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Abstract

Though existing face hallucination methods achieve

great performance on the global region evaluation, most of

them cannot recover local attributes accurately, especially

when super-resolving a very low-resolution face image from

14 × 12 pixels to its 8 × larger one. In this paper, we pro-

pose a brand new Attribute Augmented Convolutional Neu-

ral Network (AACNN) to assist face hallucination by ex-

ploiting facial attributes. The goal is to augment face hal-

lucination, particularly the local regions, with informative

attribute description. More specifically, our method fuses

the advantages of both image domain and attribute domain,

which significantly assists facial attributes recovery. Ex-

tensive experiments demonstrate that our proposed method

achieves superior visual quality of hallucination on both

local region and global region against the state-of-the-art

methods. In addition, our AACNN still improves the per-

formance of hallucination adaptively with partial attribute

input.

1. Introduction

Face hallucination is a domain-specific image super res-

olution technique which generates high resolution (HR) fa-

cial images from low-resolution (LR) inputs. Different from

generic image super resolution methods, face hallucination

exploits special facial structures and textures. In some ap-

plications such as face recognition in video surveillance sys-

tem and image editing, face hallucination can be thought as

a preprocessing step for these face-related applications.

Face hallucination has attracted great attention in the past

few years [2, 8, 10, 12, 15, 7, 19, 16, 20]. All of previous

works only utilize low resolution images as input to gener-

ate high resolution outputs without leveraging attribute in-

formation. Most of them cannot accurately hallucinate lo-

cal attributes or accessories in ultra-low-resolution (i.e. 14

× 12 pixels). When downsampling a face image by 8×
upscaling factor, almost 98.5% of the information is miss-

ing including some facial attributes (e.g. eyeglasses, beard

etc.). Therefore, these methods achieve great performance

Figure 1. (a) Scenario I of AACNN : A detective questions a

witness about more information of the suspect, because the sus-

pect was only recorded by surveillance system with low resolution

face. By the help of AACNN, the detective can obtain a more dis-

tinct wanted poster with clear facial attributes. (b) Scenario II of

AACNN : We can get most facial attributes of the suspect from a

high-resolution wanted poster to help hallucinate the low resolu-

tion face recorded by surveillance system. With this method, we

can check if the recorded face is the suspect by face verification.

only on the global region rather than local region.

In this paper, we propose a novel Attribute Augmented

Convolutional Neural Network (AACNN) which is the first

method exploiting extra facial attribute information to over-

come the above issue. Our model can be applied in two real-

world scenarios. (i) A detective only has a wanted poster of

the suspect with low-resolution face. He can obtain the de-
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Figure 2. The network structure of Attribute Augmented Convolutional Neural Network (AACNN). AACNN contains three components

: generator, feature extractor and discriminator. The generator network is responsible for learning mapping from LR image to HR image.

The feature extractor network is responsible for extracting features, fusing two different feature domains, and guiding the generator towards

the target HR image. Branch A can exploit more fine-grained information from low resolution facial image than the generator network.

Branch B can extract high semantic features from input attributes and transform features into LR image shape which can perceptually learn

the semantic from attributes. The discriminator is responsible for distinguishing real or fake of a input face.

tails of the suspect’s facial attributes by questioning a wit-

ness . With the help of AACNN, the detective can receive

a more distinct wanted poster with clear facial attributes as

shown in Fig.1 (a). (ii) We can get most of the suspect’s fa-

cial attributes from a high-resolution wanted poster to help

hallucinate low resolution faces recorded by surveillance

system. With this method, we can check if the recorded

face is the suspect by face verification as shown in Fig.1

(b). Therefore, with the help of attribute information, our

network can hallucinate low resolution images better in a

novel way. AACNN utilizes both LR facial images and cor-

responding attributes as input to super-resolve a tiny (i.e.14

× 12 pixels) face image by a remarkable upscaling factor 8,

where we reconstruct 64 pixels for each single pixel of the

input LR image.

In the real world situation, since humans are impossible

to know all the attributes of a face, we define a representa-

tion of unknown attribute. AACNN can still exploit partial

information to help hallucinate LR faces and have superior

visual quality. Details are shown in Sec. 3.3 and Sec. 4.4.

In Fig. 2, our network consists of three components:

generator network, feature extractor network and discrim-

inator network. The generator network is responsible for

learning mapping from LR image to HR image. The feature

extractor network is responsible for extracting features, fus-

ing two different feature domains, and guiding the generator

towards the target HR image. The discriminator is respon-

sible for distinguishing real or fake of an input face. The

compositions of LR images are essentially different from

the compositions of attributes. For this reason, we develop

a domain fusion method to solve this problem.

Overall, our main contributions are as following:

• We propose a brand new Attribute Augmented Convo-

lutional Neural Network (AACNN) using attribute in-

formation to assist hallucinate low-resolution face im-

ages with 8× scaling factor. In particular, we propose

a novel perceptual fusion method from image and at-

tribute domains.

• Compared with previous state-of-the-art methods, our

proposed method achieves superior visual quality of

hallucination on both global and local regions.

• Our AACNN still improves the performance of hallu-

cination adaptively with partial attribute inputs.
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2. Related work

2.1. Face hallucination

Face hallucination is a special case of single-image super

resolution which aims at recovering a high-resolution im-

age for single low-resolution image. Generic image super-

resolution does not take image class information into ac-

count. Face hallucination is a class-specific problem on hu-

man face which aims to exploit statistical information on

facial images. Because face hallucintion super-resolves im-

ages of a specific class, it usually attains better results than

generic methods. State-of-the-art face hallucination meth-

ods can be grouped into three categories: holistic face based

methods, facial component based methods, and convolu-

tional neural network (CNN) based methods.

Holistic face based methods learn a global face model.

Wang et al. [13] develop an eigen-transformation method to

generate HR face by finding a linear mapping between LR

and HR face subspaces. Liu et al. [8] employs a global face

model learning by Principal Component Analysis (PCA).

Ma et al. [10] samples LR exemplar patches from aligned

HR face images to hallucinate faces. Holistic face based

methods require precisely aligned reference HR and LR fa-

cial images with the same pose and facial expression.

Facial component based methods resolve facial parts

rather than the entire face, and thus can address various

poses and expressions. Tappen et al. [12] exploits SIFT

flow to align facial parts of LR images, and then reconstruct

LR face images by warping corresponding HR face images.

However, the global structure is not preserved because of

using local mapping. Yang et al. [15] proposes a structured

face hallucinated method to maintain the facial structure.

However, it needs accurate facial landmark to assist.

Convolutional neural networks based methods have

claimed the state-of-the-art performance recently. Zhou et

al. [19] presents a bi-channel CNN to hallucinate blurry

face images. They firstly use CNN to extract facial fea-

tures. Zhu et al. [20] jointly learns face hallucination and

face spatial configuration estimation. However, the results

of these methods look over-smooth due to using pixel-wise

Euclidean distance loss.

2.2. Generative adversarial network

Goodfellow et al. [3] introduce the GAN framework to

simultaneously train generator and discriminator that com-

pete with each other. This model can generate realistic im-

ages form random noise. Radford and Metz et al. [11]

propose a set of constraints on the architectural topology

of Convolutional GANs (DCGAN) that make them stable

to train in most settings. Arjovsky et al. [1] introduce a

new method to measure the distance of two data distribution

called Wasserstein GAN which makes training processes of

GAN more stable. GAN is generally a popular generative

model recently which can generate realistic images.

2.3. Face hallucination with adversarial training

For pre-aligned faces, Yu et al. [16] first introduces Gen-

erative Adversarial Network (GAN) to solve face halluci-

nation. This method jointly uses the pixel-wise Euclidean

distance loss and the adversarial loss, which aims to gener-

ate a realistic facial image closet to the average of all po-

tential faces. For un-aligned faces, Yu et al. [17] which

is a continuation of [16] proposes Transformative Discrim-

inative Neural Network (TDN) by concatenating the spatial

transformation layers for solving deficient results because

of unaligned tiny input. Given noisy and unaligned tiny

input, Yu et al. [18] introduce Transformative Discrimi-

native Autoencoders (TDAE) which uses autoencoder ar-

chitecture and discriminator network by concatenating the

spatial transformation layers to solve deficient results. By

leveraging adversarial training, we can make hallucinated

images more realistic. However, these works have weak

ability to recover detailed facial attributes.

3. Proposed Method

3.1. Overall Framework

The problem we have to solve is to hallucinate a very

low-resolution face image from 14 × 12 pixels to its 8 ×
larger one. We first recover such low-resolution images with

assist of additional facial attribute information. The inputs

of our framework are tiny (i.e.14 × 12 pixels) face images

and discrete attribute vectors with 38 elements. We also

define a representation of unknown attribute, and replace

each attribute vector with specific unknown proportion in

unknown attribute experiment (see Sec. 3.3). The outputs

are clear face images with 112 × 96 pixels. By using convo-

lution neural network, we can fuse different domain features

and super-resolve low resolution images (see Sec. 3.4). Our

framework contains three components which are generator

network, feature extractor network and discriminator net-

work (see Sec. 3.2).

3.2. Network Architecture

Our AACNN contains three components : generator, fea-

ture extractor and discriminator.

Generator network. In Fig. 2 , the structure of our gen-

erator network uses learnable transposed convolution layer

for super-resolution due to its superior performance. It is

responsible for learning a mapping between low resolution

image and high resolution image and receiving the features

from feature extractor. We use PReLU [4] activation func-

tion after each layer in convolution and deconvolution stage

except for image reconstruction which utilizes tanh.

Feature extractor network. In our model, we introduce

feature extractor network (Fig. 2) to extract feature from
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both low resolution image and attribute, and fuse them to-

gether. The extractor injects guidance to the generator at

every upsampling scale, and assists the generator to learn

the features from image and attribute. The feature extrac-

tor consists of two sub branches as shown in Fig. 2. These

two branches will concatenate together before upsampling

layer. Branch A uses three convolution layers to extract

fine-grained features of low resolution faces before upsam-

pling. Branch B takes attribute as input, expands its dimen-

sion from 38 to 504 by fully connected layer, and then re-

shapes it to the same size of LR image (14 × 12 × 3 = 504).

The following convolutional process is the same as Branch

A. We use PReLU [4] activation function after all layers.

Discriminator network. The discriminator network is re-

sponsible for distinguishing real or fake of a input face. In

Fig. 2, the structure of our discriminator is a 6-layer CNN

network. The inputs are generated images and ground truth

images and the output is the probability of input being re-

alistic image. We follow the setting of DCGAN [11] which

uses LeakyReLU [14] as activation function except for the

last layer which uses a sigmoid function, and batch normal-

ization [5] added to all convolutional layers.

3.3. Problem Formulation

In vanilla experiment, for a LR face input ILR
i

, its cor-

responding attribute input is IA
i

= {IA
i1
, IA

i2
, ..., IA

i38
} and

IA
in

∈ {−1,+1}, n = 1, 2, ..., 38 where {+1} means that

the face contains target attribute and {−1} means that the

face doesn’t contain target attribute.

In the real world situation, since humans are impossible

to know all the attributes of a face, we define a represen-

tation of unknown attribute. In unknown attribute experi-

ment, the corresponding attribute input of the LR image is

IA
in

∈ {−1, 0,+1}, n = 1, 2, ..., 38 where {0} means that

the person providing attribute input doesn’t know if the tar-

get attribute classes exist or not. We randomly change some

known attributes into unknown one. More details are shown

in Sec. 4.4.

We use pixel-wise Euclidean distance loss, called super-

resolution (SR) loss, to constrain the overall appearance

between a hallucinated facial image and its corresponding

high-resolution facial image, and adversarial loss to make

hallucinated facial image more realistic.

We penalize pixel-wise Euclidean distance between hal-

lucinated face and the corresponding HR face:

LSR(IAi , ILR

i , IHR

i ) =
∥

∥Gω(I
A

i , ILR

i )− IHR

i

∥

∥

2

2
, (1)

where IA
i

, ILR
i

and IHR
i

are ith attribute vector, LR facial

image and HR facial image respectively in the training data,

and Gω(I
A
i
, ILR

i
) is the hallucination model output for IA

i

and ILR
i

.

The objective function is represented as:

min
ω

1

N

N
∑

i=1

LSR(IAi , ILR

i , IHR

i ), (2)

We also further use adversarial training strategy to en-

courage Gω(I
A
i
, ILR

i
) to construct high-quality results. The

GAN simultaneously trains a generator network , G, and

discriminator network, D. The training process alternates

optimizing the generator and discriminator, which compete

with each other. The generator learns to generate samples

that can fool the discriminator. The discriminator learns to

distinguish real data and samples from generator. The loss

function we use is as following:

Ladv(Gω(I
A

i , ILR

i ), IHR

i )

= logDθ(I
HR

i ) + log(1−Dθ(Gω(I
A

i , ILR

i ))),
(3)

The objective function with adversarial loss is repre-

sented as:

max
θ

min
ω

1

N

N
∑

i=1

LSR(IAi , ILR

i , IHR

i )

+λLadv(Gω(I
A

i , ILR

i ), IHR

i ),

(4)

where λ is trade-off weight, ω denotes the parameters of

hallucination model Gω which consists of generator net-

work and feature extractor network and θ denotes the pa-

rameters of Dθ which consists of discriminator network.

All parameters are optimized using stochastic gradient de-

scent (SGD) with standard backpropagation.

3.4. Perceptual fusion from image and attribute do
main

The information containing in LR images mostly dissim-

ilates to the one in attributes. As this reason, we propose a

method to fuse low resolution image features and attribute

features, and design a feature extractor which consists of

two sub branches. In Fig. 2, each sub branch extracts

complementary features. Branch A can exploit more fine-

grained information from low resolution facial image than

that from the generator network. Branch B can extract high

semantic features from input attributes and transform those

features into LR image shape which can perceptually learn

the meaning from attributes without knowing the informa-

tion of Branch A. We can see an example in Fig. 3. After

extracting two complementary of feature maps, we choose

concatenation to fuse features, because the overlap of two

different domain features is small. Finalliy, we expand and

inject those features to every scale of the generator network.
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Figure 3. Visualization of feature maps in the concatenated layer.

(a) Reference LR and HR face pair. (b) Visualization of the first

half concatenated layer (Branch A). Branch A can exploit more

fine-grained information from low resolution facial image than the

generator network. (c) Visualization the last half concatenated

layer (Branch B). Branch B can extract high semantic features

from input attributes and transform features into LR image shape

which can perceptually learn the semantic from attributes.

4. Experiments

4.1. Implementation details

Training data. We use CelebA dataset [9] to learn our

model. It consists of 202599 face images, and each im-

age uses similarity transformation based on five landmarks

(two eyes, nose and mouth corners) to align facial images

to 96 × 112 pixels images. Every image in CelebA goes

with 40 attribute classes. We use only 38 classes, because

there are 2 classes out of the region we cropped and aligned

in data preprocessing. We select 100000 images in CelebA

as training set, and generate LR face images by downsam-

pling without aliasing. In experiments of unknown attribute,

we replace specific proportion of known attribute with un-

known attribute.

Testing data. We also use CelebA dataset with the same

preprocessing as training data to evaluate our model. In

global evaluation, we randomly choose 10000 images in the

remaining images of CelebA as global region testing set. In

local evaluation, we randomly select 20000 images in re-

maining images of CelebA as local region testing set. We

use 8 specific attribute classes which perform significant

improvement in restoration, and constitute 8 subsets from

local testing set. Each class-specific subset contains 1000

images, and we make overlap region of 8 subset images as

large as possible. In experiments of unknown attribute, we

also replace specific proportion of known attribute with un-

known attribute, and we make sure that target attribute for

local evaluation will not be replaced.

Training details. As shown in Fig. 2, we implement the

AACNN model by using the Caffe library with our modifi-

Method PSNR SSIM

Baseline - LSR 26.8585 0.7535

A - LSR 27.3134 0.8001

B - LSR 27.1243 0.7949

A + B (AACNN - LSR) 27.4007 0.8036

Table 1. Quantitative comparison on the global region with the

combinations of different sub branch. A + B can make the perfor-

mance improve a lot due to combining attribute information and

fined-grand features of LR faces.

Method PSNR SSIM

Bicubic 24.2669 0.6700

Ma et al. [10] 23.8438 0.7119

LapSRN [6] 25.6547 0.7212

UR-DGN [16] 24.0931 0.6843

Baseline - LSR 26.8585 0.7825

AACNN - LSR 27.4007 0.8036

AACNN - LSR + L
adv 25.3428 0.7118

Table 2. Quantitative comparison on the global region with the

state-of-the-art methods. AACNN - L
SR have superior perfor-

mance on both PSNR and SSIM than other state-of-the-arts.

cation. For the model training, we use the batch size of 64.

The learning rate is started from 0.0005, and is divide by

1.25 after each 3000 iterations. The optimization algorithm

we used is RMSProp. We set the decay rate to 0.99 and

weight decay rate to 0.0005. For AACNN - LSR + Ladv ,

we set λ (see Eq. 4) to 0.01.

Evaluation on combinations of different sub branch.

In Table 1, we discuss about the performance of different

sub branch combinations. AACNN have all two sub

branches, and get the best performance. Our baseline

model is purely generator network which uses pixel-wise

Euclidean distance loss without feature extractor network

and discriminator network. Branch A is important for

extracting fined-grand LR face features. Branch B extract

purely attribute information without LR image features,

and get lower performance than using only Branch A.

A + B can make the performance improve a lot due to

combining attribute information and fined-grand features

of LR faces.

4.2. Evaluation on global region of face hallucina
tion

In global region evaluation, we evaluate the face image

with complete size (96 × 112 pixels) by image super

resolution evaluation metrics : Peak Signal-to-Noise Ratio

(PSNR) and Structural Similarity (SSIM). Firstly, we

investigate different combinations of feature extractor’s

sub branch. Then, we compare AACNN with other
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Figure 4. Comparison with the state-of-the-art methods on hallucination global test dataset. (a) Low-resolution inputs images. (b) Bicubic

interpolation. (c) LapSRN [6]. (d) Ma et al. [10]. (e) UR-DGN [16]. (f) AACNN - LSR. (g) AACNN - LSR
+ L

adv . (h) High-resolution

images. (f) and (g) both shows superior hallucinated effect on visual results. (g) is more realistic than (f) with adversarial training.

state-of-the-arts in recent years. More results are shown in

supplementary material.

Comparing with state-of-the-arts.

We compare our AACNN with bicubic interpolation, our

baseline model, and other three state-of-the-art methods.

Our AACNN have superior visual results as shown in Fig.

4. For Ma et al. [10], LapSRN [6], and UR-DGN [16], we

use their released source code. In the case of UR-DGN, we

especially retrain on our aligned face images which size is

different from original setting. The quantitative comparison

are shown in Table 2.

Ma et al. [10] samples LR exemplar patches from

aligned HR face images to hallucinate faces. It suffers from

obvious blocking artifacts especially on large pose.

LapSRN [6] is design to solve general super resolution

problem. It jointly optimizes the upsampling filters with

deep convolution neural layers to predict sub-band resid-

uals and progressive reconstruct multiple intermediate SR

prediction by using Laplacian pyramid. We retrained Lap-

SRN with CelebA. However, it shows blurry results on fa-

cial image with a remarkable upscaling factor 8.

UR-DGN [16] exploits generative adversarial networks

(GAN) framework for face hallucination. It jointly uses the

pixel-wise euclidean distance loss and the adversarial loss,

which aims to generate a realistic facial image closet to the

average of all potential faces. Although GAN can gener-

ate realistic face images, the results of UR-DGN sometimes

looks distorted or disappeared for specific attributes.

In quantitative results, we compare our AACNN with

other methods by using average PSNR and SSIM. LapSRN

[6] gets great performance, but it seems not clear enough

and loses lots of details on visual results. The results of

UR-DGN [16] and AACNN - LSR + Ladv shows lower

performance on PSNR, because the objective of adversarial

Method
Eyeglasses

PSNR / SSIM

Narrow eyes

PSNR / SSIM

Bicubic 20.46 / 0.457 21.79 / 0.533

Ma et al. [10] 19.75 / 0.488 21.43 / 0.588

LapSRN [6] 22.81 / 0.551 24.33 / 0.621

UR-DGN [16] 19.75 / 0.438 21.62 / 0.568

Baseline - LSR 21.77 / 0.551 24.12 / 0.670

A - LSR 22.12 / 0.579 24.68 / 0.696

B - LSR 23.63 / 0.632 26.44 / 0.764

AACNN - LSR 23.77 / 0.643 26.81 / 0.779

AACNN - LSR + L
adv 21.66 / 0.514 24.81 / 0.689

Table 3. Quantitative comparison on local region - ”eye” part with

the state-of-the-art methods on the class specific test dataset. We

can observe that eyeglasses is the hardest one to recover among

this part. AACNN - L
SR still has superior performance in this

region.

loss is to make hallucinated images more realistic but close

the distance of hallucinated images and HR images. Table

2 shows that AACNN - LSR have superior performance on

both PSNR and SSIM than other state-of-the-arts because

of introducing attribute information to low-resolution face

hallucination.

4.3. Evaluation on local region of face hallucination

Since global region evaluation is hard to reflect im-

provement of facial detail enhacement, we crop smaller

regions from original images to enlarge the evaluation

effect of attribute recovery. In local region evaluation,

we evaluate the face image by image super resolution

evaluation metrics (PSNR and SSIM) with 3 different

cropped sizes and locations as shown in Fig. 5.

In Table 3, we discuss two attributes in eye part. Eye-
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Method
Mouth slightly open

PSNR / SSIM

Goatee

PSNR / SSIM

Mustache

PSNR / SSIM

Big nose

PSNR / SSIM

Bicubic 22.96 / 0.507 22.34 / 0.480 22.48 / 0.486 23.00 / 0.506

Ma et al. [10] 23.06 / 0.603 21.79 / 0.530 22.04 / 0.545 22.78 / 0.584

LapSRN [6] 24.98 / 0.570 24.52 / 0.544 24.60 / 0.550 24.95 / 0.566

UR-DGN [16] 22.75 / 0.554 20.81 / 0.467 20.77 / 0.474 22.19 / 0.537

Baseline - LSR 25.45 / 0.669 23.85 / 0.598 24.08 / 0.605 25.04 / 0.648

A - LSR 26.01 / 0.700 24.40 / 0.634 24.67 / 0.642 25.58 / 0.678

B - LSR 27.65 / 0.757 26.18 / 0.690 26.28 / 0.696 27.20 / 0.735

AACNN - LSR 27.98 / 0.773 26.40 / 0.704 26.55 / 0.711 27.49 / 0.750

AACNN - LSR + L
adv 25.55 / 0.671 23.97 / 0.577 24.09 / 0.584 24.88 / 0.629

Table 4. Quantitative comparison on local region - ”mouth & nose” part with the state-of-the-art methods on the class specific test dataset.

We can observe that beard (i.e. Goatee and Mustache) is the hardest one to recover among this part. AACNN - LSR still has superior

performance in this region.

Method

Heavy

Makeup

PSNR / SSIM

Chubby

PSNR / SSIM

Bicubic 22.20 / 0.582 22.51 / 0.534

Ma et al. [10] 22.20 / 0.664 22.05 / 0.585

LapSRN [6] 24.49 / 0.653 24.75 / 0.602

UR-DGN [16] 22.23 / 0.635 21.52 / 0.539

Baseline - LSR 24.94 / 0.730 24.20 / 0.639

A - LSR 25.46 / 0.751 24.65 / 0.668

B - LSR 27.17 / 0.814 26.42 / 0.724

AACNN - LSR 27.55 / 0.826 26.61 / 0.734

AACNN - LSR + L
adv 25.35 / 0.735 24.42 / 0.620

Table 5. Quantitative comparison on local region - ”face” part

with the state-of-the-art methods on the class specific test dataset.

Heavy makeup distribute with a large area on face region. AACNN

- LSR still has superior performance in this region.

Figure 5. 3 types of local regions cropped from original size (96

× 112 pixels). (a) Cropped size: 90 × 30 pixels. (b) Cropped

size: 50 × 50 pixels. (c) Cropped size: 74 × 75 pixels. Since

global region evaluation is hard to reflect improvement of facial

detail enhacement, we crop smaller regions from original images

to enlarge the evaluation effect of attribute recovery.

glasses are the hardest one to recover. It can be divided

into two types - sunglasses and common eyeglasses. Sun-

glasses remain information on LR images, but common eye-

glasses only remain a little. In the case of common eye-

Region
100 / 100

PSNR

50 / 100

PSNR

50 / 50

PSNR

50 / 25

PSNR

Global region 27.40 27.35 27.36 27.34

Eyeglasses 23.77 23.74 23.73 23.72

Goatee 26.40 26.36 26.35 26.32

Table 6. Quantitative comparison on global and local region with

different proportion of known attribute in training and testing. In

the first row, left number denotes the proportion of known attribute

in training data, and right number denotes the proportion of known

attribute in testing data. Our AACNN still improves the perfor-

mance of hallucination adaptively with model trained and tested

by partial attribute inputs.

glasses, target attribute on results of most methods may be

disappeared or distorted. Some examples are shown in Fig.

6. In Table 4, we discuss four attributes in mouth & nose

part. Beard (i.e. Goatee and Mustache) is the most dif-

ficult one to recover, because it gets inferior performance

among four attributes. In Table 5, we discuss two attributes

on face part. We crop a face size square to evaluate face re-

gion, because some attributes distribute with a large area on

face like heavy makeup. Our AACNN - LSR achieves su-

perior quantitative results on three local regions than other

state-of-the-art methods. Different from global evaluation,

Branch B gets higher performance than using only Branch

A due to enhancing local region with attribute information.

For visual results showing in Fig. 6, we can see

some samples compared with previous methods where our

AACNN has superior visual quality especially on eye-

glasses. Both (g) and (h) can hallucinate specific attribute

accurately in visual results. (h) is more realistic than (g)

with adversarial training.

4.4. Evaluation on unknown attribute situation

In this section, we do an auxiliary experiment for un-

known attribute situation. We randomly change some
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Figure 6. Comparison with the state-of-the-art methods on hallucination local test dataset. The first row is eyeglasses on ”eye” part, the

middle row is goatee on ”mouth & nose” part, and the rest is heavy makeup on ”face” part. (a) Low-resolution inputs images. (b) Bicubic

interpolation. (c) LapSRN [6]. (d) Ma et al. [10]. (e) UR-DGN [16]. (f) Baseline - LSR. (g) AACNN - LSR. (h) AACNN-LSR
+ L

adv .

(i) High-resolution images. Both (g) and (h) can hallucinate specific attribute accurately in visual results. (h) is more realistic than (g) with

adversarial training.

Figure 7. (a) Low-resolution inputs images. (b) High-resolution images. (c) Baseline - LSR. (d) AACNN - LSR with all attributes are

known. (e) AACNN - LSR with one-hot attribute input (only eyeglasses is known). From visual results, our method can significantly

recover the target attribute with specific one-hot attribute vector (eyeglasses), and the recovery effect is close to AACNN with all attribute

known input.

known attributes into the unknown one and train a model

by attribute vectors with each only 50% information known.

Finally, we test the model with different known proportion

of attribute vectors. In Table 6, we do this experiment on

global and local evaluation (i.e. eyeglasses and goatee).

In the all-attribute-known situation, If testing on the

model which train with 50% known attributes, we can still

have great performance on global and local evaluation as

shown in the first two column of Table 6.

In the partial-attribute-known situation, we can still have

great performance (as shown in the last two column of Ta-

ble 6) by using the model which train with 50% known at-

tributes.

In Fig. 7, we further use class specific one-hot attribute

vector (eyeglasses) to test on the model which train with

50% known attributes. From the visual results, our method

can significantly recover the target attribute, and the effect

is close to AACNN with all attribute known input. As a re-

sult, AACNN still improves the performance of hallucina-

tion adaptively, even if we only know partial attribute input.

5. Conclusions

In face hallucination, most of previous methods can-

not accurately hallucinate local attributes or accessories in

ultra-low-resolution. We propose a novel Attribute Aug-

mented Convolutional Neural Network (AACNN) to as-

sist face hallucination by exploiting facial attributes. More

specifically, our method fuses the advantages of both im-

age domain and attribute domain and achieves superior vi-

sual quality than other state-of-the-art methods. In addition,

our AACNN still improves the performance of hallucination

adaptively with partial attribute input.
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