Compared with DPW-

SDNet, B-DPW-SDNet is more flexible and practical. Giv-

en QF, DPW-SDNet can be used to obtain better restoration

performance, while B-DPW-SDNet can produce competi-

tive results when the QF is unknown. Hence, one can select

a proper model according to the practical application.

4.5. Empirical Study on Training Convergence and
Running Time

In Fig. 7, we show the PSNR values of DPW-SDNet with

different training iterations. The trends are similar for dif-

ferent QFs, so only the curves at QF = 40 are presented. It

can be seen that the training converges after about 200,000

iterations. In our experiments, the maximum number of it-

erations is set to 300,000. The training of a single model

takes about 9 hours on a GeForce GTX 1080 Ti GPU.

Running time is an important factor for a soft decod-

ing algorithm. We run different deblocking methods on the

same desktop computer with an Inter Core i7 CPU 4.2 GHz,

32GB RAM, and Matlab environment. Fig. 8 presents the

execution time of different approaches on three representa-

tive image sizes in Classic5 and LIVE1 5. It can be seen that

the proposed P-SDNet and W-SDNet are the most efficient

approaches. The DPW-SDNet costs about 2× time com-

pared with the P-SDNet and W-SDNet, but it is still less

time-consuming than other compared algorithms. More-

over, the execution speed of the DPW-SDNet can be greatly

accelerated with a GPU.

5. Conclusion and Future Work

A dual pixel-wavelet domain deep network-based soft

decoding framework is developed for JPEG-compressed

images, namely DPW-SDNet. In DPW-SDNet, the com-

pressed image is restored in both pixel and wavelet spaces

using deep CNNs. In addition, we use 4-channel tensors

as the inputs of our networks rather than the 2-dimensional

images, which makes the DPW-SDNet efficient and effec-

tive. Experimental results on benchmark datasets demon-

strate the effectiveness and efficiency of our soft decoding

algorithm. Future work includes the extensions of the pro-

posed DPW-SDNet to other image compression standards

as well as other image restoration problems.
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