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Abstract

Portrait images and photos containing faces are ubiq-

uitous on the web and the predominant subject of images

shared via social media. Especially selfie images taken with

lightweight smartphone cameras are susceptible to camera

shake. Despite significant progress in the field of image

deblurring over the last decade, the performance of state-

of-the-art deblurring methods on blurry face images is still

limited. In this work, we present a novel deep learning ar-

chitecture that is designed to be computationally fast and

exploits a very wide receptive field to return sharp face im-

ages even in challenging scenarios. Our network features

an effective resampling convolution operation that ensures

a wide receptive field from the very first layers, while at

the same time being highly computationally efficient. We

also show that batch normalization prevents networks from

yielding high-quality image results and introduce instance

normalization instead. We demonstrate our architecture on

face deblurring as well as other more general scenes. Ex-

tensive experiments with state-of-the-art methods demon-

strate the effectiveness of our proposed network, in terms

of run-time, accuracy, and robustness to ISO levels as well

as gamma correction.

1. Introduction

Friends and family are the most popular subjects for pho-

tographs according to a recent study in the UK. 1 Moreover

in 2015, 93 million digital self-portraits have been taken

every day, and 74% of the images shared on Snapchat are

selfie images 2. Hence, photos containing human faces are

ubiquitous on the web and have enjoyed widespread atten-

tion in the research community enabling numerous applica-

tions such as face recognition, face tracking, face swapping,

or facial emotion detection [25, 33, 2, 35].

†The scientific idea and code were developed prior to joining Amazon.
1https://www.ofcom.org.uk/__data/assets/pdf_

file/0022/20668/cmr_uk_2015.pdf
2http://www.rawhide.org/blog/infographics/

Unfortunately, close-up portraits and selfie images cap-

tured with lightweight smartphone cameras are prone to

blur stemming from unintended object motion or camera

shake during exposure. The problem of recovering the sharp

latent image from just a blurry one, without any further in-

formation about the blur kernel, is called blind deblurring

(BD) or blind deconvolution. Without any prior or addi-

tional information, this problem is inherently ill-posed, as

there exists an infinite number of latent image and kernel

pairs that explain equally well a given blurry image. BD

is an important research topic in low level vision that has

enjoyed a tremendous research effort especially in the last

decade [6, 29, 5, 37, 18, 17, 41, 32, 26, 27, 23].

Many state-of-the-art methods for BD produce high-

quality results on images that contain sufficiently strong

gradients. However, these deblurring algorithms typically

fail on images with little texture and weak edges. Espe-

cially for object categories with gradual changes in surface

orientation, such as faces, existing deblurring methods do

not perform well, but require class-specific prior knowledge

in order to obtain satisfactory restoration results [22, 1].

In this paper, we propose a novel convolutional neural

network (CNN) to perform blind deconvolution on blurred

images of faces. Our proposed network is not only able to

handle large blurs, but also takes much less memory and a

shorter execution time than competing methods. The suc-

cess of our network is based on the observation that a large

receptive field (RF) is necessary in order to handle large

blurs. Moreover, we find that it is important to have a large

RF from the very first layer. However, designing a network

with such RF is computationally challenging, because the

memory footprint and the computations increase as the RF

grows larger. To address these challenges our network fea-

tures an effective resampling convolution operation, akin to

strided convolutions, that ensures a wide RF from the start

while at the same time allowing a tradeoff between compu-

tational efficiency and accuracy. This approach is inspired

by recent work in superresolution [30] and demosaicking

[7].

Our network is trained in an end-to-end manner by using
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synthetically generated pairs of sharp and blurred example

images with a fixed gamma correction and ISO level. We

show that our network is very robust as it can generalize

to real blurry images and handle different gamma correc-

tions and ISO levels. Several experiments and extensive

evaluations with state-of-the-art methods demonstrate the

effectiveness of our proposed network for high-quality face

image deblurring.

2. Prior Work

General deblurring. Blind deconvolution has been stud-

ied for several decades and today many efficient and effec-

tive methods are available [6, 29, 5, 37]. Most methods ex-

plore the sparsity of image gradients [37, 14, 38, 40, 23, 17,

41, 32, 26, 27]. Some methods also exploit patch similar-

ities [18] and, recently, a dark channel prior [24]. These

methods have been designed for shift-invariant blur. How-

ever, real blur may vary from one pixel to another. While

some shift-invariant methods may be robust to non-uniform

blur [37, 38, 32, 26, 23] methods designed for the more gen-

eral case of camera shake can perform better in those cases

[11, 36].

Face deblurring. While current methods work well on

natural scenes, they tend to not generalize well on some

specific image categories, such as faces. Indeed, methods

that are specific to faces have been proposed [9, 22, 1]. [9]

requires an additional sharp reference example that contains

shared content with the blurry photo. [22] deblurs a face im-

age by exploring facial structures from an exemplar dataset.

Using a dataset presents several challenges due to the high

complexity of real images, which might contain multiple

faces, have occlusions due to glasses, scarfs, hands, etc. [1]

uses a class-specific image prior for recovering spatial fre-

quencies attenuated by the blurring process. However, it

does not generalize well for non-uniform blur.

Neural networks for blind deblurring. Due to the

tremendous development of deep learning, convolutional

neural network (CNN) based approaches are becoming

mainstream. [31, 8] predict the motion field from a blurry

input image. However, this method only describes locally

linear blur. [28] uses a CNN to learn features that are infor-

mative about the unknown blur kernel and implements quo-

tient layers to enable end-to-end training. [3] builds a CNN

to estimate Fourier coefficients for each patch and then es-

timates a global blur kernel from the assembled patches.

Very recently, [19] proposed a multi-scale Gaussian pyra-

mid CNN to deal with the very general case of dynamic

scene deblurring (blur is generated by generic object and

camera motion). The success of their model is due to

the multi-scale architecture, which aims to break down the

complexity of the problem by ensuring that each level in the

pyramid receives as input an image from the previous level

with an amount of blur that is small enough to be handled

by the CNN.

Our proposed network brings about several innovations

despite its apparent simplicity. In the case of dynamic scene

deblurring, we address a limitation of the pyramid struc-

ture used by [19]. This structure limits the receptive field

via downsampling and upsampling operations between the

pyramid levels. In our network, however, we show that al-

lowing for a large receptive field is extremely beneficial, as

the last layers of the network can exploit a higher level of

abstraction, better understand the image content and ulti-

mately determine a better deblurring output. This is shown

in particular in Fig. 5. This ability of better interpreting

the images is also reflected in a strong robustness to sev-

eral variations in the data that we do not explicitly train for.

For example, we show that our network can handle differ-

ent gamma corrections and ISO levels, although all image

pairs in the training set share the same settings. As in the

recent dilated convolution networks [39] and Atrous convo-

lution networks [4], our network aims at achieving a wide

receptive field. However, in contrast to dilated and Atrous

convolutions, we rely on combining resampling with con-

volutions, an operation equivalent to strided convolutions.

The resampling scheme we use relates also to [30]. How-

ever, we only rearrange the input instead of downsampling

or upsampling it.

3. Blind Deconvolution and Inverse Filtering

Blind deconvolution is the problem of recovering a sharp

image u and a blur kernel k from a blurry and noisy image

g such that

g ≃ k ∗ u (1)

where ∗ denotes the convolution operator. Alternative for-

mulations of this problem ask for just the recovery of the

blur or the sharp image, since the estimation of the other un-

known is typically easier given the former. In fact, the vast

majority of algorithms developed in the last decade follow

the approach of estimating first the blur kernel k and then

the sharp image u in a second step. Moreover, given the

blur k, the estimation of u can be formulated as a convex

optimization problem and solved very efficiently [16].

In recent years, however, several methods based on neu-

ral networks have sought to solve directly for the sharp im-

age u. Understanding how these networks achieve this goal

seems still elusive, and this makes the design of better per-

forming networks a challenge. In this paper, we focus our

attention on the RF of a neural network and argue that it has

a strong impact on its performance. Our motivation to look

at the RF stems from considerations about how blur and
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Figure 1. Visualization of receptive fields for each step of [19]’s

network and our proposed network. The first column shows the

inputs to both networks. On the first row from the second posi-

tion from the left we show the receptive field of Nah’s network (at

the highest pyramid level) after the first convolutional layer, after

10 residual blocks, and at the output. On the second row from

the second position from the left we show the receptive field of

our network after the first convolutional layer, after the deblurring

network, and at the output.

sharp images can be recovered from a blurry image. Our

first observation is that the identification of the blur and the

sharp image from a single blurry input is an ambiguous task.

In fact, for any blurry image g there exist infinite k and u

pairs that satisfy Eq. (1). However, most pairs will have a

sharp image u with artifacts that make it unlike a real im-

age. Thus, disambiguation could be achieved by restricting

the space of admissible sharp images. Intuitively, the space

of small sharp images (or image patches) will have very lit-

tle or no structure, so that almost all points in this space

will be admissible. Conversely, the space of large images

will have strong structural constraints so that one can hope

to better identify the correct k and u pair. Therefore, we

argue that an algorithm tasked with the blind deconvolution

problem should produce better results if each output pixel

is the result of processing a large region of the input image.

This corresponds to designing a network with a large RF.

4. Network Architecture Design

To break down the complexity of achieving a large RF,

recent neural networks for blind deconvolution use a pyra-

midal scheme [19]. In this scheme one builds a network

split in a number of blocks (see Fig. 3.b), each operating at

a different resolution, starting with the smallest resolution

at the input and gradually growing it to the final output res-

olution in the last network block. The first driving principle

is that deblurring a downsampled version of the input image

should be an easier task, since its blur has a smaller extent

than in the original input. The second principle is that a net-

work block should benefit from an input image that is more

similar to the desired output, the deblurred image.

resampling

convolution

Figure 2. Resampling and filtering. From left to right: input

image, resampled input (input pixels are only rearranged), filtering

with convolutional layers applied to the resampled input.

Another way to interpret the benefit of pyramidal

schemes is that they make the same convolutional filters

work at a larger scale (i.e., with a larger RF) when the input

images are downsampled. So, instead of making the filters

larger, this approach makes the images smaller. The flip

side of this strategy is that these filters (in the initial blocks)

are equivalent to very smooth large kernels convolved with

the original image and such that their output is undersam-

pled. Moreover, these networks require upsampling layers

between each block, which are known to introduce gridding

artifacts [21]. Finally, another limitation is that each scale

increases the RF very gradually by starting with a very small

RF. As shown on the first row of Fig. 1, the RF of the high-

est pyramid level of this network is initially 5 × 5 pixels

and then gradually reaches 161 × 161 pixels. The RFs of

the lower pyramid levels are larger due to downsampling.

However, the filters of these levels correspond to coarse fil-

ters at the highest pyramid level.

In our network (shown in Fig. 3), we address these lim-

itations by avoiding downsampling and upsampling alto-

gether. We propose to approximate convolutions with large

kernels by exploiting convolutions applied to resampled

data. The resampled data is obtained by taking all possible

undersamplings of the d-dimensional input in the spatial co-

ordinates (see the resampling mapping in Fig. 2) and stack-

ing them as separate channels in a d+1-dimensional tensor.

In this way a convolution applied to one of the channels

corresponds to an Atrous (or dilated) convolution [4, 39],

while a convolution applied to all channels corresponds to

a strided convolution with a very large filter. The immedi-

ate advantage of this arrangement is that the RF can be large

from the start (see the second row of Fig. 1) without a major

impact on the computational load and memory footprint.

4.1. Resampling

Consider an input image u with M × N × C pixels

(the leftmost image in Fig. 2 shows u with C = 1). The

resampled image û will have M/s × N/s × s2C pixels,

where s ≥ 1 is the chosen resampling stride (center image

in Fig. 2, with s = 4). û has a smaller spatial extent, but
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more channels than u. A convolutional filter after resam-

pling can then access pixels far away in the original image

u (see rightmost image in Fig. 2). Resampling and a convo-

lutional layer are the first components in our network (see

Fig. 3, where we have chosen s = 5) .

4.2. Evaluation of the receptive field

Here, we briefly discuss the receptive field size Ω on the

input image of each layer of the proposed network. To fa-

cilitate the ablation studies later on, we let the resampling

stride s and the number of residual blocks b be free vari-

ables. Because the filters and resampling use the same

quantities along both the horizontal and vertical axes, we

evaluate just one side of the RF.

We start from the first convolutional layer (conv1) in

Fig. 3. The RF Ωconv1 = 5s. One residual block adds 4s
pixels to the previous RF. Thus, after b blocks we have an

RF of Ω8resblock = 5s + 4bs. After the deblurring block we

have an un-resampling layer and 4 convolutions with 3× 3
kernels. This results in a final RF of Ωoutput = 5s+4bs+8.

In the case of s = 5 and b = 8, we have an initial RF of

Ωconv1 = 25 and an output RF of Ωoutput = 193 (see Fig. 1).

4.3. Residual blocks and instance normalization

An important component of our architecture is the resid-

ual block structure and the use of instance normalization

[34]. The design of networks that reconstruct residual terms

(i.e., the difference between the desired output and the given

input) has been introduced by [10] for object classifica-

tion and detection, and later used also in deblurring and

other image restoration problems [19]. Residual learning

has been shown to increase performance with an increasing

depth of the network and to improve training.

In our deblurring network we employ b = 8 residual

blocks with 96 input/output channels as shown in Fig. 3 (a).

Each residual block uses the recently proposed instance nor-

malization (IN) [34], where the reparametrization does not

depend on the batch, but just on the input sample itself. This

can be written as

IN(x) = γ
x− µ(x)

σǫ(x)
+ β (2)

where γ and β are two layer parameters, µ is the mean and

σǫ the (regularized) standard deviation computed across the

spatial dimensions of the input x, but independently for

each feature channel. The benefits of instance normaliza-

tion are illustrated in Fig. 4. We compare the output of 3 dif-

ferent normalization choices for the residual blocks shown

in Fig. 3 (b): With conventional batch normalization (BN),

with instance normalization (IN) or with neither of them.

One can observe a dramatic improvement in the amount of

detail and overall accuracy when IN is used.

Figure 4. Visual comparisons between different normalizations.

From left to right are an input from [15], the result of batch nor-

malization, no normalization and instance normalization.

4.4. Blending it all together

Since the processing of the channels of the resampled

output is carried out independently (there is no direct link

between the filters in the convolutional layers), the final

texture reconstruction after the un-resampling could show

some pattern artifacts (see image on the un-resampling layer

in Fig. 3 (a)). One can see the 5× 5 pattern due to the stride

s = 5. We therefore introduce a blending subnetwork at

the end of the deblurring subnetwork, that can reweigh and

smooth out these artifacts. Firstly, we undo the resampling

of the processed image to restore the original input image

size and then apply a few convolutional layers (with very

small filters, so that processing is local). The result of the

blending network is shown in Fig. 3 (a) at the output layer.

5. Experiments

We evaluate our proposed network both quantitatively

and qualitatively for various scenarios. Firstly, we carry

out ablation studies to demonstrate experimentally the im-

pact of each choice in our design. Then, we show that our

proposed scheme achieves state-of-the-art performance on

the blind deconvolution task on the synthetic face dataset of

[15]. We achieve this performance while using fewer pa-

rameters and with a significantly smaller runtime than com-

peting methods. We also test our network on real images:

one dataset consists of face images with unknown (generic)

motion blur and gamma correction and a second dataset is

the standard camera shake dataset of [13].

Training dataset and implementation details. In our

network, we choose a resampling factor s = 5 and use

b = 8 residual blocks with 96 channels within the deblur-

ring network and another residual block with 32 channels

in the blending network (see Fig. 3). All convolutional lay-

ers use 3 × 3 filters except the first convolutional layer in

the deblurring network, where 5 × 5 filters are used. The

whole network contains 18bC2 + 34Cs2 + 19008 ≃ 1.4
million trainable parameters with C = 96. For training,

we collect face images from the FaceScrub dataset [20] and

crop 110K sharp images of size 320 × 320. Additionally,

we generate 10K synthetic random motion kernels as im-

plemented in [3]. Blurry images are generated on the fly by

convolving a sharp image with a kernel and by adding white
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Figure 3. (a) Our wide receptive field network architecture. It is made of two main parts: the deblurring network and the blending network.

Within the deblurring network we repeat 8 times the residual block shown in (b). (b) Our proposed residual block in the case of 96 input

and output channels, with instance normalization (IN) [34], and 3× 3 filters.

Gaussian noise with standard deviation 2.55, thereby gener-

ating enough training data to avoid overfitting. Notice that

we train with gray scale images, but our network is able to

handle color images by processing each color channel sep-

arately. The network is implemented using torch featuring

CUDA 8.0 and cuDNN 5.1. The training is done on two

Titan X Pascal GPUs with mini batch size 48 and 120K it-

erations. We use the Adam solver [12] with an initial learn-

ing rate of 2 × 10−3 and a 10% decrease after every 12K

iterations.

Synthetic blurry face images benchmark. We quantita-

tively evaluate our face deblurring network by testing our

network on the dataset of [15], which includes 20 syn-

thetic blurry face images generated by convolving 5 differ-

ent face images with 4 different non-uniform blur kernels

obtained from 6D inertial measurement sensor data. In Ta-

ble 1 we show the performance (the peak signal to noise

ratio, or PSNR, and the structural similarity index measure,

or SSIM) of our wide receptive field network (WRFN) along

with several other competing methods. The WRFN per-

forms better in terms of average PSNR and on the worst

case than previous state of the art, which evidences the ro-

bustness of our network. To better demonstrate the capa-

bilities of our network we also train Nah’s network [19] on

our blurred FaceScrub dataset. We can see that the perfor-

mance of WRFN is still significantly better. All results will

be available on the project page 3.

Ablation studies. We evaluate the impact of the normal-

ization layers in the residual blocks on the synthetic dataset

of [15] and show the performance in Table 1. We train the

WRFN with batch normalization (BN), instance normaliza-

tion (IN), or without any normalization (NO). We observe

that batch normalization may be harmful to the WRFN and

make little difference compared to not using normaliza-

3http://www.cvg.unibe.ch/publications/projects/

meiguang%20jin/faceDeblur.html

Table 1. Results on synthetic images from [15].

PSNR SSIM

Method Ave Worst Ave Worst

Fergus 22.870 16.700 0.682 0.450

Cho 23.272 18.690 0.699 0.479

Xu10 25.586 20.939 0.773 0.603

Krishnan 23.070 19.216 0.716 0.618

Levin 21.855 17.878 0.651 0.551

Whyte 23.232 20.495 0.667 0.550

Sun 24.649 20.397 0.756 0.561

Xu13 25.319 20.060 0.765 0.629

Zhang 22.918 20.337 0.679 0.548

Zhong 23.440 18.895 0.723 0.518

Pan14 23.193 13.842 0.691 0.262

Michaeli 24.726 21.375 0.754 0.617

Perrone 24.843 21.265 0.754 0.607

Sun 24.309 21.256 0.708 0.564

Anwar 23.605 20.355 0.683 0.536

Chakrabarti 25.389 19.235 0.769 0.540

Pan16 24.460 18.101 0.754 0.574

Pan17 23.297 18.187 0.740 0.560

Nah 24.224 21.354 0.713 0.571

Gong 23.805 18.747 0.694 0.566

Nah (our dataset) 25.925 22.600 0.754 0.663

WRFN - BN 26.370 23.204 0.771 0.681

WRFN - NO 26.373 23.148 0.772 0.682

WRFN - IN 27.136 23.967 0.803 0.707

s=4, C=84, b=11 27.020 23.963 0.796 0.695

s=4, C=96, b=11 27.022 23.963 0.798 0.696

swap, s=5, C=96, b=8 26.947 23.739 0.796 0.692

crop, s=5, C=96, b=8 26.751 23.872 0.785 0.681

tion. Visual comparison between different normalization

schemes can be found in Fig. 4.

We then compare slight variations of the WRFN (with

settings s = 5, b = 8 and C = 96) where we try to match

the final receptive field Ωoutput = 193 and the total number

of parameters 1,432,666 and vary instead the initial recep-
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Figure 5. Visual comparisons on both synthetic and real face images. From left to right columns are, blurry input, results of [22], [3], [24],

[19], and ours. The first two row inputs are from [15] and the other four inputs are captured with a DSLR.

tive field by changing the resampling stride s. To look at

a smaller initial receptive field we choose s = 4. The cor-

responding number of blocks is b = 11 and the number of

channels is C = 84. In this case we have a final receptive

field of Ωoutput = 204 (slightly larger than the reference)

and the total number of parameters is 1,467,661. Notice

that despite the slightly larger receptive field and total num-

ber of parameters, the performance of this network is worse
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than that of the reference WRFN. Also, in order to demon-

strate that the loss of performance is not due to the number

of channels in the residual blocks, we also train and test a

variant with s = 4, b = 11 and C = 96, i.e., with the same

number of channels as in the reference WRFN.

To further highlight the importance of starting with a

large receptive field, we also swap the first (5 × 5 kernel)

with the last (3 × 3 kernel) convolutional layer of our pro-

posed deblurring network. By doing so, the initial receptive

field is smaller than in the unswapped case, but the total

number of parameters and the final receptive field are the

same. As shown in Table 1 under the case swap, the per-

formance drops.

Finally, we found important that the input data during

training is larger than the output receptive field. To test

the WRFN in this case, we train the reference WRFN with

smaller input images by cropping them to 240 × 240 pix-

els. Such small input sizes make the boundary more signifi-

cant than the central image region. We argue that this might

cause a loss of performance. With cropping the WRFN ob-

serves less data at each iteration during training. To com-

pensate for this loss we also iterate the stochastic gradient

descent longer. This still results in a loss of performance.

Robustness on real face images. In this set of experi-

ments we show that although our network has been trained

only with shift invariant motion blur, it is still able to deal

with non-uniform blur. The first and second rows of Fig. 5

show results on real images. We observe that our network

is capable of handling large blurs without introducing arti-

facts, while other methods either fail to deblur or generate

undesirable artifacts (e.g., ringing). Additionally, we test

our network for gamma correction, non-frontal pose, and

strong noise. On the third and fourth rows of Fig. 5, we

show deblurring results for images w/o gamma correction

whereby a gamma of 2.2 is used. Here, we only include

a comparison with the state-of-the-art general deblurring

methods of [24], state-of-the-art face deblurring approach

[22] and two deep learning based approaches [3, 19]. More

visual comparisons with other methods and full view of the

third and fourth rows images can be found in the supple-

mentary material. From the results, we can see that our

network is quite robust to gamma correction. Note that our

network has neither been trained for different gamma val-

ues nor does it know the gamma value in advance. Inter-

estingly, although our network has been trained on face im-

ages, it is capable to deblur the text in the background of

the image as shown on the fifth row of Fig. 5. On the sixth

row of Fig. 5, we show an example, which we captured un-

der a large ISO(3200) setting. This case demonstrates that

the WRFN is quite robust to strong noise, while the other

two methods either generate noise artifacts or tend to over-

smooth their output.

Generalization on real general scenes. To see the gen-

eralization ability of our network, we tested it on general

scenes. In Fig. 6, we show the comparison between [19]

and our network. On the first three rows we use input im-

ages from [15]. We also tested the WRFN on [13]’s dataset,

which contains 48 camera shake blurry images. The WRFN

achieves a PSNR of 27.7dB, while [19]’s network achieves

25.9dB. On the last four rows of Fig. 6 we show four ex-

amples from this dataset. In all cases we observe that our

network generalizes better than [19].

Resampling factor. The choice of the resampling fac-

tor is in principle arbitrary. However, performance can be

heavily impacted by it. We illustrate two extreme cases to

show the trade-off between different choices. If a small fac-

tor, e.g., 2 is chosen for training, then one has to build a

deep enough network to ensure a large receptive field. This

choice has two main limitations: 1) The system requires

a large memory footprint during execution; 2) The execu-

tion time suffers from a deeper network. On the other hand,

choosing a large resampling factor of 10 or more brings

two advantages: 1) The network does not have to be deep

and hence requires less memory; 2) The execution is faster.

However, there is also a limitation: As the resampling fac-

tor increases, the number of trainable parameters increases

quadratically. As a result, more data samples are required

for training.

Resampling vs strided convolutions. Ideally, our resam-

pling convolution produces identical results to strided con-

volutions. However, in practice, execution performance can

be different depending on various filter sizes, strides, and

input sizes. Strided convolutions are more efficient when

filter size and resampling factor are small. We find that for a

filter size between 5 and 7 and a resampling factor between

5 and 8, resampling convolution benefits more compared to

other choices. At the same time we find that a large resam-

pling factor will inevitably increase the overhead, and the

speed gain will decrease. Comparisons between resampling

and strided convolution can be found in Table 3.

Runtime comparison. In Table 2, we show the execu-

tion time of several competing methods for different im-

age sizes. We report the average runtime for 10 runs. GPU

based approaches are measured with an Nvidia Titan X Pas-

cal. Our network is almost 2 magnitudes faster than ex-

isting CNN based approaches and 4 − 5 magnitudes faster

than non-CNN CPU based blind deblurring approaches. In

our architecture, most computations are performed at the re-

sampling stage, while other networks perform most of the

computation at the original scale.
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Figure 6. Visual comparisons on real general scenes. From left

to right are inputs, results of [19]’s and ours. The first three row

inputs are from [15] and the last four row blurry inputs are from

[13].

Table 2. Runtime and parameter space comparisons on different

color image sizes.

method size processing #params

5002 10002

Sun >8m >45m GPU+CPU >7M

Chakrabarti >5m - GPU+CPU >100M

Pan16 >10m >1h CPU -

Pan17 >60s >3m GPU -

Nah 2.9s 5.6s GPU 11.7M

Ours 0.023s 0.086s GPU 1.4M

Table 3. Execution runtime ratio between strided convolution and

resampling convolution on different image sizes. Strided convo-

lutions seem to thrive with small filters and small strides. Vice

versa, resampling convolutions are more computationally efficient

with larger filters and strides, which we use in our network.

Filter size stride s Forward Backward

3152 6302 12602 3152 6302 12602

3× 3 3 0.6 0.5 0.4 0.8 0.6 0.7
3× 3 5 0.9 0.9 0.7 1.0 1.1 0.9
3× 3 7 1.1 1.2 0.8 1.1 1.1 1.0

3× 3 9 1.2 0.9 0.9 1.1 1.1 1.1

5× 5 3 1.0 1.1 1.2 0.8 0.8 0.8
5× 5 5 1.1 1.3 1.2 1.0 1.2 1.3

5× 5 7 0.9 1.5 1.9 1.1 1.3 1.6

5× 5 9 0.9 1.1 1.4 1.2 1.3 1.4

7× 7 3 1.3 1.3 1.5 0.9 0.8 1.0

7× 7 5 1.3 1.5 1.4 1.0 1.3 1.2

7× 7 7 0.7 1.9 1.6 0.9 1.4 1.6

7× 7 9 0.7 1.2 1.6 1.1 1.2 1.3

6. Conclusion

Zillions of digital self-portraits and photos of human

faces are captured and shared online every day. Despite

the tremendous progress in blind image deblurring, generic

state-of-the-art methods fail to recover high-quality images

from blurry photos due to the lack of strong salient edges. In

this work we proposed a discriminative learning approach

that enables high-quality restoration of blurry portrait pho-

tos under a wide variety of conditions. In particular, our

method is able to handle images with unknown gamma. As

a deblurring function we use a deep convolutional neural

network featuring multi-channel resampling convolutions,

enabling both efficient computation and a wide receptive

field. In numerous synthetic and challenging real-world ex-

amples we demonstrate the efficacy of our approach.
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[13] R. Köhler, M. Hirsch, B. J. Mohler, B. Schölkopf,

and S. Harmeling. Recording and playback of camera

shake: Benchmarking blind deconvolution with a real-world

database. In ECCV, 2012. 4, 7, 8

[14] D. Krishnan, T. Tay, and R. Fergus. Blind deconvolution

using a normalized sparsity measure. In CVPR, 2011. 2

[15] W. Lai, J. Huang, Z. Hu, N. Ahuja, and M. Yang. A com-

parative study for single image blind deblurring. In CVPR,

2016. 4, 5, 6, 7, 8

[16] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Under-

standing and evaluating blind deconvolution algorithms. In

CVPR, 2009. 2

[17] A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Efficient

marginal likelihood optimization in blind deconvolution. In

CVPR, 2011. 1, 2

[18] T. Michaeli and M. Irani. Blind deblurring using internal

patch recurrence. In ECCV, 2014. 1, 2

[19] S. Nah, T. H. Kim, and K. M. Lee. Deep multi-scale con-

volutional neural network for dynamic scene deblurring. In

CVPR, 2017. 2, 3, 4, 5, 6, 7, 8

[20] H. Ng and S. Winkler. A data-driven approach to cleaning

large face datasets. In ICIP, 2014. 4

[21] A. Odena, V. Dumoulin, and C. Olah. Deconvolution and

checkerboard artifacts. Distill, 2016. 3

[22] J. Pan, Z. Hu, Z. Su, and M. Yang. Deblurring face images

with exemplars. In ECCV, 2014. 1, 2, 6, 7

[23] J. Pan, Z. Hu, Z. Su, and M. Yang. L0-regularized intensity

and gradient prior for deblurring text images and beyond.

IEEE TPAMI, 2017. 1, 2

[24] J. Pan, D. Sun, H. Pfister, and M.-H. Yang. Blind image

deblurring using dark channel prior. In CVPR, 2016. 2, 6, 7

[25] O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face

recognition. In BMVC, 2015. 1

[26] D. Perrone and P. Favaro. Total variation blind deconvolu-

tion: The devil is in the details. In CVPR, 2014. 1, 2

[27] D. Perrone and P. Favaro. A logarithmic image prior for blind

deconvolution. IJCV, 2016. 1, 2

[28] C. J. Schuler, M. Hirsch, S. Harmeling, and B. Schölkopf.

Learning to deblur. IEEE TPAMI, 2016. 2

[29] Q. Shan, J. Jia, and A. Agarwala. High-quality motion de-

blurring from a single image. ACM Trans. Graph, 2008. 1,

2

[30] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken,

R. Bishop, D. Rueckert, and Z. Wang. Real-time single im-

age and video super-resolution using an efficient sub-pixel

convolutional neural network. In CVPR, 2016. 1, 2

[31] J. Sun, W. Cao, Z. Xu, and J. Ponce. Learning a convolu-

tional neural network for non-uniform motion blur removal.

In CVPR, 2015. 2

[32] L. Sun, S. Cho, J. Wang, and J. Hays. Edge-based blur kernel

estimation using patch priors. In ICCP, 2013. 1, 2
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