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Abstract

Very few of the existing image dehazing methods have

laid stress on the accurate restoration of color from hazy

images, although it is crucial for proper removal of haze. In

this paper, we are proposing a Fully Convolutional Neural

Network (FCN) based image dehazing method. We have de-

signed a network that jointly estimates scene transmittance

and airlight. The network is trained using a custom designed

loss, called bi-directional consistency loss, that tries to min-

imize the error to reconstruct the hazy image from clear

image and the clear image from hazy image. Apart from that,

to minimize the dependence of the network on the scale of

the training data, we have proposed to do both the training

and inference in multiple levels. Quantitative and qualitative

evaluations show, that the method works comparably with

state-of-the-art image dehazing methods.

1. Introduction

Haze and fog reduces the visibility of outdoor scenes. For

this reason, distinguishing objects from distance becomes

difficult. Haze occurs when light falls on atmospheric parti-

cles and gets absorbed and scattered by them. This causes

deterioration in the quality, particularly contrast, of the cap-

tured image. The strategy for eradicating the effect of haze

from such degraded images is known as Image Dehazing

(Fig. 1). Image dehazing is a tricky problem to solve due

to the direct dependence of the haze density on the depth of

objects. Diverse methods have been suggested to tackle the

problem with impressive outcomes [23, 18, 15, 14]. Estimat-

ing the scene transmittance and environmental illumination

has been established as the key to solve this problem. In

recent times, single image dehazing has been receiving a

lot of attention due to its practical significance. Due to the

ill-posed nature of the problem, the methods mainly depend

on statistical priors and physical cues. The recent success

of Convolutional Neural Networks (CNN) in the field of

Figure 1. Hazy image and its dehazed version obtained by our

method

computer vision [19, 10, 12] have inspired its use in im-

age dehazing [8, 24, 20]. The main advantage of CNN is

that they can learn features from data. This enables feature

learning based-on the hazy image formation mechanism.

Being inspired by these findings, we propose a Fully

Convolutional Neural Network (FCN) based approach for

single image dehazing. This method was originally proposed

for NTIRE 2018 challenge on image dehazing [1]. The

method works by dividing a hazy image into patches and

inferring the haze parameters for each of these patches using

the trained FCN. The main contribution of the work can be

summarized as three parts:

1. design of the FCN-based estimator network,

2. formation of the bi-directional consistency loss and

3. the multi-level approach to network training and infer-

ence.

These are introduced to mitigate some of the problems of

existing CNN based methods and are described in detail in

Section 4. Out of the remaining sections, Section 2 presents

a tour of the existing methods. The image formation model

under haze is outlined in Section 3. Our dehazing method is
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described in Section 5. In Section 6 we report the results that

we obtain using the proposed method and also the compar-

isons with the existing methods. Concluding remarks have

been made in Section 8.

2. Related Work

Single image dehazing is an ill posed problem. So, the

methods resort to additional prior information for dehazing

an image. The first thing one may observe about hazy images

is the lack of contrast. Hence, an attempt was made by Tan

[27] to dehaze an image by maximizing local image contrast.

Kratz and Nishino [18] have formulated the image dehazing

problem as a Factorial MRF framework. Scene depth and

albedo are formulated as independent latent layers and are

estimated by maximizing the posterior probability using EM

approach. He et al. [15] suggested a simple yet effective

prior, called the dark channel prior, to estimate haze depth.

This prior says that haze free images, in general, have value

close to zero in at least one of the color channels over a small

patch and this increases with depth of the haze. This was uti-

lized to estimate the scene transmittance. A major drawback

of the methods mentioned till now is their their computation

time. Tarel and Hautière [30] proposed to remedy this situa-

tion by a fast visibility restoration method. They achieve this

by estimating the atmospheric veil based on the bound of

its possible values using a filter based approach. Haze-free

image is obtained by removing this atmospheric veil. Ancuti

et al. [4] have also proposed a fast method that can identify

haze regions based on hue disparity of the original image

and its semi inverse. This helps is easy estimation of trans-

mittance and airlight. Meng et al. [22] have extended the

idea of He et al. [15] in computing the initial estimates of

transmittance. The estimates are computed from the bound-

ary constrain enforced by the radiance cube. These estimates

are combined with a weighted L1-norm based contextual

regularization to reduce halo artifacts. Tang et al. [28] pro-

posed to put together the hand-crafted haze relevant features

and learn the mapping between the features and the transmit-

tance. The work of Fattal [14] is built around the color line

prior. This prior is based on the observation that the color

of pixels in a small patch form a linear structure in the RGB

space. This line goes through origin for clear images, but

it gets displaced due to haze. Help of this cue is taken to

estimate the transmittance. On the other hand, the method

proposed by Berman et al. [7] relies on the observation that

color of a haze-free image form a few hundred tight clusters

in the RGB space. The presence of haze elongates these

clusters to lines. These lines, termed haze lines, facilitate

the estimation of transmittance. Zhu et al.’s [32] work is

based on the observation that the difference between the

brightness and the saturation approximately represents the

concentration of haze. This information is modeled with the

depth as a linear function of brightness and saturation. The

parameters of this model is learned to infer depth from hazy

images. Cai et al. [8] have proposed a method to predict

transmittance from patches by learning a regressor. Instead

of using hand-crafted features, they learn the features under

a CNN framework of a custom design. They have employed

special Maxout and bilateral rectified linear unit for feature

computation. Instead of working on image patches Ren et al.

[24] estimates transmittance from full images using CNN.

They make use of coarse- and fine-scale network to extract

features from multiple scales. Li et al. [20] have proposed

an end-to-end trainable dehazing network that can be easily

embedded into other deep learning models to improve the

performance of other computer vision task like object recog-

nition in hazy images. They have proposed to use a modified

version of the haze imaging equation that unifies the parame-

ters to a single variable. Then they use a CNN to predict this

unified parameter. This is the only CNN based method that

emphasizes on the estimation of both transmittance and en-

vironmental illumination, explicitly. In that sense our work

is similar to this method, but some novel attributes to make

it superior.

All the above discussed methods restricted themselves to

dehaze images which are capture during the daytime. But

the degradation caused by the haze, or more generally, the

scattering of light by the particles present in the medium,

can occur in various other situations, such as, images taken

at night or underwater. A method proposed by Ancuti et al.

[3] attempted to address the problem of dehazing night-time

images by relaxing the imaging model and dealing with spe-

cific degradation like glows around light sources. Although

handling night-time images require special processing, there

are methods which work independent of the actual time of

capturing the image [25]. Even though the cause of degra-

dation is similar for underwater images, methods proposed

for daytime images fails to perform in many occasions. This

emphasizes the need for tailor-made methods for images

captured underwater [13].

3. Imaging Model under Haze

Light propagating through a hazy atmosphere, gets scat-

tered in various directions by the floating particles. As a

result, depending on the aerosol density, the intensity of

light decreases as it passes through the medium. This phe-

nomenon is modeled by the following equation [17]:

I(x) = J(x)t(x) + (1− t(x))A, (1)

where I(x) is the observed intensity of light at a pixel x and

J(x) is the intensity (radiance) at the same pixel x without

the effect of haze. ‘A’ is the global environmental illumina-

tion. The term t(x) characterizes the scene transmittance. It

indicates the proportion of light that reaches camera from
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Figure 2. Proposed estimator network

the object. The transmittance is defined as follows,

t(x) = e−βd(x). (2)

Here β is the scattering coefficient and d(x) denotes the

depth of pixel x. The first part of Eq. (1) is known as the

direct transmission and the second part is called the airlight.

For RGB images, this equation is considered as a vector

equation with I(x), J(x) and A(x) as 3× 1 vector and t(x)
as a scalar.

Although it is common to assume that the environmental

illumination is constant throughout the image. But this is

only valid if the sky is overcast [23]. So, to take into ac-

count the other situations we relax this assumption to get the

following relaxed model,

I(x) = J(x)t(x) + (1− t(x))A(x). (3)

In this, environmental illumination can vary from pixel to

pixel. Now given a hazy image, image dehazing methods

try to estimate both transmittance and environmental illu-

mination from it and try to obtain the haze free image by

inverting the imaging model (Eq. (3)). But estimating t(x)
and A(x) independently can be hard due to the way they

are related in the imaging equation. For example, when t(x)
is close to 1, the effect of A(x) becomes negligible in the

hazy image. For this reason, we estimate (1 − t(x))A(x),
denoted by K(x), as a whole. So, in our method we use the

following version of the equation (3)

I(x) = J(x)t(x) +K(x), (4)

and try to estimate transmittance (t(x)) and airlight (K(x))
in order to recover its haze-free version.

4. Motivation and Proposed Solution

In the following subsections we justify and describe the

path we have chosen to reach a solution.

4.1. Estimator Network

Most of the existing CNN based dehazing methods work

with small patches by assuming that the transmittance to be

constant within a patch. They estimate the environmental

illumination separately. But in our method we estimate both

t(x) and K(x) from each patch. Estimating the airlight,

and consequently the environmental illumination, from a

small patch is error prone, as it is difficult to predict whether

the colors are due to color of illumination or the color of

the object. So, working with bigger patches is inevitable.

However, this only reduces the chance of confusion. On

the other hand, in bigger patches the constant transmittance

assumption is violated. As a result, estimating transmittance

map of same size as the input patch becomes necessary for

bigger patches. Fully convolutional networks (FCN) have

shown promise for the problems where the output size is

same as the input, for example, in semantic segmentation

of images [21]. For this reason, we design a FCN based

estimator network to estimate t(x) and K(x) from RGB

hazy patches.

The proposed FCN is two-way forked model that jointly

estimates the scene transmittance and airlight (Fig. 2). There

are two separate paths to estimate the two parameters: the

transmittance estimation path and the airlight estimation

path. The path to estimate airlight has more depth than

the transmittance estimation path. Success of the earlier

methods point out the fact that transmittance can be well

estimated from small patches. So, the receptive field, which

is the effective size of a convolution kernel on the input
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layer, can be kept small for computing transmittance. But

to estimate airlight the network needs to see a broad portion

of the image. Therefore, the airlight estimation path needs

to go much deeper to increase the size of the receptive field.

We have taken convolutions with shift of 2 pixels instead

of 1 to increase the size of the receptive field while keeping

the number of layers less. Without this shift of 2 pixels, we

would require more layers to get receptive field of similar

size. The convolution layer are matched by same number

of convolution transpose layers in each path. Similar to the

FCN of semantic segmentation [21], we have added some

skip connections to retain small scale features and therefore

fine details in the output. This also helps in the propagation

of the gradient during the training of the network. The

skip connections are added between the layers where we

are reducing the feature dimension with stride 2 and where

we are increasing the feature dimension with stride 2 (in

convolution transpose). In the path for estimating airlight,

‘elu’ is used as a activation function after each convolution

layer except the last layer, whereas in the transmittance

estimating path ‘sigmoid’ activation function is used. In

both the output layers we have used ‘sigmoid’ activation

function. Batch-Normalization layer is employed in the last

few layers of airlight path to reduce the chance of over-fitting.

Note that the network is designed in such a way that it can

take input whose dimension is integer multiple of 128, e.g.,

128× 128, 256× 256 and so on. This is possible due to the

fully convolutional nature of the network.

4.2. Bi­directional Consistency Loss

To train the proposed network we have designed a new

loss based on Eq. (4) instead of using l2 loss from the ground

truth parameter values. The loss is designed in such a way

that the network is (ideally) able to do the following,

• Generate the hazy input image from the clear image

• Obtain the clear image by dehazing the input image.

We define the loss (L) as follows,

L =
1

N

∑

x

(

L1(x) + L2(x)
)

where, (5)

L1(x) = |I(x)− J(x)t(x)−K(x)| (6)

and L2(x) =

∣

∣

∣

∣

J(x)−
I(x)−K(x)

max{t(x), ǫ}

∣

∣

∣

∣

. (7)

Here I(x) and J(x) are Input hazy image and ground truth

clean image respectively. N is the number of pixels in each

image, K(x) is the estimated airlight and t(x) is the esti-

mated the transmittance we obtain using our estimator net-

work. This imaging model inspired loss has certain advan-

tages. First of all, this loss only requires a pair of hazy and

haze-free images, apart from the network outputs. Ground-

truth parameter values are not necessary. This design also

helps in joint estimation of the parameters that conforms to

the imaging equation (3). Besides, dehazed output is sensi-

tive to the value of t(x), especially when it is small as a result

of which, a small error in t(x) can produce large deviations

in the dehazed output. The proposed formulation avoids this

pitfall by computing error using the clear image. Also, the

bi-directional dependency ensures that the correct estimates

are obtained from the network, and do not get stuck at trivial

solutions like t(x) = 0 and A(x) = I(x).

4.3. Multi­level Training

One of the weakness that is inherent in CNNs is that it

works with a fixed image dimension and resolution. The

dimension problem is usually tackled by resizing the input

image. Note that blind resizing may not maintain the aspect

ratio and can cause the network to perform poorly. Moreover,

if the resolutions (physical area taken by a single pixel) of

training and testing images does not match, the network per-

formance can degrade. But we neither have control over the

dimension of an input image nor any information about its

resolution. For these reasons we take a multi-level approach

in both training and application steps. Here we describe the

training procedure; the application part is described in the

next section.

From the training data we extract overlapping patches

from the both clear and corresponding hazy images. We

start with a patch of size P × P in the first level, where

P = min{H,W} for a given image of size H ×W . In the

second level, we extract patches of size P
2 × P

2 . In the third

level patch size becomes P
4 × P

4 . This halving process is

repeated until the patch size falls below 128×128. Therefore,

the maximum achievable level is given by,

l = ⌊(log2(min(H,W ))− log2(128)) + 1⌋. (8)

All the extracted patches are resized to 128×128 before they

are used. As we have a corresponding clear image for each

of the hazy images, we have a clear patch corresponding to

each of the hazy patches. These patch pairs are used to train

our network.

5. Dehazing Steps

Our method take the following steps to dehaze an image.

1. Image downscaling and multi-level estimation of trans-

mittance t(x) and airlight K(x),

2. Aggregation of t(x) and K(x),

3. Regularization using guided filter, and

4. Recovery of haze-free image.

Each step is described in detail in the following subsections.
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5.1. Image Downscaling and Multi­level estimation
of t(x) and K(x)

Before doing any kind of processing, we first downscale

the input image. If the number of both row and column

of the image is greater than L, the input image is scaled

with a scaling factor of k = L
min(H,W ) for an image size

of H × W . In our experiment, we have taken L = 850.

So, the scaled image dimension becomes ⌊kH⌋ × ⌊kW ⌋.

This resized image is used in the subsequent steps. This

is done to keep the resource requirements low. Next we

estimate ti(x) and Ki(x) at i-th level. Here we have done

the computation in only three levels. The patches are of

size 256 × 256, 384 × 384 and 512 × 512 in level one,

two and three respectively. But this is only possible if the

image dimensions are more than the patch sizes. So, for the

images that we don’t downscale, we take patches of shape

128×128, 256×256 and 384×384. In this situation, we skip

a level if the corresponding patch size does not fit into the

image. Now, at each level, we take overlapping patches of

the specified size, resize them to 128× 128 and feed them to

our estimator network. The obtained t(x)- and K(x)-maps

from the network are resized back to their actual sizes. Note

that the actual size will depend on the level the operation

is being done. Then in each level we aggregate the patches

to form t(x)- and K(x)-maps of size ⌊kH⌋ × ⌊kW ⌋, by

averaging the estimates in the overlapping portions. After

this step, we get transmittance and airlight maps for each of

the levels.

5.2. Aggregation of t(x) and K(x)

In the previous step of multi-level estimation, we have

obtained transmittance and airlight map for each level. We

have to aggregate them to form single transmittance and

airlight map which is utilized in the subsequent steps. To

aggregate them, we take weighted average of the estimates

obtained at each level to generate t(x) and K(x) as follows:

t(x) =

∑l

i=1 w
(t)
i ti(x)

∑l

i=1 w
(t)
i

, (9)

K(x) =

∑l

i=1 w
(K)
i Ki(x)

∑l

i=1 w
(K)
i

. (10)

Here w
(t)
i , w

(K)
i are the weights that we use to aggregate

t(x)’s and K(x)’s respectively. ti(x) and Ki(x) denote

the estimates we have obtained at level i and l denotes the

number of levels we oprate on. In our experiment, we have

taken all the weights to be 1. Although different weights

may also be used.

5.3. Regularization using Guided Filter

We have obtained transmittance and airlight maps of size

⌊kH⌋× ⌊kW ⌋ after aggregation. But due to the patch based

processing, these maps usually contain halos at the border

of the patches. So, these needs to be refined before we

use the estimates to recover the haze-free image. For this

purpose, we need a edge-preserving smoothing filter that

smooths the estimates but at the same time respects the object

boundaries present in the image. We have used Guided

Filter [16] for this purpose because of its efficiency. The

Guided Filter filters a given input image while considering

the content of a guidance image. We utilize this as an edge-

preserving smoothing filter. For smoothing the airlight, we

have separately smoothed each of its color channel with

corresponding channel of the hazy image as the guidance

image. For smoothing the transmittance, we have used the

gray-scale version of the hazy image as the guide.

5.3.1 Recovery of haze-free image

Before we had started processing the image, we had down-

scaled it to reduce the processing load. But the output de-

hazed image is supposed to have the same dimension as the

input image. So, we resize the smooth transmittance map

and airlight map back to the original image size e.g. H ×W .

After that, following Eq. (4), we obtain the dehazed image

as follows,

J ′(x) =
I(x)−K(x)

max{t(x), ǫ}
. (11)

Here J ′(x) is the estimated dehazed image. Note that we

have clipped the value of J ′ between 0 and 1 so that the

output stays within the valid range of image intensity.

6. Evaluation

In this section we describe the experimental settings under

which we get the results and then compare the results with

state-of-the-art methods. We have reported our results on

both synthetic and real-world images.

6.1. Experimental Settings

The whole experiment is done on a 3.6GHz quad core

machine with 32 GB RAM and one Nvidia GeForce GTX

745 GPU, with Ubuntu 16.04 running on top of them. The

estimator network is trained with the help of Keras [9] deep

learning library with tensorflow backend and the outdoor

training images of the NTIRE dehazing dataset [5, 6]. We

train the network for 300 epochs with a batch size of 10 with

the help of Adagrad optimizer [11]. The trained model is

available from our website1.

To evaluate our results, we have compared with Cai et

al. [8], Ren et al. [24], Berman et al. [7] and Li et al. [20].

We have used used codes provided by the authors, in their

default settings to generate the results. For Berman et al. [7],

we have taken the environmental illumination to be [1, 1, 1]T ,

1http://san-santra.github.io/cvpr18w_dehaze
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Table 1. Quantitative comparison of PSNR, SSIM, CIEDE2000 values on Fattal dataset

Image Berman et al. [7] Cai et al. [8] Li et al. [20] Ren et al. [24] Ours

church 15.69/0.88/16.91 14.64/0.82/20.45 9.44/0.61/34.64 14.18/0.85/20.26 14.47/0.89/24.4

couch 17.28/0.86/14.18 16.71/0.82/14.34 16.79/0.82/17.33 18.02/0.87/12.92 19.54/0.84/12.94

dolls 15.71/0.8/15.74 16.26/0.81/12.43 17.24/0.82/10.88 16.95/0.83/12.38 14.91/0.81/13.51

flower1 12.15/0.71/20.99 19.81/0.94/16.72 12.21/0.79/29.42 9.08/0.42/24.65 21.35/0.94/14.72

flower2 11.86/0.67/21.17 19.44/0.91/15.37 13.13/0.78/25.27 10.82/0.59/22.45 22.75/0.94/11.39

lawn1 14.78/0.83/17.93 13.8/0.81/23.01 11.33/0.67/31.74 14.38/0.8/21.0 16.17/0.86/20.22

lawn2 15.32/0.85/17.81 13.61/0.81/22.47 10.98/0.66/31.7 13.3/0.76/22.27 14.91/0.86/20.92

mansion 17.34/0.87/15.84 17.39/0.84/17.42 14.23/0.69/24.01 17.7/0.87/17.53 21.89/0.92/13.65

moebius 14.59/0.83/22.4 19.18/0.94/16.38 13.21/0.76/27.61 16.38/0.89/19.86 18.22/0.89/15.29

raindeer 16.6/0.8/15.28 17.87/0.84/13.73 16.54/0.79/18.5 16.83/0.8/15.49 22.66/0.89/10.71

road1 16.33/0.87/19.06 13.73/0.79/22.2 11.75/0.65/29.32 14.13/0.82/22.22 16.17/0.89/18.42

road2 18.23/0.89/16.83 13.22/0.77/23.43 11.95/0.61/30.96 16.45/0.86/20.18 15.89/0.9/20.79

Average 15.49/0.82/17.84 16.31/0.84/18.16 13.23/0.72/25.95 14.85/0.78/19.27 18.24/0.89/16.41

(a) Hazy Image (b) Berman et al. (c) Cai et al. (d) Li et al. (e) Ren et al. (f) Ours (g) Ground Truth

Figure 3. Comparison of outputs using Couch, flower2, mansion and road1 images of fattal dataset

as the does not calculate it by itself. We could not generate

the results of Li et al. [20] on NTIRE dehazing dataset, due

to the resource requirements of the code on large images.

6.2. Synthetic images

Here we report our results on hazy images that have been

generated by adding haze to clear images. Therefore, for

these images we have the ground truth clear images. So, full-

reference metrics like PSNR and SSIM [31] can be employed

to evaluate the results. We have also reported the average

CIEDE2000 [26] values to evaluate the performance of color

restoration. For PSNR and SSIM higher value indicates the

result is closer to the reference (haze-free) image. Whereas,

a low CIEDE2000 value indicates that the colors are similar

to the reference image. With these metrics in hand, here we

report the results we obtain on Fattal dataset [14] and valida-

tion images of the NTIRE dehazing dataset [5, 6]. Both the

dataset contain indoor and outdoor images. Although there

are other synthetic image dataset [29, 2], we have chosen

these two considering the fact that, fattal dataset [14] has

images with non-white airlight and NTIRE dehazing dataset

[5, 6] has been generated by professional haze machines. We

have quantitatively evaluated all the images of the selected

dataset (Table 1 and 2) and for visual comparison we have

shown the results on 8 images.

Fig. 3 shows the results on Fattal dataset. In these images,

method of Berman et al. is able to clear the haze, but it also

has a tendency to over-enhance the results. This behavior

is not observed in other methods. Cai et al. produces better

looking results than Li et al. in all the cases, maintaining the

colors more accurately. Ren et al. performs to some extent

similar to Cai et al., except the flower2 image where the

colors are distorted. Our method is not only able to clear the

haze but also able to maintain the image brightness, thereby

producing results close to the ground truth. This is also

reflected in the quantitative results in Table 1.

For the validation images of NTIRE dataset the similar

trend can be observed (Figure. 4). Berman et al. clears

the haze but produces over-contrasted output with saturated

colors. In these images Ren et al. performs a little better than
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Table 2. Quantitative comparison of PSNR, SSIM, CIEDE2000 values on NTIRE hazy dataset

Image Berman et al. [7] Cai et al. [8] Ren et al. [24] Ours

Indoor

26 12.42/0.65/20.15 10.17/0.69/24.64 11.02/0.72/22.36 15.71/0.78/13.86

27 14.8/0.66/18.03 14.51/0.67/17.74 17.61/0.77/12.31 21.94/0.77/8.25

28 13.3/0.62/19.24 13.39/0.72/17.7 13.11/0.72/17.06 16.15/0.73/13.71

29 14.67/0.67/15.73 11.91/0.55/20.78 17.6/0.84/11.43 21.88/0.83/9.33

30 13.93/0.61/19.09 15.53/0.71/15.16 16.79/0.73/14.21 20.66/0.73/12.19

Outdoor

36 16.92/0.58/14.43 16.59/0.64/13.17 19.46/0.68/11.84 23.23/0.68/7.6

37 14.99/0.52/15.14 15.76/0.57/15.36 17.73/0.6/13.27 21.4/0.63/8.53

38 15.55/0.64/16.92 13.25/0.6/21.85 16.21/0.66/19.02 22.4/0.69/8.52

39 17.65/0.62/16.43 12.78/0.57/20.71 15.75/0.61/16.74 19.95/0.64/10.84

40 17.04/0.61/15.06 16.53/0.67/11.62 18.67/0.7/11.96 22.2/0.71/7.85

Average 15.13/0.62/17.02 14.04/0.64/17.87 16.39/0.7/15.02 20.55/0.72/10.07

(a) Hazy Image (b) Berman et al. (c) Cai et al. (d) Ren et al. (e) Ours (f) Ground Truth

Figure 4. Comparison of outputs using validation images of NTIRE dehazing dataset

Cai et al. in removing the haze. But, output obtained by our

method is much closer to the ground truth. This observation

is also validated by the quantitative results in Table 2.

6.3. Real World Images

We have qualitatively evaluated the real world images as

we don’t have ground truth for these images. We have used

4 real world benchmark images used for image dehazing:

florence, lviv, mountain and stadium. Berman et al. [7]

produces dark looking results similar to the results obtained

in synthetic images, except the stadium image. Some haze

still remains in the outputs obtained by Cai et al. [8] specially

at the areas with dense hazes. Li et al. is able to clear the

haze but produces relatively darker images. Ren et al. tends

to distort colors in the outputs. It is specially noticeable

in stadium and mountain image. Our method produces the

brightest looking results while making the image haze-free

at the same time without introducing color distortions.

7. Failure Case

Although our method works well in many images, it fails

to work in some images. Here we provide two such cases:
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(a) Hazy Image (b) Berman et al. (c) Cai et al. (d) Li et al. (e) Ren et al. (f) Ours

Figure 5. Results on real world images: florence, lviv, mountain and stadium

(a) Input (b) Our (c) Our (transmittance)

(d) Our (airlight) (e) Berman et al. (f) Li et al.

Figure 6. Failure on canon7 image

canon7 (Fig. 6) and train (Fig. 7) image. In both the cases

our method have failed to completely clear the haze, spe-

cially when the haze is quite thick. This happens because our

method fails to correctly estimate the transmittance. Berman

et al. [7] performs better in this regard but introduces a differ-

ent color. Li et al. [20] is able to clear only a small amount

of haze. Our method have also failed to estimate the airlight

properly. As a result, we see that the haze has turned yellow-

ish in the results. This is not the case for Li et al. and train

image of Berman et al.

8. Conclusion

In this paper, we address the problem of image dehazing

using a fully convolutional neural network. We have pro-

posed to mitigate the some of the problems encountered by

the existing methods. For example, estimation of airlight,

training the network without ground truth transmittance or

environmental illumination and scale dependence of the

(a) Input (b) Our (c) Our (transmittance)

(d) Our (airlight) (e) Berman et al. (f) Li et al.

Figure 7. Failure on train image

CNNs. We have proposed to estimate airlight along with

transmittance. For training the network, we have defined a

custom loss that minimizes the error of getting the clear im-

age from the hazy image and vice versa. The scale problem

of CNNs have been tackled using a multi-level approach.

Although we have achieved results comparable to that of

the state-of-the-arts, the proposed approaches may not be

the best ones. There is still a lot of room for improvement.

How the multi-level training is effecting the performance of

the network is not investigated. We hope to address these

questions in the future.
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