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Abstract

There have been a flurry of works on deep learning based

image dehazing in recent years. However, most of them

have only used deep neural networks to estimate the trans-

mission map (or its variant); while the module of gener-

ating dehazed image is still model-based. Inspired by the

analogy between image dehazing and image denoising, we

propose to reformulate dehazing as a problem of learning

structural residue (instead of white Gaussian noise) and re-

move haze from a single image by a deep residue learning

(DRL) network. Such novel reformulation enables us to di-

rectly estimate a nonlinear mapping from input hazy images

to output dehazed ones (i.e., bypassing the unnecessary step

of transmission map estimation).

The dehazing-denoising analogy also motivates us to

leverage the strategy of iterative regularization from de-

noising to dehazing - i.e., we propose to recursively feed

the dehazed image back to the input of DRL network. Such

recursive extension can be interpreted as a nonlinear opti-

mization of DRL whose convergence can be rigorously an-

alyzed using fixed-point theory. We have conducted exten-

sive experimental studies on both synthetic and real-world

hazy image data. Our experimental results have verified

the effectiveness of the proposed recursive DRL approach

and shown that our technique outperforms other compet-

ing methods in terms of both subjective and objective visual

qualities of dehazed images.

1. Introduction

Outdoor images often suffer from low contrast and de-

graded color fidelity due to haze, fog, and other atmospheric

phenomena. These phenomena are caused by light scatter-

ing and absorption with dusk, smoke and dry particulates

in the atmosphere. Haze attenuates the reflected signal of a

scene in the physical world, introducing undesirable qual-

ity degradation to the image [2] as shown in Figure 1(a).

How to restore the visual quality of hazy images is often

called “image dehazing” or “haze removal”, which has been

widely studied by the computer vision community in recent

years.

Haze removal from a single image is a challenging ill-

posed problem for several reasons. First, as mentioned in

previous works [17, 10, 2, 14, 15], since the transmission

map depends on the unknown and spatially varying scene

depth, it is difficult to obtain an accurate estimate of trans-

mission map without the faithful depth information. Sec-

ond, in addition to transmission map, global atmosphere

light also interfere with the process of image formation (i.e.,

so-called airlight [17] depends on both global atmosphere

light and transmission map). The variation of global at-

mosphere light (e.g., nighttime vs. daytime) makes single-

image dehazing more difficult. Last but not least, most of

previous works assumed a simplified additive image for-

mation model in order to make the problem of haze re-

moval more analytically tractable. How accurate this model

matches the actual formation of a hazy image in the real

world is largely unknown to the best of our knowledge.

Conventional wisdom for image dehazing heavily re-

lies on the simplified observation model and the estima-

tion of transmission map. Various strategies for estimat-

ing the unknown scene depth or transmission map have

been developed in both model-based approaches (e.g., in-

dependent component analysis [8] and dark channel prior

[10]) and more recently learning-based approaches (e.g.,

MSCNN [20] and DehazeNet [3]). Inspired by the analogy

between image dehazing and image denoising, we propose

to reformulate dehazing as a problem of learning structural

residue (instead of white Gaussian noise) and remove haze

from an image by a deep residue learning (DRL) network.

Such novel reformulation enables us to directly estimate a

nonlinear mapping from input hazy images to output de-

hazed ones (i.e., bypassing the unnecessary step of trans-

mission map estimation).

The dehazing-denoising analogy also motivates us to

leverage the strategy of iterative regularization [19] from

denoising to dehazing - i.e., we propose to recursively feed

the dehazed image back to the input of DRL network. Such

recursive extension can be interpreted as a nonlinear opti-
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(a) Input (b) DCP [10] (c) NLD [2]

(d) MSCNN [20] (e) AOD [14] (f) DRL

Figure 1: Visual quality comparison between our proposed DRL and other state-of-the-art methods.

mization of DRL whose convergence can be rigorously an-

alyzed using fixed-point theory [9] (haze-free images are

the fixed points of learned nonlinear mappings by DRL net-

work). We have conducted extensive experimental studies

on both synthetic and real-world hazy image data. Our ex-

perimental results have verified the effectiveness of the pro-

posed recursive DRL and shown that our approach outper-

forms other competing methods in terms of both subjective

and objective visual qualities of dehazed images. Moreover,

previous learning-based dehazing approaches have used a

large number of training data (e.g., AOD [14] used 27,256

images), whereas our DRL achieves good performance with

only 1,200 training images thanks to the patch extracting

strategy (therefore requiring much fewer computational re-

sources).

2. Related Work

Model-based approaches toward single image haze re-

moval are often based on some haze-relevant priors. In [10],

a Dark Channel Prior (DCP) was proposed based on the ob-

servations that in a haze-free image, any local patch would

contain some pixels of low intensity values in at least one

color channel. In [18], a factorial Markov Random Field

model was adopted to jointly estimate the scene albedo

and depth. In [15], the inherent boundary constraint of the

transmission function was exploited during the estimation,

which has been called contextual regularization. In nonlocal

image dehazing [2], distance map and haze-free images are

jointly estimated from haze-lines characterizing the linear-

spreading structure of pixels within a given cluster in the

RGB space. All those dehazing methods estimate the scene

depth or transmission map to facilitate model-based image

restoration. Due to the effectiveness of haze-relevant priors,

most of the state-of-the-art model-based approaches show

strong potentials in the heavy haze area of an image, at the

cost of longer processing time.

Inspired by the success of deep learning in various low-

level vision tasks such as image super-resolution [6, 7] and

image denoising [25, 26], learning-based approaches have

also been proposed for singe image dehazing in recent years

[20, 3, 14]. The common foundation behind those works is

the creation of training data - a large number of synthetic

hazy images based on ground truth depth information. In

[20], a multi-scale convolutional neural network (MSCNN)

was proposed to estimate transmission map from an input of

hazy image. In [3], authors developed an end-to-end dehaz-

ing network called DehazeNet in which network layers are

specially tailored to fit assumptions/priors in the scenario

of image dehazing. Most recently, the so-called All-in-One

Dehazing (AOD)[14] further develops this line of idea by

unifying the estimation of transmission map and global at-

mosphere light into one module called K-estimation.
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3. Image Dehazing via Deep Residue Learning

The motivation behind this work is largely two-fold. On

one hand, we want to pursue a direct approach of learning

a nonlinear mapping from the space of hazy images to that

of dehazed ones (i.e., to bypass the step of estimating trans-

mission map) that is less dependent on the approximated

assumption made about the model of hazy image forma-

tion. The feasibility of such a direct approach is supported

by successful applications of deep learning into a variety of

low-level vision tasks from denoising to super-resolution.

On the other hand, there have been a flurry of works on

deep residue learning in recent years (e.g., [11]) which have

shown learning a residue representation is more effective

than learning an image one. Such idea inspires us to re-

formulate image dehazing as a variant of image denoising

problem as we will elaborate next.

3.1. Analogy between Image Dehazing and Denois
ing

To facilitate our discussion, we start from the simplified

observation model for a hazy image:

I(x) = J(x)t(x) +A(1− t(x)), (1)

t where I is the observed hazy image, J is the scene ra-

diance (target of restoration), A is the global atmospheric

light, and t(x) is the medium transmission map character-

izing the amount of attenuation. On the right-hand side of

Eq. (1), J(x)t(x) represents the term of direct attenuation

[23, 10, 16], and A(1− t(x)) is called airlight [23, 10, 16].

Direct attenuation accounts for decay of scene radiance

through the transmission medium; and airlight is attributed

to atmospheric scattering [10] (together they create the hazy

effect). The transmission map t(x) is related to the scene

depth by:

t(x) = e−βd(x), (2)

where β is the scattering coefficient of the atmosphere and

d(x) is the depth of the scene at location x. It is easy to see

that the amount of attenuation depends on the distance from

the scene point to the camera [10] - the larger the distance,

the stronger the attenuation. Additionally, the global atmo-

spheric light would interfere the process of image degra-

dation, which make image dehazing more challenging in

night-time than in day-time.

In previous approaches, Estimating A and t(x) are nec-

essary steps for image dehazing; in this work, we propose

to bypass them and take a direct approach of learning a non-

linear mapping from I(x) to J(x). Our direct approach is

best illustrated based on an analogy between image dehaz-

ing and image denoising. If we reformulate Eq. (1) as fol-

lows:

I(x) = J(x) + (A− J(x))(1− t(x))

= J(x) + r(x)
(3)

where r(x) = (A − J(x))(1 − t(x)) can be interpreted as

an error term characterizing the nonlinear signal-dependent

degradation associated with the hazy effect. Such refor-

mulation enables us to connect image dehazing with the

widely-studied problem of image denoising. Recall in im-

age denoising, we have

I(x) = J(x) +w(x) (4)

where I(x),J(x) denote noisy and clean images respec-

tively, the additive noise term w(x) ∼ N(0, σ2
w) is assumed

to be white Gaussian. By comparing Eq. (4) and Eq. (3), we

observe the apparent similarity except the difference on the

error term. Instead of dealing with additive white Gaussian

noise, we work with r(x) - signal-dependent noise that has

a nonlinear dependency with both attenuation process A,

t(x) and the target of estimation J(x). Therefore, we can

imagine a deep learning approach toward image denoising

can be leveraged to the scenario of image dehazing.

3.2. Deep Residue Learning (DRL) Network for Im
age Dehazing

In early works of image denoising via deep neural net-

works, a direct mapping from noise image I(x) to clean

image J(x) is learned from the training data. Such direct

learning strategy suffers from the notorious vanishing gra-

dient problem as described in [1] due to the long-term de-

pendency between I(x) and J(x); the vanishing gradient

problem becomes even more severe as the network depth

increases. A better strategy is to learn the residue repre-

sentation w(x) = I(x) − J(x) instead; such idea of deep

residue learning (DRL) was first proposed for image recog-

nition [11] and then adopted for image super-resolution in

[12, 13] and image denoising [26].

Based on the analogy between dehazing and denoising,

we propose to take a deep residue learning approach toward

image dehazing here. More specifically, we aim at learning

a nonlinear mapping Ω from I(x) to r(x) = I(x) − J(x).
Then the dehazed image can be recovered via J(x) =
I(x) − r(x) where r(x) = Ω(I(x)). Similar to [26], we

have adopted the following loss function to learn the pa-

rameters Θ in the proposed DRL network:

L(Θ) =
1

2N

N∑

k=1

‖Ω(Ik(x); Θ)− (Ik(x)− Jk(x))‖
2
F

(5)

where {(Ik(x),Jk(x))}
N

k=1 represents N hazy and original

training image (patch) pairs.
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Figure 2: The architecture of the proposed DRL network.

The network architecture is shown in Figure 2. It con-

tains three types of neural network layers: namely Convo-

lutional (Conv), Rectified Linear Unit (ReLU), and Batch

Normalization (BN). The first Conv layer consists of 32 fea-

ture maps generated by 32 filters sized by 3 × 3 × 3 (since

an input image has three color channels) and is followed by

the Relu layer which performs max(0, x) operation adding

non-linearity to the model. Starting from the second Conv

layer (as highlighted by color brown), we use 32 filters of

size 3 × 3 × 32 for each Conv layer, followed by BN and

ReLU layers. The Conv + BN + ReLU concatenation is

repeated for 15 times. Those network parameters such as

filter size and network depth were empirically tuned to be

nearly optimal. The last Conv layer (as highlighted by color

green) includes 3 filters of size 3 × 3 × 32 to calculate the

loss between the outputs and training labels.

When compared with previous deep learning based ap-

proaches toward image dehazing (e.g., DehazeNet [3] and

All-in-One Dehazing [14]), ours has several advantages.

First, based on the vanishing gradient argument [1], the less

correlated between the input and the output, the better the

training outcome. Therefore, learning a residue representa-

tion such as r(x) is more effective than learning transmis-

sion map t(x) or its variation (still highly correlated with

the hazy input image). Second, since deep residue learning

has bypassed the step of estimating transmission map, our

approach actually does not rely on the validity of the as-

sumed observation model in Eq. (1). In other words, even

with an arbitrary nonlinear mapping I(x) = Φ(J(x)) where

Φ denotes the forward operator, our approach is still possi-

ble to learn an approximation of inverse operator Φ−1 by

1 − Ω where 1 denotes the identity operator. Last but not

the least, our direct DRL approach admits further optimiza-

tion using the idea of iterative regularization [19], which we

will explain next.

3.3. Image Dehazing Optimization via Fixedpoint
Iteration

The analogy between dehazing and denoising also leads

to a nonlinear optimization of the proposed DRL-based de-

hazing via iterative regularization [19, 4]. In image denois-

ing, suppose a regularized estimate of clean image from

noisy observation I(x) is given by a nonlinear mapping

Φ−1(I(x)) and the error is denoted by e(x) = I(x) −
Φ−1(I(x)). If e(x) is already white Gaussian, then we

are already done; otherwise (i.e., in the presence of left-

over image structures), a simple strategy of improving upon

this regularized estimate is to feed the denoised image

Φ−1(I(x)) back to the denoising algorithm and see if the

new error is closer to white Gaussian. Apparently, such pro-

cess can be recursively applied until the convergence (i.e.,

white Gaussian is the fixed point of denoising operator Ω),

which has been called iterative regularization in the litera-

ture.

Similarly, we can recursively feed a dehazed image back

to the input of the proposed DRL network as a strategy

of nonlinear optimization. If the haze-free image is the

fixed-point of our DRL network, the learned residue im-

age Ω(I(x)) should asymptotically goes to zero. We have

indeed empirically found that the learned nonlinear map-

ping 1 − Ω satisfies the condition of a nonexpansive map

(at least in the first few iterations): let K be a subset of

a Banach space, a transformation F : K → K is said

to be nonexpansive if for arbitrary x, y ∈ K, we have

||Fx − Fy|| < ||x − y||. The existence of fixed point for

nonexpansive mapping is given by the following general-

ization of Browder’s theorem (Theorem 1 in [9])

Theorem 1. Let K be a nonempty, closed, convex and
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bounded subset of a uniformly convex Banach space X , and

let F : K → K be asymptotically nonexpansive, then F

has a fixed point.

The above theorem guarantees the theoretical existence

of a fixed point for any nonexpansive map. However, we

note that in practice it is often convenient and desirable to

stop the recursion after a fixed number of iterations (or us-

ing so-called discrepancy principle as a stopping criterion

[19]). Figure 3 illustrates the output of DRL network af-

ter the first three iterations. It can be observed that each

iteration removes a portion of the haze. Depending on the

amount of haze in the image, typically the scene radiance

recovered after three to five iterations looks the most visu-

ally appealing.

4. Experimental Results and Comparisons

We have used the NYU-Depth V2 dataset [22] to create

synthetic training images. NYU-Depth V2 dataset consists

of 1,449 densely labeled indoor color images with ground

truth depth information. The raw depth map has been pro-

jected and colorized [22] to fill in missing depth labels.

Both the color and depth data are of the size 640 × 480.

We pick 1,200 out of 1,449 images to generate training

patches, and take the remaining 249 images as ImageSet

A; we pick another 21 images from the Middlebury Stereo

Datasets [21] as ImageSet B. For each image in the training

set, we extract 40 × 40 patches with stride number being 30;

there are 360,064 training patches generated in total.

To simulate synthetic hazy images, the following pa-

rameters are used in our experiment. We randomly select

β ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5} since

any value of β beyond this range could lead to unrealistic

haze (too thin or too heavy) and noise amplification [20].

For each of the RGB channel, atmospheric light A is cho-

sen uniformly within the range of [0.6, 1.0]. Training labels

are generated using Eq. (3). During the training process, the

weights of each convolution layers are randomly initialized

by Gaussian variables. The number of epocs is set to 100;

the learning rates for the first 60 and the remaining 40 epocs

are set to 0.001 and 0.0001 respectively. We have selected

Stochastic Gradient Descent (SGD) as the solver with a mo-

mentum parameter of 0.9. The network is trained on a PC

with an Intel i7-4790k processor and a Nvidia GeForce Ti-

tan GPU leading to the total training time of about 15 hours.

4.1. Experimental Results on Synthetic Data and
Realworld Images

In order to show the effectiveness of the proposed DRL,

we compare our network with several state-of-the-art de-

hazing methods: Dark Channel Prior (DCP) [10], Boundary

Constrained Context Regularization (BCCR) [15], Visual

Artifact Suppression via Gradient Residual Minimization

(VASGRM) [5], Non-Local Image Dehazing (NLD) [2],

MSCNN [20], DehazeNet [3], and AOD [14]. The first

four methods, including DCP, BCCR, VASGRM and NLD,

are traditional model-based approaches, and the last three

are learning-based approaches. Two objective image quality

metrics are used in our comparison: Peak Signal-to-Noise

Ratio (PSNR) and Structural Similarity (SSIM) [24]. Table

1 and 2 shows the average PSNR and SSIM comparison re-

sults on ImageSet A and B respectively. Overall, we have

observed that learning-based approaches, such as MSCNN,

DehazeNet, and AOD, produce slightly better PSNR/SSIM

results than model-based approaches; while our DRL out-

performs all others by a large margin. We believe that dra-

matic performance improvement is jointly contributed by

deep residue learning and fixed-point iterations.

Figure 4 shows the performance of our method compared

against AOD [14] on ImageSet A and B. Since the NYU-

Depth V2 dataset has been collected under indoor environ-

ment, most of the images have busy background with furni-

ture and objects. Our method can handle such busy back-

ground very well - the scene radiance recovered maintains

good sharpness with haze residual being close to zero. Our

dehazed results are convincingly better than those produced

by AOD on this data set. The main challenge of dehazing on

ImageSet B is to recover rich details around sharp edges and

vivid colors in those Middlebury images. Figure 4 shows

our method can more faithfully maintain important image

structure such as corners and edges and better recover the

color fidelity than previous work of AOD.

We have also compared our method with seven com-

peting dehazing approaches on real-world hazy images as

shown in Figure 5 (a). This set of images - containing a

large variation of scene content such as portrait, landscape

and architecture - come from our own collection of real-

world images that have been used in previous studies. These

images contain both heavy and thin haze, shallow and large

depth field, coarse and fine details, which reflect the diverse

challenges in the real world. As we can see from Figure 5,

our proposed technique has achieved at least comparable

(and often superior) visual quality to other competing ap-

proaches.

4.2. Running Time Comparisons

Table 3 shows the comparison of running time (in sec-

onds) among eight competing dehazing techniques. The re-

sults are obtained by running each method on ImageSet A

which includes 249 images and taking their average. We

have found that our method is relatively fast with 0.89 sec-

ond per image (it is only marginally slower than AOD [14]).

We believe this difference is mainly because of the platform,

since Pycaffe is better optimized than Matlab in terms of

implementing deep convolutional neural networks.
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DRL DRL DRL  

Figure 3: Recursive deep residue learning for haze removal: r1, r2 and r3 are residuals recovered in the first three iterations;

J1, J2 and J3 are recovered scene radiances.

Table 1: Average PSNR and SSIM results on ImageSet A.

Metrics DCP [10] BCCR [15] VASGRM [5] NLD [2] MSCNN [20] DehazeNet [3] AOD [14] DRL

PSNR (dB) 17.94 14.77 16.25 15.97 19.23 15.35 18.36 21.7

SSIM 0.86 0.81 0.83 0.77 0.86 0.76 0.85 0.92

Table 3: Comparison of average running time in seconds.

Method Time Platform

DCP [10] 8.3 Matlab

BCCR [15] 1.6 Matlab

VASGRM [5] 18.1 Matlab

NLD [2] 2.4 Matlab

MSCNN [20] 0.98 Matlab

DehazeNet [3] 1.4 Pycaffe

AOD [14] 0.53 Pycaffe

DRL 0.87 Matlab

5. Conclusion

This paper tackles image dehazing problem by taking a

deep residue learning approach. By reformulating dehaz-

ing as a variation of denoising (with structured noise com-

ponent), we propose to directly learn a nonlinear mapping

from the space of hazy images to that of dehazed ones (i.e.,

bypassing the step of transmission map estimation). The

analogy between dehazing and denoising also inspires us to

leverage the idea of iterative regularization from denoising

to dehazing leading to a nonlinear optimization by fixed-

point iteration. Excellent experimental results have been

reported to support the superiority of this work in all as-

pects (higher visual quality, smaller training set and faster

running speed).
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